SC8002B(3W音频功放IC)

SC8002B(3W音频功放IC)
SC8002B(3W音频功放IC)

SC8002B(文件编号:S&CIC0869) 3W音频功放IC 一、概述

SC8002B是一颗带关断模式的音频功放IC。在5V输入电压下工作时,负载(3Ω)上的平均功率为3W,且失真度不超过10%。而对于手提设备而言,当VDD作用于关断端时,SC8002B将会进入关断模式,此时的功耗极低,IQ仅为0.6uA。

SC8002B是专为大功率、高保真的应用场合所设计的音频功放IC。所需外围元件少且在2.0V~5.5V的输入电压下即可工作。

二、功能特点

?无需输出耦合电容或外部缓冲电路。

?稳定的增益输出。

?外部增益设置。

?封装形式:SOP8、SOP8-PP、DIP8、MSOP8。

三、应用

?可应用于手提设备,台式电脑及低电压工作的音频设备。

四、管脚排列及说明

SC8002B (文件编号:S&CIC0869) 3W 音频功放IC

因此在5V 输入,8?负载情况下,输出最大功耗为625mW 。 但是此算法得出的结果如下:

P DMAX = (T JMAX -T A )/ θJA

注:SOP 封装θJA =140°C/W ,DIP 封装θJA =107°C/W ,MSOP 封装θJA =210°C/W ? 基准电压

电压基准端的外接电容应尽可能的靠近SC8002B ,0.1μF 的电容提高了内部偏置电压的稳定性并且减少了 PSRR 的影响。可以通过加大BYPASS 端的对地电容值来改善PSRR 。CB 值的大小取决于对PSRR 的要求。 ? 关断功能

为了减少功耗,SC8002B 的关断端可以关闭外部的偏置电路。当关断端为高电平时,运放关闭,SC8002B 不工作,这时SC8002B 的工作电流降低到0.6uA 。当关断端电压略低于VDD 时,SC8002B 工作状态不稳定。所以,关断端应置于一个稳定的电压值,以免IC 进入错误的工作状态。

在很多应用场合,关断端的电平转换都是由处理器来完成的。当使用单向闸刀开关实现电平转换时,可以在关断端加上拉电阻,这样当开关关断时,因上拉电阻的作用,使得SC8002B 关断端的电平处于一个正确的状态,以保证SC8002B 不会进入错误的工作状态。

六、极限参数(Ta=25℃)

特性 符号 范围 单位 工作电压 V DD 6 V

输入电压 V IN -0.3~V DD +0.3 V 工作温度 T OPR -65~+150 ℃ 环境温度 T A -40~+85 ℃ 节点温度

T J

150

七、电气参数(VDD=5V ,RL=8Ω,Ta=25℃)

名称 符号 最小值 典型值

最大值

单位

测试条件

工作电压 V DD 2.0 -- 5.5 V

静态电流 I DD -- 6.5 10 mA V IN =0V, I O =0mA 关断电流 I SD -- 0.6 2 uA V PIN1=V DD 输出偏压 V OS -- 5.0 50 mV V IN =0V

-- 1.2 --

THD=1%, f=1KH z, R L =8Ω 输出功率 P O

-- 1.5 -- W

THD=10%, f=1KH z, R L =8Ω

总谐波失真+噪音 THD+N -- 0.25 -- %

20Hz ≤f ≤20KHz, A VD =2, RL=8Ω, P O =1W 电源抑制比

-- 60 -- dB

V DD =4.9V~5.1V

SC8002B(文件编号:S&CIC0869) 3W音频功放IC 八、特性参数

SC8002B(文件编号:S&CIC0869) 3W音频功放IC

SC8002B(文件编号:S&CIC0869) 3W音频功放IC MSOP8

常用音频功放芯片-HX8321用户手册

HX8321 5.5W、超低EMI、AB/D类可选、单声道、带过热保护功能音频功放HX8321用户手册 2016年10月

HX8321 5.5W、超低EMI、AB/D类可选、单声道、带过热保护功能音频功放5.5W、超低EMI、AB/D类可选、单声道、带过热保护功能音频功放 芯片功能说明 l HX8321是一款超低EMI,无需滤波器,AB/D 类可选式音频功率放大器。5V工作电压时,最大 驱动功率为5.5W(VDD=5V,2ΩBTL负载, THD<10%),音频范围内总谐波失真噪声小于 1%(20Hz~20KHz);QQ:1207435600 l HX8321的应用电路简单,只需极少数外围器件;l HX8321输出不需要外接耦合电容或上举电容和缓冲网络; l HX8321采用ESOP8封装,特别适合用于小音量、小体重的便携系统中; l HX8321可以通过控制进入关断模式,从而减少功耗; l HX8321内部具有过热自动关断保护机制; l HX8321工作稳定,通过配置外围电阻可以调整放大器的电压增益,方便应用。芯片功能主要特性 l超低EMI,高效率,音质优 l AB/D类切换、单通道 l VDD=5V,RL=2Ω,Po=5.5W,THD+N≤10% VDD=5V,RL=4Ω,Po=3.2W,THD+N≤10% l宽工作电压范围2.5V—7V l优异的上掉电POP声抑制 l采用ESOP8封装 芯片的基本应用 l手提电脑、台式电脑 l扩音器 l蓝牙音箱 l安防产品、童车 HX8321 原理框图

芯片定购信息 表1订购信息表 芯片型号封装类型包装类型最小包装数量(PCS)备注 HX8321ESOP8管装100/管 典型应用电路 图1HX8321典型应用电路 注:以上应用图中元件说明: Ci:隔直电容,采用0.1μF或更小的,进一步消除咔嗒-噼噗声和从输入端耦合进入的噪声。 Cs:电源去耦电容,采用足够低ESR的电容(小于1μF),当VDD=5V时,为更好的滤除低频噪声,建议另加一个低ESR电容(不小于10μF)。去耦电容离VDD管脚越近越好,保持 1.5mm之内。 C B:BYPASS端口输出VDD/2电压,通过电容C B(1μF)接地以保证稳定性。 引脚分布图 图2HX8321管脚定义

流行的及常用的6款发烧IC音频功率放大器

流行的及常用的6款发烧IC音频功率放大器 6片IC简介本文将为大家介绍现在流行的6款IC音频功率放大器,分别是美国国半公司的LM1875、LM4766、LM3886(LM4780)以及ST意法公司的TDA7293和TDA7294,它们的标称输出功率在30~100W范围内,适用于家用高保真音频功率放大器。采用这几款IC的功放具有元件少、调试简单的特点,功率、音质与一般的分立元件功放相比毫不逊色,因此一直受到广大DIY发烧友,特别是初学者的喜爱。JeffRowland的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。 关键词: 音频功率放大器功率IC TDA7294 TDA7293 应用 LM1875 LM4766 LM3886 一、6片IC简介 本文将为大家介绍现在流行的6款IC音频大功率放大器,分别是美国国半公司的LM1875、LM4766、LM386(LM4780)以及ST意法公司的TDA7293、TDA7294,它们的标称功率在30~100W范围内,适合于家用高保真音频放大器。采用这几款IC的功放具有元件少,高度简单的特点,功率、音质与一般分立元件功放相比毫不逊色,因此一直受到DIY发烧友,特别是初学者的喜爱。JeffRowland的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。 虽然JeffRowland证明了功率IC可以好声,而且这些IC家喻户晓,使用者众多,但“IC音质不如分立元件”的观念却依然根深蒂固的扎根于广大DIY发烧友的头脑里。很多人对这些芯片的认识来自未能发挥芯片的制作,造成对这些芯片的误解。本文将从产品数据手册入手,多角度,深入地挖掘产品数据手册中包含的丰富信息,揭开数据背后隐藏的秘密,以求给大家一个全面的认识。 1. LM1875 LM1875是美国国家半导体公司20世纪90年代初推出的一款音频功放IC,如图1所示。它采用TO-220封装,外围元件少,性能优异,直到现在还一直被广泛应用于音响上。LM1875价格低廉,最适合于不想花太多钱又想过发烧瘾的爱好者业余制

[音频功率放大器] D类音频功放IC的原理及特点

D类音频功放IC的原理及特点 1 D类音频功放IC系统结构 D类放大器由积分移相、PWM调制模块、G栅级驱动、开关MOSFET 电路、Logic辅助、输出滤波、负反馈、保护电路等部分组成。流程上首先将模拟输入信号调制成PWM方波信号,经过调制的PWM信号通过驱动电路驱动功率输出级,然后通过低通滤波滤除高频载波信号,原始信号被恢复,驱动扬声器发声,如图1所示。 2 调制级(PWM-Modulation) 调制级就是A/D转换,对输入模拟音频信号采样,形成高低电平形式数字PWM信号。图2中,比较器同相输入端接音频信号源,反向端接功放内部时钟产生的三角波信号。在音频输入端信号电平高于三角波信号时,比较器输出高电平VH,反之,输出低电平VL,并将输入正弦波信号转换为宽度随正弦波幅度变化的PWM波。这是D类功放核心之一,必须要求三角波线性度好,振

荡频率稳定,比较器精度高,速度快,产生的PWM方波上升、下降沿陡峭,深入调制措施参见文献[2]。 3 全桥输出级 输出级是开关型放大器,输出摆幅为VCC,电路结构如图3所示。将MOSFET等效为理想开关,关断时,导通电流为零,无功率消耗;导通时,两端电压依然趋近为零,虽有电流存在,但功耗仍趋近零;整个工作周期,MOSFET 基本无功率消耗,所以理论上D类功放的转换效率可接近100%,但考虑辅助电路功耗及MOSFET传导损耗,整体转换效率一般可达90%左右。因为转换效率很高,所以芯片本身消耗的热能小,温升也才很小,完全可以不考虑散热不良,因此被称为绿色能效D类功放。 对全桥,进一步减小导通损耗,要使MOSFET漏源的导通电阻RON尽量小。选取低开关频率和栅源电容小的MOSFET,加强前置驱动器的驱动能力。

一款已经成业有20年之久的老牌优秀音频功放类ic芯片

一款已经成业有20年之久的老牌优秀音频功放类ic芯片 伴随着功放ic芯片应用不断广泛。作为国产音频功放生产商的茂捷半导体。在2013年生活生产出第一代音频功放ic芯片M3110,时。国产电源ic芯片,功放ic芯片周围群狼环伺, 作为15W左右高效立体D声,音频功放ic芯片的业界老大哥TPA3110芯片。无不被众多音频功放从业者的创新对象,其中作为后起之秀的AD52068,和国产M3110,是众多跟随者中最为优秀的创新者。 尽管作为一款已经成业有20年之久的老牌优秀音频功放类ic芯片,TPA3110和AD52068以及M3110都对其进行周期性的升级。尽管三大厂商对其音频功放ic芯片升级的目标不同。作为TPA3110的厂商主要是对在克服器高温效果下的性能变换特征。周期大概是3到5年时间。作为AD厂商,则偏重于功放能耗方面的调试。周期大致是2年到3年。作为国产音频功放ic的后来居上者,M3110,在维持封装统一的要求下。对高效转化。能耗控制。温度转换,音频控制。节能环保方面都有着不断的创新与进步,M3110音频功放ic 芯片厂商作为国产电源管理ic的专业科技企业,保持了中国的工匠精神的严谨与中国人所特有勤奋与开拓精神,对每一款旗下的产品都不断的改进,所以M3110的升级周期大致是1.5年到2年之间。 作为茂捷半导的一款老产品M3110,在第四次升级时。为能提高功效。突出对其应用的成品产品特点,优化了M3110的电压工作范围,从以前的1.5V-28V,优化到现在的4.5V-18V 使其在供电的波动区间会大大减少。降低产品的音频功放要求,相对于TPA3110音频效果更好,音质更逼真。在测试时,应用到VR音频系统时。音质更细腻! 茂捷(mojay)官网对M3110本次升级时自2017年3月后对新注入的全新六级能耗标准执行工艺,在音频功效上: 16V供电,当负载为 8Ω、总谐波失真为10%时,2×15W

功放IC 8002

8002 DataSheet V1.0

CONTENTS General Description (4) Features (4) Applications (4) Typical Application Circuit (4) Absolute Maximum Ratings (5) Electrical Characteristics (5) Pin Configuration (6) Pin Layout (6) Pin Discription (6) Typical Characteristics (7) THD, THD+N,S/N (7) Power Supply Rejection Ratio (PSRR) (9) Power Dissipation (10) Output Power (11) Application Information (12) BLOCK DIAGRAM (12) BRIDGE CONFIGURATION EXPLANATION (13) POWER DISSIPATION (13) POWER SUPPLY BYPASSING (14) SHUTDOWN FUNCTION (14) PROPER SELECTION OF EXTERNAL COMPONENTS (14) Selection of Input Capacitor Size (15) AUDIO POWER AMPLIFIER DESIGN (15) A 1W/8? Audio Amplifier (15) Physical Size of Chip Package (17)

TDA2030音频功率放大电路

TDA2030音频功率放大电路 TDA2030 是德律风根生产的音频功放电路,采用V 型5 脚单列直插式塑料封装结构。如图1 所示,按引脚的形状引可分为H 型和V 型。该集成 电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功 率大、失真小等特点。并具有内部保护电路。意大利SGS 公司、美国RCA 公司、日本日立公司、NEC 公司等均有同类产品生产,虽然其内部电路略有差异,但引出脚位置及功能均相同,可以互换。电路特点:[1].外接元件非常少。 [2].输出功率大,Po=18W(RL=4Ω)。[3].采用超小型封装(TO-220),可提高组装密度。[4].开机冲击极小。[5].内含各种保护电路,因此工作安全可*。主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。 注意事项:TDA2030 具有负载泄放电压反冲保护电路,如果电源电压峰值电压40V 的话,那么在5 脚与电源之间必须插入LC 滤波器,以保证5 脚上的脉冲串维持在规定的幅度内。热保护:限热保护有以下优点,能够容易承受输出的过载(甚至是长时间的),或者环境温度超过时均起保护作用。与普通电路相比较,散热片可以有更小的安全系数。万一结温超过时,也不会对器件 有所损害,如果发生这种情况,Po=(当然还有Ptot)和Io 就被减少。印刷电路板设计时必须较好的考虑地线与输出的去耦,因为这些线路有大的电流通过。装配时散热片与之间不需要绝缘,引线长度应尽可能短,焊接温度不得超过260℃,12 秒。虽然TDA2030 所需的元件很少,但所选的元件必须是品质有保障的元件。 tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

(整理)正确使用好功放IC.

正确使用好功放IC 80年代以前,输出功率仅几瓦的声频功率放大器都要采用分立元件来制作。进入80年代后,国内开始 研制生产出一些小功率的功放IC,但由于这些功放IC的性能指标不佳,尤其是可靠性比较差,很快就 被国外生产的功放IC所取代。日本生产的HA1392、TA7240曾经是80年代用得非常普遍的功放IC。HA 1392与TA7240的输出功率都只有4W ~ 6W。HA1392的工作频率上限较低,电源极性接反就即刻损 坏。TA7240的外围电路设计难度较大,静音控制易受外界干扰而产生误动作。意法SGS公司在80年代 初开发生产的TDA2030A算是比较好的一款功放IC,它的输出功率能够达到12W以上。尽管SGS公司 在TDA2030A基础上又研制出TDA2040、TDA2050功放IC,使输出功率能够达到24W,但由于它们的 电源适用范围只有±22V,如果使用未经稳压的整流滤波直流电供电,它们实际上都只能给4Ω负载输 出12W功率。美国NS公司在80年代开发生产的LM1875功放IC,比SGS公司生产的TDA2030A功放IC 输出功率高出一倍,原因就在于它的电源适用范围可以达到±30V。如果使用稳压直流电供电,TDA20 30A与LM1875实际上都能在±18V供电条件下给4Ω负载输出24W正弦波有效功率。而且提高供电电压,除了使LM1875在更低的输出功率下发生功耗过载保护动作外,并不能增大输出功率。作为早期开 发的功放器件,TDA2030A与LM1875都没有静音控制功能,对电源纹波的抑制能力也不够强。荷兰菲 利普公司在意法SGS公司推出TDA2030A之后不久,也开发生产出一款性能指标类同的TDA1521Q双功 放IC。该款功放IC的电源适用范围也是±22V,能够同时给两个4Ω负载分别输出12W功率。由于TDA1 521Q已把决定放大倍率的负反馈电路做在IC内部,使用上相对比较简便。此后,菏兰菲利普公司又推 出一款型号为TDA1514A的高性能功放IC,产品介绍资料上称它能够输出40W的功率。但是,实际的使 用实验证明:在使用稳压直流电源供电的情况下,TDA1514A能够可靠工作的电源电压只到±18V,给 4Ω负载输出的正弦波有效功率为24W。如果将电源电压提高到±20V以上电压,TDA1514A将出现过 载保护动作,而且所进行的过载保护动作表现为半波截止输出。这样,人们只能把TDA1514A的工作电 压设计为与LM1875相同的工作电压。 在90年代以前,电子器件生产厂商提供的功放IC输出功率实际都在30W以下。在经过10多年的努力后,美国NS公司和意法SGS公司都在90年代期间相继开发生产出多款输出功率超过30W的功放IC芯片。其中,LM3876、LM3886是美国NS公司的代表作,TDA7294、TDA7295、TDA7296是意法SGS 公司的代表作。这些功放IC芯片都具有很小的安装体积和多项安全保护功能,使用上很可靠。但同时 也正因为功放IC芯片需要有很可靠的过热、过流、过压、过功耗等多项安全保护功能,生产厂家在设 计IC芯片的内部保护电路时,可能会因为所采取的检测方式过于敏感或欠成熟,出现一些不够良好的 问题。生产厂家没有在其产品介绍说明中将这些缺陷写出来,固然有可能是不希望自己的产品销售受 到影响,但更多的原因是他们自己也未必发现了这些缺陷,而需要用户在使用过程中将发现的问题反 馈给生产厂家,他们再去改进开发新的器件。譬如,美国NS公司的音响工程师曾给我推荐使用他们生 产的功放IC,其中有一款型号为LM4701(样品型号为LM4700),该款功放IC据说是替代LM1875的 器件,它具有静音控制功能,输出功率比LM1875高。但实际的使用证明:LM4701在推动4Ω负载时能 够正常工作,不出现误保护动作的电源电压不可以超过±20V,最大输出功率只有20W。如果电源电压 超过±20V,譬如为±22V时,输出功率不但不会增大,100Hz以下低声频段能够正常输出的功率会降 低到只有10W。虽然在±26V稳压电源供电下,LM4701可以给8Ω负载输出25W功率,但因其电源实用 范围只有±32V,在使用非稳压直流电源供电情况下,LM4701可以给8Ω负载输出的功率还达不到20 W。又譬如,意法SGS公司生产的TDA7264双功放IC,产品介绍资料中标明它的最高工作电压为±25 V,最大输出电流为4A,比TDA2030A的性能指标(最高工作电压为±22V,最大输出电流为3.5A)要

音频功率放大电路实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

常用大功率D类音频功放IC芯片选型说明

常用大功率D类音频功放IC芯片选型说明传统大功率功放芯片,一般都是模拟的功放芯片,象大家都熟悉的TDA2030、LM1875、TDA1521等。这些功放除了音质会好一点,其它的对于现在的D类功放来说,都是缺点。如今随着技术的进步,D类功放的音质技术早已突破,比传统功放芯片差不了多少。以HX8330为代表的D类功放,是替代这些优秀的前辈产品不二之选。 二、模拟功放的缺点: ●电源供电一般都要用正负双电源供电。 ●大部分都是插件式。 ●因本身发热严重,需要带一块沉重的铝片散热。 ●占用PCB板和机壳的空间很大。 ●外围元件多,特别是电解电容也用的多。 三、HX8330概述: HX8330是一款30W高效D类音频功率放大电路,主要应用于音响等消费类音频设备。此款电路可以驱动低至4Ω负载的立体声扬声器,功效高达90%,使得在播放音乐时不需要额外的散热器。其特点如下: ●15W功率输出(12V电压,4Ω负载,TND+N=10%); ●30W功率输出(16V电压,4Ω负载,TND+N=10%); ●效率高达90%,无需散热片; ●较大的电源电压范围8V~20V; ●免滤波功能,输出不需要电感进行滤波; ●输出管脚方便布线布局; ●良好短路保护和具备自动恢复功能的温度保护; ●良好的失真; ●增益36dB; ●差分输入; ●简单的外围设计;QQ:1207435600 ●封装形式:ESOP8。 四、应用领域: ●拉杆音箱: ●大功率喊话器: ●落地音箱: ●蓝牙音箱 ●扩音器

五、芯片对比分析: 六、 功能框图与引脚说明:

七、应用原理图: 如上图,可以很清晰的看出硬件的外围电路是极其简单的,bom成本低廉 八、HX8330优势说明: 1、外围元件少,电路简单, 2、效率高达90%,无需散热片 3、占用PCB板空间小 4、16V供电时,功率可以到达30W 九、总结: 我写这边文章的目的,并不是想要抵扉传统的模拟功放。只是想告诉各位同仁,在如今市场竞争激烈的环境下,一个成品的利润能多铮几毛钱,都是一件不容易的事。我们在选择功放的时候,如果不是做HIFI级别的音箱,音质要求不是很高的情况下。选择合适的D类功放也是一种有效降低生产成本的方法。 IPET

主流功放芯片介绍

低档运放JRC4558。这种运放是低档机器使用得最多的。现在被认为超级烂,因为它的声音过于明亮,毛刺感强,所以比起其他的音响用运放来说是最差劲的一种。不过它在我国暂时应用得还是比较多的,很多的四、五百元的功放还是选择使用它,因为考虑到成本问题和实际能出的效果,没必要选择质量超过5532以上的运放。对于一些电脑有源音箱来说,它的应付能力还是绰绰有余的。 运放之皇5532。如果有谁还没有听说过它名字的话,那就还未称得上是音响爱好者。这个当年有运放皇之称的NE5532,与LM833、LF353、CA3240一起是老牌四大名运放,不过现在只有5532应用得最多。5532现在主要分开台湾、美国和PHILIPS生产的,日本也有。5532原来是美国SIGNE公司的产品,所以质量最好的是带大S标志的美国产品,市面上要正宗的要卖8元以上,自从SIGNE被PHILIPS 收购后,生产的5532商标使用的都是PHILIPS商标,质量和原品相当,只须4-5元。而台湾生产的质量就稍微差一些,价格也最便,两三块便可以买到了。NE5532的封装和4558一样,都是DIP8脚双运放(功能引脚见图),声音特点总体来说属于温暖细腻型,驱动力强,但高音略显毛糙,低音偏肥。以前不少人认为它有少许的“胆味”,不过现在比它更有胆味的已有不少,相对来说就显得不是那么突出了。5532的电压适应范围非常宽,从正负3V至正负20V都能正常工作。它虽然是一个比较旧的运放型号,但现在仍被认为是性价比最高的音响用运放。是属于平民化的一种运放,被许多中底档的功放采用。不过现在有太多的假冒NE5532,或非音频用的工业用品,由于5532的引脚功能和4558的相同,所以有些不良商家还把4558擦掉字母后印上5532字样充当5532,一般外观粗糙,印字易擦掉,有少许经验的人也可以辨别。据说有8mA的电流温热才是正宗的音频用5532。 NE5532还有两位兄弟NE5534和NE5535。5534是单运放,由于它分开了单运放,没有了双运放之间的相互影响,所以音色不但柔和、温暖和细腻,而且有较好的音乐味。它的电压适应范围也很宽,低到正负5V的电压也能保持良好的工作状态。由于以前著名的美国BGW-150功放采用5534作电压激励时,特意让正电源电压高出0.7V,迫使其输出管工作于更完美的甲类状态,使得音质进一步改善,所以现在一般都认为如果让正电源高出0.7V音质会更好。5534的引脚功能见(图),价格和5532相当。而NE5535是5532的升级产品,其特点是内电路更加简洁,且输出级采用全互补结构。转换速率比5532更高。不过有个缺点就是噪声较大,频带不够宽,底电压工作时性能不够好,所以用于模拟滤波时效果不如5532理想。但在工作电压大于或等于15V时用作线形放大电路,音乐味会比5532好一些,所以其价格也比5532要贵两三元,其引脚功能和5532一样。 双运放AD827。这枚是AD公司的较新产品,它原本是为视频电路设计的,所以它的增益带宽达50MHZ,SR达到300V/us,它与EL2244一样都是目前市场上电压反馈型双运放的顶级货,一般的运放难望其项背。其高频经营剔透,低频弹跳感优

功放IC常用选型与详细说明

功放IC常用选型与详细说明 前言: 小功率功放芯片的遍地开花,使的目前生产和开发蓝牙、MP3的音箱的公司,在功放选型上有很大的多样性和灵活性。但要选择一个合适的功放芯片,也是一件比较麻烦的事,特别是选一款工作电压较宽的功放芯片,更加不容易。下面我就针对我公司的功放芯片,给在家介绍一下。 先例出几款常用功放芯片的比较:QQ:298391364 从列表可以看出,我公司推出的HX系列功放芯片,工作电压和 输出功率明显的高于其它的功放。 HX8358资料介绍: 芯片功能说明: HX8358是一款超低EMI,无需滤波器,AB/D类可选式音频功率

放大器。6V工作电压时,最大驱动功率为8W(VDD=6V,2ΩBTL负载,THD<10%),音频范围内总谐波失真噪声小于1%,(20Hz~20KHz);HX8358的应用电路简单,只需极少数外围器件; HX8358输出不需要外接耦合电容或上举电容和 缓冲网络; HX8358采用ESOP8封装,特别适合用于小音 量、小体重的便携系统中; HX8358可以通过控制进入关断模式,从而减少 功耗; HX8358内部具有过热自动关断保护机制; HX8358工作稳定,通过配置外围电阻可以调整 放大器的电压增益,方便应用。 芯片功能主要特性: 超低EMI,高效率,音质优 AB/D类切换、单通道 VDD=6V,RL=2Ω,Po=8W,THD+N≤10% VDD=6V,RL=4Ω,Po=5W,THD+N≤10% (防失真关断模式) 宽工作电压范围2.5V—7V 优异的上掉电POP声抑制 采用ESOP8封装 芯片的基本应用:

手提电脑、台式电脑 扩音器 蓝牙音箱 HX8358原理框图: 典型应用电路: 注:以上应用图中元件说明:

几款最常用的音频功放芯片以及应用电路介绍

几款最常用的音频功放芯片以及应用电路介绍 来源:华强北IC代购网功放芯片就好像是多媒体播放设备的“心脏”,是为播放设备提供动力的部件,也是关系到音质的重要环节之一,其重要性自然不言而喻。于是有许多音频功放芯片的初学者就会好奇,要怎么才能选到合适的芯片呢?常用的音频功放芯片有哪些?下面华强北IC代购网搜集了几款最常用的音频功放芯片,以及功率放大集成电路介绍希望对大家的音频电路设计有帮助。 常用的音频功放芯片 1、LM1875 LM1875是最常用的功放芯片之一,为单声道设计,不仅具有音质醇厚功率大的优点,还具有完整的保护电路,在同类型芯片中属于高档型号。 2、LM3886 同样是单声道设计,共有11个引脚,相对LM1875来说,LM3885具有更大的功率,更宽的动态,在其他参数上也有优势,所以只有在最高端多媒体音响才会采用LM3886作为音频功放芯片。 3、LM4766

网上通常的说法是,LM4766等于将两个LM3886封装在一起,为什么这样说呢?从性能参数来看,LM4766恰好和LM3886相当,甚至音色表色也是如出一辙。不过,由于LM4766引脚较多,业内人士常把它称之为“蜈蚣芯片”,在焊接的时候具有一定的难度。 功率放大集成电路分类介绍 1、二声道三维环绕声处理集成电路 音响系统中使用的二声道三维环绕声系统有SRS、Spatializer、Q Surround以及虚拟杜比环绕声系统。 2、杜比定向逻辑环绕声集成电路 杜比定向逻辑环绕声解码系统是经过杜比编码处理过的左、右二声迹信号调节还原成四声道音频信号。 3、数码环绕声解码集成电路 音响系统中使用的数码环绕声系统有杜比数码系统和DTS系统等,两种系统音频信号的记录与重放均为独立六声道。 4、电子音量控制集成电路 电子音量控制集成电路是采用直流电压或串行数据控制的可调增益放大器,其内部一般由衰减器、锁存器、移位寄存器和电平传唤电路组成。 5、电子转换开关集成电路 电子转换开关集成电路是采用直流电压或串行数据控制的额多路电子互锁开关集成电路,内部一般由逻辑控制、电平转换、锁存器、模拟开关等组成。 6、扬声器保护集成电路 扬声器保护集成电路可以在音频功放芯片出现故障、过载或过电压时将扬声器系统与功放电路断开,从而达到保护扬声器和功放电路的目的。扬声器保护集成电路内部一般由检测电路、触发器、静噪电路及继电器驱动电路等组成。

SC8002B(3W音频功放IC)

一、概述 SC8002B是一颗带关断模式的音频功放IC。在5V输入电压下工作时,负载(3Ω)上的平均功率为3W,且失真度不超过10%。而对于手提设备而言,当VDD作用于关断端时,SC8002B将会进入关断模式,此时的功耗极低,IQ仅为0.6uA。 SC8002B是专为大功率、高保真的应用场合所设计的音频功放IC。所需外围元件少且在2.0V~5.5V的输入电压下即可工作。 二、功能特点 ?无需输出耦合电容或外部缓冲电路。 ?稳定的增益输出。 ?外部增益设置。 ?封装形式:SOP8、SOP8-PP、DIP8、MSOP8。 三、应用 ?可应用于手提设备,台式电脑及低电压工作的音频设备。 四、管脚排列及说明

电压基准端的外接电容应尽可能的靠近SC8002B,0.1μF的电容提高了内部偏置电压的稳定性并且减少了PSRR的影响。可以通过加大BYPASS端的对地电容值来改善PSRR。CB值的大小取决于对PSRR的要求。 ?关断功能 为了减少功耗,SC8002B的关断端可以关闭外部的偏置电路。当关断端为高电平时,运放关闭,SC8002B不工作,这时SC8002B的工作电流降低到0.6uA。当关断端电压略低于VDD时,SC8002B工作状态不稳定。所以,关断端应置于一个稳定的电压值,以免IC进入错误的工作状态。 在很多应用场合,关断端的电平转换都是由处理器来完成的。当使用单向闸刀开关实现电平转换时,可以在关断端加上拉电阻,这样当开关关断时,因上拉电阻的作用,使得SC8002B关断端的电平处于一个正确的状态,以保证SC8002B不会进入错误的工作状态。 六、极限参数(Ta=25℃) 特性符号范围单位 工作电压V DD 6 V 输入电压V IN-0.3~V DD+0.3 V 工作温度T OPR-65~+150 ℃ 环境温度T A-40~+85 ℃ 节点温度T J150 ℃ 七、电气参数(VDD=5V,RL=8Ω,Ta=25℃) 名称符号最小值典型值最大值单位测试条件 工作电压V DD 2.0 -- 5.5 V 静态电流I DD-- 6.5 10 mA V IN=0V, I O=0mA 关断电流I SD-- 0.6 2 uA V PIN1=V DD 输出偏压V OS-- 5.0 50 mV V IN=0V 输出功率P O -- 1.2 -- W THD=1%, f=1KH z, R L=8Ω-- 1.5 -- THD=10%, f=1KH z, R L=8Ω 总谐波失真+噪音THD+N -- 0.25 -- % 20Hz≤f≤20KHz, A VD=2, RL=8Ω, P O=1W 电源抑制比-- 60 -- dB V DD=4.9V~5.1V 八、特性参数

音频功率放大电路设计(附仿真)

南昌大学实验报告 学生姓名: 学号: 专业班级: 实验类型:□验证□综合□设计□创新 实验日期: 实验成绩: 音频功率放大电路设计 一、设计任务 设计一小功率音频放大电路并进行仿真。 二、设计要求 已知条件:电源9±V 或12±V ;输入音频电压峰值为5mV ;8Ω/0.5W 扬声器;集成运算放大器(TL084);三极管(9012、9013);二极管(IN4148);电阻、电容若干 基本性能指标:P o ≥200mW (输出信号基本不失真);负载阻抗R L =8Ω;截 止频率f L =300Hz ,f H =3400Hz 扩展性能指标:P o ≥1W (功率管自选) 三、设计方案 音频功率放大电路基本组成框图如下: 音频功放组成框图 由于话筒的输出信号一般只有5mV 左右,通过话音放大器不失真地放大声音 信号,其输入阻抗应远大于话筒的输出阻抗;滤波器用来滤除语音频带以外的干扰信号;功率放大器在输出信号失真尽可能小的前提下,给负载R L (扬声器)提 供一定的输出功率。 应根据设计要求,合理分配各级电路的增益,功率计算应采用有效值。基于 运放TL084构建话音放大器与宽带滤波器,频率要求详见基本性能指标。功率放大器可采用使用最广泛的 OTL (Output Transformerless )功率放大电路和OCL (Output Capacitorless )功率放大电路,两者均采用甲乙类互补对称电路,这种功放电路在具有较高效率的同时,又兼顾交越失真小,输出波形好,在实际电路中得到了广泛的应用。

对于负载来说,OTL电路和OCL电路都是射极跟随器,且为双向跟随,它们利用射极跟随器的优点——低输出阻抗,提高了功放电路的带负载能力,这也正是输出级所必需的。由于射极跟随器的电压增益接近且小于1,所以,在OTL电路和OCL电路的输入端必须设有推动级,且为甲类工作状态,要求其能够送出完整的输出电压;又因为射极跟随器的电流增益很大,所以,它的功率增益也很大,这就同时要求推动级能够送出一定的电流。推动级可以采用晶体管共射电路,也可以采用集成运算放大电路,请自行查阅相关资料。 在Multisim软件仿真时,用峰值电压为5mV的正弦波信号代替话筒输出的语音信号;用性能相当的三极管替代9012和9013;用8 电阻替代扬声器。由于三极管(9012、9013)最大功率为500mW,要特别注意工作中三极管的功耗,过大会烧毁三极管,最好不超过400mW。如制作实物,因扬声器呈感性,易引起高频自激,在扬声器旁并入一容性网络(几十欧姆电阻串联100nF电容)可使等效负载呈阻性,改善负载为扬声器时的高频特性。 四、电路仿真与分析 黄色为输入信号,蓝色为输出信号。输出信号峰峰值放大,且波形基本不失真。 输出阻抗用8Ω电阻替代,输出功率为236mW>200mW

模电课程设计方案之音频功率放大器

一、设计题目:音频功率放大电路 二、设计的任务和要求 1、主要要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路, 负载为扬声器,阻抗8Ω。 2、性能指标:频带宽50H Z ~20kH Z ,输出波形基本不失真;电路输出功率大于8W; 输入灵敏度为100mV,输入阻抗不低于47KΩ。 三、原理电路和程序设计 3.1、方案的确定及论证 1、OTA互补对称功率放大器 OTL 电路通常由两个对称的异型管构成,因此又称为互补对称电路,图 3-1 为单电源 OTL 互补对称功率放大电路。电路中 T1 是推动级(电压放大,也叫激励级),其中Rb1、Rb2是 T1 的基极偏置电阻,Re为 T1发射极电阻,Rb为T1集电极负载电阻,它们共同构成 T1 的稳定静态工作点;T2、T3 组成互补对称功率放大电路的输出级,且 T2、T3工作在乙类状态;C2 为输出耦合电容。功率放大器采用射极输出器,提高了输入电阻和带负载的能力。 性能分析: 乙类互补推挽功放(OTL)的输出功率的计算公式如下: 输出功率:P o =U o I o =U o 2/R L 输出最大功率:P om =U o I o =U o 2/R L =U om 2/2R L =V CC 2/8R L

显然P 与电源电压及负载有关 om 2/8R 当输入功率为8w,阻抗8w时,有Pom=V CC V =8*8*8≈22.6v 则电路所需的电源为22.6v。 CC 2、用集成器件实现 Tda2030简介:TDA2030是德律风根生产的音频功放电路,采用V型5 脚单列直插式塑料封装结构。该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。并具有内部保护电路。 电路特点: [1].外接元件非常少。(基本应用电路图3-2) [2].输出功率大,Po=18W(RL=4Ω)。 [3].采用超小型封装(TO-220),可提高组装密度。 [4].开机冲击极小。 [5].内含各种保护电路,因此工作安全可靠。主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。 [6].TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。用它来做电脑有源音箱的功率放大部分或小型功放再合适不过了。 图3-2使用单电源供电的tda2030基本应用电路

主流功放芯片介绍

主流功放芯片介绍 运放之皇5532。如果有谁还没有听讲过它名字的话,那就还未称得上是音响爱好者。那个当年有运放皇之称的NE5532,与LM833、LF353、C A3240一起是老牌四大名运放,只是现在只有5532应用得最多。5532现在要紧分开台湾、美国和PHILIPS生产的,日本也有。5532原先是美国SIG NE公司的产品,因此质量最好的是带大S标志的美国产品,市面上要正宗的要卖8元以上,自从SIGNE被PHILIPS收购后,生产的5532商标使用的差不多上PHILIPS商标,质量和原品相当,只须4-5元。而台湾生产的质量就略微差一些,价格也最便,两三块便能够买到了。NE5532的封装和4558一样,差不多上DIP8脚双运放(功能引脚见图),声音特点总体来讲属于温顺细腻型,驱动力强,但高音略显毛糙,低音偏肥。往常许多人认为它有少许的“胆味”,只是现在比它更有胆味的已有许多,相对来讲就显得不是那么突出了。5532的电压适应范畴专门宽,从正负3V至正负20V 都能正常工作。它尽管是一个比较旧的运放型号,但现在仍被认为是性价比最高的音响用运放。是属于平民化的一种运放,被许多中底档的功放采纳。只是现在有太多的假冒NE5532,或非音频用的工业用品,由于5532的引脚功能和4558的相同,因此有些不良商家还把4558擦掉字母后印上5 532字样充当5532,一样外观粗糙,印字易擦掉,有少许体会的人也能够辨不。据讲有8mA的电流温热才是正宗的音频用5532。 NE5532还有两位兄弟NE5534和NE5535。5534是单运放,由于它分开了单运放,没有了双运放之间的相互阻碍,因此音色不但柔和、温顺和细腻,而且有较好的音乐味。它的电压适应范畴也专门宽,低到正负5V的电压也能保持良好的工作状态。由于往常闻名的美国BGW-150功放采纳5534作电压鼓舞时,专门让正电源电压高出0.7V,迫使其输出管工作于更完美的甲类状态,使得音质进一步改善,因此现在一样都认为如果让正电源高出0. 7V音质会更好。5534的引脚功能见(图),价格和5532相当。而NE5535

功放中经典芯片的DIY应用设计

功放中经典芯片的DIY应用设计 自从被黑胶和原版开盘迷住以后,对CD产品已不屑一顾,难道时代的进步带来的先进数码设备反而不及过时的模拟设备?虽然旧时的模拟音源有其优越的地方,但毕竟从耐用性和内容的多样性相对今天来说,已经难以满足需求,数字音源是唯一的选择。如果用LP的效果标准来要求CD,理论上并不存在困难,而在实际应用中能达到这种要求的产品少之又少,是什么原因?于是本人也异想天开地想通过实践来知道一些相关答案。D/A芯片的三驾马车TDA1541、AD1865、PCM63据说是三大传世经典颇受青睐,一直以来都有听过多款不同版本的产品,其中滋味难以用文字语言来表达,有进口厂机,也有DIY产品,好听耐听的都是借朋友的,自己拥有的机器都不太满意,呵呵。 先从这几个经典芯片入手试试,按照自己的想法制作,摸石头过河,看看自己能做出什么水平的DIY作品出来,是否可以达到大侠们的制作水平,我个人没有多大信心,因为数字电路平时很少有了解,只好临时抱佛脚恶补相关知识、学习网友的经验,张冠李戴拉郎配把各种不同用途的芯片组合成电路试试。 成功是需要付出努力的,一番折腾调教后,就这样先完成了以下两个东西。 1:首先制作的是目前论坛最热、名满天下的TDA1541,据说,制作这个DAC难度不小,我自己也有买过几个不同版本的成品PCB自己组装,最终效果不说了,有好有坏,我觉得这个D/A最难做到的是空间感或声场的深度以及底噪。这些做过的的DIY作业,某些版本的声卡测试指标做得很好,无奈听感却不甚理想,记得不止一次的看到明大侠和其他网友提到过布线的学问技巧,自己有看了一些相关理论,觉得这方面的确是好声的前提,这些经验需要借鉴。 电源质量是声音品质的基石,这点似乎已经是广大diyer的共识,但是各式各样的电路形式却令人眼花缭乱,LM317、337稳压目前被大多数的设计者应用,但是自己有一点经验:78系列的稳压效果最终表述的声音我更喜欢(个人观点,请勿拍砖),另外的原因是自己手头上这样的零件很多,扔了浪费。IV/LPF据说是DAC的重要部分,决定产品最终的声音风格,选择什么形式的LPF也费些脑筋,论坛有运放、仿马兰士的HDMA的,为了省略调试的麻烦我还是选用了运放组合(见下图), 这个输出电路看起来是个独臂老人,仔细分析电路似乎是设计者有意少画了一个下臂电阻,不然输出中点不可能是0电位,但是调整1.5k电阻还是可以调整输出管的电流,这也是选择这个电路的原因。中点输出不在0电位,对于有耦合电容的时候却不一定是坏事,曾经见过一些国外玩家在制作音箱分频器的时候,故意给里面的电容用电池加一定的偏压,这样做的好处是可以令到电容的相位失真减少(不知是真是假哦),因此,这里的电路中点不在0电位,也许正是设计者的初衷。 数字电路是标准的组合,大家的都一样,没什么特别的地方,连接好电路图就开始画板了,使用的软件是最简单的Sprint-Layout,热转印也是第一次做的,都是在论坛潜水学习的成果,方法过程这里就不累赘了。请看图吧。.. 通电工作后一切正常,哈哈,没有BUG,那个场管使用K170,输出管调整静态电流在8ma,中点3.9v. 2:第二个做好的是大名鼎鼎的AD1865N-K,据说,这是一个充满黑胶魅力的R2R D/A芯

TA7232P双音频功率放大集成电路图

TA7232P双音频功率放大集成电路图 技术来源:电子市场发布时间:2008-2-27 5:33:22 TA7232P是日本东芝公司生产的双声道音频功率放大集成电路,多应用于立体声收放机、组合音响等电路中作功率放大。 1.TA7232P内电路方框图及引脚功能 TA7232P集成块内电路主要由两路功能相同的音频功率放大电路为主构成,其集成块的内电路方框图及组成双声道的典型应用电路如图1所示。该IC采用单列12脚直插式封装,其集成电路的引脚功能及数据见表1所列。 表1TA7232P集成电路的引脚功能及数据 2.TA7232P主要电参数 TA7232P集成电路工作电源电压范围为3.5-12V,典型工作电压为6V或9V。 (1)极限使用条件。T a=25℃时,电源电压Vccc=l6V;输出电流Io=2A(单信道);允许功耗PD=l2.5W。 (2)主要电参数。在Vcc=9V,RL=4Ω,Rg=600Ω,f=1KHz,T a=25℃条件下,有以下电参数。 静态电流I(CQ) 最大值为45mA,典型值为22mA。

电压增益GV 当Rf=l5OΩ时的最大值为46.5dB,最小值为42.5皿,典型值为44。5dB。 输出功率Po 当THD=l0%时,最小值为1.8W,典型值为2.2W;BTL时的典型值为5.5W。 谐波失真THD 当Po=lW时的最大值为0.1%,典型值为0.2%。 输入阻抗Zi 典型值为20KΩ。 输出噪声V(NO) 当Rg=10KΩ,BW=5OHz~2OKHz也时的最大值为0.8mV,典型值为03mV。 3.TA7232P典型应用电路 TA7232P集成电路具有外接元件少,电源电压范围宽、纹波抑制能力强等特点,可组成双声道或BTL 电路。其集成块组成双声道时的典型应用电路如图1所示,组成BTT时的典型应用电路如图2所示。 4.电路工作过程 以图1电路为例,左、右声道音频信号从⑤、⑧脚送入两路功放电路信号输入端,经功率放大后的信号从②、(11)脚输出,经输出耦合电容耦合后去推动扬声器发声。 图1 TA7232P集成块的内电路方框图及组成双声道的典型应用电路

相关文档
最新文档