近代物理初步知识点总结

近代物理初步知识点总结
近代物理初步知识点总结

光电效应波粒二象性

知识点一、光电效应

1.定义

照射到金属表面的光,能使金属中的电子从表面逸出的现象。

2.光电子

光电效应中发射出来的电子。

3.光电效应规律

(1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应。低于这个频率的光不能产生光电效应。

(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。

(3)光电效应的发生几乎瞬时的,一般不超过10-9s。

(4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。

知识点二、爱因斯坦光电效应方程

1.光子说

在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=hν。其中h=6.63×10-34J·s。(称为普朗克常量)

2.逸出功W0

使电子脱离某种金属所做功的最小值。

3.最大初动能

发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值。

4.爱因斯坦光电效应方程

(1)表达式:E k=hν-W0。

(2)物理意义:金属表面的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的逸出功

W0,剩下的表现为逸出后光电子的最大初动能E k=1

2m e

v2。

知识点三、光的波粒二象性与物质波

1.光的波粒二象性

(1)光的干涉、衍射、偏振现象证明光具有波动性。

(2)光电效应说明光具有粒子性。

(3)光既具有波动性,又具有粒子性,称为光的波粒二象性。

2.物质波

(1)概率波

光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波。

(2)物质波

任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=h

p,p为运动物体的动量,h为普朗克常量。

[题组自测]

题组一光电效应现象及光电效应方程的应用

1.(多选)如图1所示,用导线把验电器与锌板相连接,当用紫外线照射锌板时,发生的现象是( )

图1

A .有光子从锌板逸出

B .有电子从锌板逸出

C .验电器指针张开一个角度

D .锌板带负电

解析 用紫外线照射锌板是能够发生光电效应的,锌板上的电子吸收紫外线的能量从锌板表面逸出,称之为光电子,故A 错误、B 正确;锌板与验电器相连,带有相同电性的电荷,锌板失去电子应该带正电,且失去电子越多,带正电的电荷量越多,验电器指针张角越大,故C 正确、D 错误。 答案 BC

2.(多选)光电效应的实验结论是:对某种金属( )

A .无论光强多强,只要光的频率小于极限频率就不能产生光电效应

B .无论光的频率多低,只要光照时间足够长就能产生光电效应

C .超过极限频率的入射光强度越弱,所产生的光电子的最大初动能就越小

D .超过极限频率的入射光频率越高,所产生的光电子的最大初动能就越大

解析 每种金属都有它的极限频率ν0,只有入射光子的频率大于极限频率ν0时,才会发生光电效应,选项A 正确、B 错误;光电子的最大初动能与入射光的强度无关,随入射光频率的增大而增大,选项D 正确、C 错误。 答案 AD

3.关于光电效应的规律,下列说法中正确的是( )

A .只有入射光的波长大于该金属的极限波长,光电效应才能产生

B .光电子的最大初动能跟入射光强度成正比

C .发生光电效应的反应时间一般都大于10-

7s

D .发生光电效应时,单位时间内从金属内逸出的光电子数目与入射光强度成正比

解析 由ε=hν=h c

λ知,当入射光波长小于金属的极限波长时,发生光电效应,故A 错;由E k =hν-W 0知,

最大初动能由入射光频率决定,与入射光强度无关,故B 错;发生光电效应的时间一般不超过10-9s ,故C 错;发生光电效应时,单位时间内从金属内逸出的光电子数目与入射光的强度是成正比的,D 正确。 答案 D

题组二 波粒二象性

4.(多选)关于物质的波粒二象性,下列说法中正确的是( ) A .不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性

B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道

C.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的

D.实物的运动有特定的轨道,所以实物不具有波粒二象性

解析由德布罗意波可知A、C对;运动的微观粒子,达到的位置具有随机性,而没有特定的运动轨道,B 对;由德布罗意理论知,宏观物体的德布罗意波的波长太小,实际很难观察到波动性,不是不具有波粒二象性,D错。

答案ABC

5.用很弱的光做双缝干涉实验,把入射光减弱到可以认为光源和感光胶片之间不可能同时有两个光子存在,如图2所示是不同数量的光子照射到感光胶片上得到的照片。这些照片说明()

图2

A.光只有粒子性没有波动性

B.光只有波动性没有粒子性

C.少量光子的运动显示波动性,大量光子的运动显示粒子性

D.少量光子的运动显示粒子性,大量光子的运动显示波动性

解析光具有波粒二象性,这些照片说明少量光子的运动显示粒子性,大量光子的运动显示波动性,故D 正确。

答案 D

考点一光电效应现象和光电效应方程的应用

1.对光电效应的四点提醒

(1)能否发生光电效应,不取决于光的强度而取决于光的频率。

(2)光电效应中的“光”不是特指可见光,也包括不可见光。

(3)逸出功的大小由金属本身决定,与入射光无关。

(4)光电子不是光子,而是电子。

2.两条对应关系

光强大→光子数目多→发射光电子多→光电流大;

光子频率高→光子能量大→光电子的最大初动能大。

3.定量分析时应抓住三个关系式

(1)爱因斯坦光电效应方程:E k=hν-W0。

(2)最大初动能与遏止电压的关系:E k=eU c。

(3)逸出功与极限频率的关系:W0=hν0。

【例1】(多选)(2014·广东卷,18)在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是()

A.增大入射光的强度,光电流增大

B.减小入射光的强度,光电效应现象消失

C.改用频率小于ν的光照射,一定不发生光电效应

D.改用频率大于ν的光照射,光电子的最大初动能变大

解析用频率为ν的光照射光电管阴极,发生光电效应,改用频率较小的光照射时,有可能发生光电效应,

故C错误;据hν-W逸=1

2m v

2可知增加照射光频率,光电子最大初动能增大,故D正确;增大入射光强度,单位时间内照射到单位面积的光电子数增加,则光电流将增大,故A正确;光电效应是否发生与照射光频率有关而与照射光强度无关,故B错误。

答案AD

【变式训练】

1.关于光电效应,下列说法正确的是()

A.极限频率越大的金属材料逸出功越大

B.只要光照射的时间足够长,任何金属都能产生光电效应

C.从金属表面逸出的光电子的最大初动能越大,这种金属的逸出功越小

D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多

解析逸出功W0=hν0,W0∝ν0,A正确;只有照射光的频率ν大于金属极限频率ν0,才能产生光电效应现象,B错;由光电效应方程E km=hν-W0知,因ν不确定时,无法确定E km与W0的关系,C错;光强E=nhν,ν越大,E一定,则光子数n越小,单位时间内逸出的光电子数就越少,D错。

答案 A

考点二光电效应的图象分析

的关①极限频率:图线与

坐标

②逸出功:

标的值

W

③普朗克常量:图线的斜率

颜色相同、强度不同的光,光电流①遏止电压

②饱和光电流

③最大初动能:

颜色不同时,光电流与电压的关系①遏止电压

②饱和光电流

③最大初动能

的关系

①截止频率

②遏止电压

大而增大

③普朗克常量

与电子电量的乘积,即此时两极之间接反向电压

【例2】在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图3所示。则可判断出()

图3

A.甲光的频率大于乙光的频率

B.乙光的波长大于丙光的波长

C.乙光对应的截止频率大于丙光的截止频率

D.甲光对应的光电子最大初动能大于丙光的光电子最大初动能

解析由于是同一光电管,因而不论对哪种光,极限频率和金属的逸出功相同,对于甲、乙两种光,反向截止电压相同,因而频率相同,A错误;丙光对应的反向截止电压较大,因而丙光的频率较高,波长较短,对应的光电子的最大初动能较大,故C、D均错,B正确。

答案 B

【变式训练】

2.爱因斯坦因提出了光量子概念并成功地解释光电效应的规律而获得1921年诺贝尔物理学奖。某种金属逸出光电子的最大初动能E km与入射光频率ν的关系如图4所示,其中ν0为极限频率。从图中可以确定的是()

图4

A.逸出功与ν有关

B.E km与入射光强度成正比

C.当ν<ν0时,会逸出光电子

D .图中直线的斜率与普朗克常量有关

解析 由爱因斯坦光电效应方程E k =hν-W 0和W 0=hν0(W 0为金属的逸出功)可得,E k =hν-hν0,可见图象的斜率表示普朗克常量,D 正确;只有ν≥ν0时才会发生光电效应,C 错;金属的逸出功只和金属的极限频率有关,与入射光的频率无关,A 错;最大初动能取决于入射光的频率,而与入射光的强度无关,B 错。 答案 D

考点三 对光的波粒二象性、物质波的考查

光既具有波动性,又具有粒子性,两者不是孤立的,而是有机的统一体,其表现规律为: (1)个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性。

(2)频率越低波动性越显著,越容易看到光的干涉和衍射现象;频率越高粒子性越显著,越不容易看到光的干涉和衍射现象,而贯穿本领越强。

(3)光在传播过程中往往表现出波动性;在与物质发生作用时,往往表现为粒子性。 【例3】 下列说法正确的是( ) A .有的光是波,有的光是粒子 B .光子与电子是同样的一种粒子

C .光的波长越长,其波动性越显著;波长越短,其粒子性越显著 D. γ射线具有显著的粒子性,而不具有波动性

解析 从光的波粒二象性可知:光是同时具有波粒二象性的,只不过在有的情况下波动性显著,有的情况下粒子性显著。光的波长越长,越容易观察到其显示波动特征。光子是一种不带电的微观粒子,而电子是带负电的微观粒子,它们虽然都是微观粒子,但有本质区别,故上述选项中正确的是C 。 答案 C 【变式训练】

3.[2013·江苏单科,12C(1)]如果一个电子的德布罗意波长和一个中子的相等,则它们的________也相等。 A .速度 B .动能 C .动量 D .总能量

解析 由德布罗意波长λ=h p 知二者的动量应相同,故C 正确,由p =m v 可知二者速度不同,E k =12m v 2=p 22m ,

二者动能不同,由E =mc 2可知总能量也不同,故A 、B 、D 均错。 答案 C

1.(多选)光电效应实验中,下列表述正确的是( ) A .光照时间越长光电流越大 B .入射光足够强就可以有光电流 C .遏止电压与入射光的频率有关

D .入射光频率大于极限频率才能产生光电子

解析 光电流的大小与光照时间无关,A 项错误;如果入射光的频率小于金属的极限频率,入射光再强也

不会发生光电效应,B项错误;遏止电压U c满足eU c=hν-hν0,从表达式可知,遏止电压与入射光的频率有关,C项正确;只有当入射光的频率大于极限频率,才会有光电子逸出,D项正确。

答案CD

2.当用一束紫外线照射锌板时,产生了光电效应,这时()

A.锌板带负电

B.有正离子从锌板逸出

C.有电子从锌板逸出

D.锌板会吸附空气中的正离子

解析锌板在紫外线的照射下产生了光电效应,说明锌板上有光电子飞出,所以锌板带正电,C正确,A、B、D错误。

答案 C

3.[2014·江苏卷,12C(1)]已知钙和钾的截止频率分别为7.73×1014Hz和5.44×1014Hz,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的()

A.波长B.频率C.能量D.动量

解析由爱因斯坦光电效应方程hν=W0+1

2m v 2

m

,又由W0=hν0,可得光电子的最大初动能

1

2m v

2

m

=hν-hν0,

由于钙的截止频率大于钾的截止频率,所以钙逸出的光电子的最大初动能较小,因此它具有较小的能量、频率和动量,B、C、D错;又由c=λf可知光电子频率较小时,波长较大,A对。

答案 A

4.(2014·上海卷,6)在光电效应的实验结果中,与光的波动理论不矛盾的是()

A.光电效应是瞬时发生的

B.所有金属都存在极限频率

C.光电流随着入射光增强而变大

D.入射光频率越大,光电子最大初动能越大

解析根据波动理论,认为只要光照射的时间足够长、足够强就能发生光电效应,且光电子的初动能就大,但实验中金属表面没有溢出电子的实验结果;光电效应的条件是入射光的频率大于金属的极限频率,发生是瞬时的,且入射光频率越大,光电子最大初动能越大,这与光的波动理论相矛盾,故A、B、D错误。波动理论认为光强度越大,光电流越大;光电效应中认为光强度越大,光子越多,金属表面溢出的光电子越多,即光电流越大,所以该实验结果与波动理论不矛盾,故C正确。

答案 C

5.(多选)(2014·海南卷,17)在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应。对于这两个过程,下列四个物理过程中,一定不同的是()

A.遏止电压

B.饱和光电流

C.光电子的最大初动能

D.逸出功

解析同一种单色光照射不同的金属,入射光的频率和光子能量一定相同,金属逸出功不同,根据光电效应方程E km=hν-W0知,最大初动能不同,则遏止电压不同;同一种单色光照射,入射光的强度相同,所以饱和光电流相同。故选ACD。

答案ACD

6.(2014·江西七校联考)用频率为ν的光照射光电管阴极时,产生的光电流随阳极与阴极间所加电压的变化规律如图5所示,U c为遏止电压。已知电子电荷量为-e,普朗克常量为h,求:

图5

(1)光电子的最大初动能E km;

(2)该光电管发生光电效应的极限频率ν0。

解析(1)E km=eU c

(2)由光电效应方程有E km=hν-W

其中W=hν0

解得ν0=ν-eU c h

答案(1)eU c(2)ν-eU c h

基本技能练

1.如图1所示,当弧光灯发出的光经一狭缝后,在锌板上形成明暗相间的条纹,同时与锌板相连的验电器铝箔有张角,则该实验()

图1

A.只能证明光具有波动性

B.只能证明光具有粒子性

C.只能证明光能够发生衍射

D.证明光具有波粒二象性

解析弧光灯发出的光经一狭缝后,在锌板上形成明暗相间的条纹,这是光的衍射,证明了光具有波动性,验电器铝箔有张角,说明锌板发生了光电效应,则证明了光具有粒子性,所以该实验证明了光具有波粒二象性,D正确。

答案 D

2.在光电效应实验中,用单色光照射某种金属表面,有光电子逸出,则光电子的最大初动能取决于入射光的()

A.频率B.强度C.照射时间D.光子数目

解析由爱因斯坦光电效应方程E k=hν-W0可知,E k只与频率ν有关,故选项B、C、D错,选项A正确。答案 A

3.(多选)产生光电效应时,关于逸出光电子的最大初动能E k,下列说法正确的是()

A.对于同种金属,E k与照射光的强度无关

B.对于同种金属,E k与照射光的波长成反比

C.对于同种金属,E k与光照射的时间成正比

D.对于同种金属,E k与照射光的频率成线性关系

E.对于不同种金属,若照射光频率不变,E k与金属的逸出功成线性关系

解析根据爱因斯坦光电效应方程E k=hν-W0。可得:E k与照射光的强度和照射时间无关,与照射光的频率成线性关系,与波长不成反比,所以A、D正确,B、C错误;对于不同种金属,金属的逸出功W0不同,若照射光频率不变,E k与W0成线性关系,所以E正确。

答案ADE

4.频率为ν的光照射某金属时,产生光电子的最大初动能为E km。改为频率为2ν的光照射同一金属,所产生光电子的最大初动能为(h为普朗克常量)()

A.E km-hνB.2E km C.E km+hνD.E km+2hν

解析根据爱因斯坦光电效应方程得:E km=hν-W0,若入射光频率变为2ν,则E km′=h·2ν-W0=2hν-(hν-E km)=hν+E km,故选C。

答案 C

5. (多选)如图2所示,电路中所有元件完好,但光照射到光电管上,灵敏电流计中没有电流通过,其原因可能是()

图2

A.入射光太弱

B.入射光波长太长

C.光照时间短

D.电源正、负极接反

解析入射光波长太长,入射光的频率低于截止频率时,不能发生光电效应,故选项B正确;电路中电源反接,对光电管加了反向电压,若该电压超过了遏止电压,也没有光电流产生,故选项D正确。

答案BD

6.(多选)如图3所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线(直线与横轴的交点坐标4.27,与纵轴交点坐标0.5)。由图可知()

图3

A.该金属的截止频率为4.27×1014Hz

B.该金属的截止频率为5.5×1014Hz

C.该图线的斜率表示普朗克常量

D.该金属的逸出功为0.5 eV

解析由光电效应方程E k=hν-W0可知,图中横轴的截距为该金属的截止频率,选项A正确、B错误;图线的斜率表示普朗克常量h,C正确;该金属的逸出功W0=hν0=6.63×10-34×4.27×1014J=1.77 eV或W0=hν-E k=6.63×10-34×5.5×1014J-0.5 eV=1.78 eV,选项D错误。

答案AC

7.(多选)下表列出了几种不同物体在某种速度下的德布罗意波的波长和频率为1 MHz的无线电波的波长,由表中数据可知()

A

B.无线电波通常情况下表现出波动性

C.电子照射到金属晶体(大小约为10-10m)上能观察到波动性

D.只有可见光才有波动性

解析弹子球的波长相对太小,所以检测其波动性几乎不可能,A正确;无线电波波长较长,所以通常表现为波动性,B正确;电子波长与金属晶体尺度差不多,所以能利用金属晶体观察电子的波动性,C正确;由物质波理论知,D错误。

答案ABC

8.在光电效应实验中,某金属截止频率相应的波长为λ0,该金属的逸出功为________。若用波长为λ(λ<λ0)的单色光做该实验,则其遏止电压为______。已知电子的电荷量、真空中的光速和普朗克常量分别为e、c 和h。

解析由波长、频率、波速的关系知,该金属的极限频率为ν0=c

λ0,故该金属的逸出功为hν0=

hc

λ0。设遏止

电压为U c ,则eU c =hc λ-hc λ0,解得U c =hc e ·λ0-λ

λ0λ。

答案

hc λ0 hc e ·λ0-λλ0λ(写为hc e ·λ-λ0

λ0λ

也可) 9.如图4所示电路可研究光电效应的规律。图中标有A 和K 的为光电管,其中K 为阴极,A 为阳极。理想电流计可检测通过光电管的电流,理想电压表用来指示光电管两端的电压。现接通电源,用光子能量为10.5 eV 的光照射阴极K ,电流计中有示数,若将滑动变阻器的滑片P 缓慢向右滑动,电流计的读数逐渐减小,当滑至某一位置时电流计的读数恰好为零,读出此时电压表的示数为6.0 V ;现保持滑片P 位置不变,光电管阴极材料的逸出功为________,若增大入射光的强度,电流计的读数________(填“为零”或“不为零”)。

图4

解析 根据爱因斯坦光电效应方程得:E k =hν-W ,E k =Ue =6 eV ,解得逸出功W =10.5 eV -6 eV =4.5 eV ,若增大入射光的强度,电流计的读数仍为零。 答案 4.5 eV 为零

能力提高练

10.(多选)利用金属晶格(大小约10

-10

m)作为障碍物观察电子的衍射图样,方法是让电子通过电场加速后,

让电子束照射到金属晶格上,从而得到电子的衍射图样。已知电子质量为m ,电荷量为e ,初速度为0,加速电压为U ,普朗克常量为h ,则下列说法中正确的是( ) A .该实验说明了电子具有波动性

B .实验中电子束的德布罗意波的波长为λ=

h

2meU

C .加速电压U 越大,电子的衍射现象越明显

D .若用相同动能的质子替代电子,衍射现象将更加明显

解析 能得到电子的衍射图样,说明电子具有波动性,A 正确;由德布罗意波的波长公式λ=h

p 及动量p =

2mE k =2meU ,可得λ=

h 2meU ,B 正确;由λ=h

2meU

可知,加速电压越大,电子的波长越小,衍射现象就越不明显,C 错误;用相同动能的质子替代电子,质子的波长变小,衍射现象与电子相比不明显,故D 错误。 答案 AB

11.小明用金属铷为阴极的光电管,观测光电效应现象,实验装置示意如图5甲所示。已知普朗克常量h =6.63×10

-34

J·s 。

图5

(1)图甲中电极A 为光电管的________(填“阴极”或“阳极”);

(2)实验中测得铷的遏止电压U c 与入射光频率ν之间的关系如图乙所示,则铷的截止频率νc =________Hz ,逸出功W 0=________J ;

(3)如果实验中入射光的频率ν=7.00×1014Hz ,则产生的光电子的最大初动能E k =________J 。 解析 (1)由光电管的结构知,A 为阳极。

(2)U c -ν图象中横轴的截距表示截止频率νc ,逸出功W 0=hνc 。 (3)由爱因斯坦的光电效应方程E k =hν-W 0,可求结果。 答案 (1)阳极 (2)(5.12~5.18)×1014 (3.39~3.43)×10

-19

(3)(1.21~1.25)×10

-19

12.用不同频率的光照射某金属产生光电效应,测量金属的遏止电压U c 与入射光频率ν,得到U c -ν图象如图6所示,根据图象求出该金属的截止频率νc =________Hz ,普朗克常量h =________J·s 。(已知电子电荷量e =1.6×10

-19

C)

图6

解析 由题图线可知νc =5.0×1014Hz ,又eU c =hν-W 0, 所以U c =h e ν-W 0

e 。结合图线可得

k =h e = 2.0

5.0×1014

V/Hz , h =2.0×1.6×10-195.0×1014

J·s =6.4×10-34J·s 。 答案 5.0×1014 6.4×10

-34

13. (1)研究光电效应的电路如图7所示。用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K),钠极板发射出的光电子被阳极A 吸收,在电路中形成光电流。下列光电流I 与A 、K 之间的电压U AK 的关系图象中,正确的是( )

图7

(2)钠金属中的电子吸收光子的能量,从金属表面逸出,这就是光电子,光电子从金属表面逸出的过程中,其动量的大小________(选填“增大”、“减小”或“不变”),原因是

__________。

(3)已知氢原子处在第一、第二激发态的能级分别为-3.4 eV和-1.51 eV,金属钠的截止频率为5.53×1014Hz,普朗克常量h=6.63×10-34J·s,请通过计算判断,氢原子从第二激发态跃迁到第一激发态过程中发出的光照射金属钠板,能否发生光电效应。

解析(1)设遏止电压为U KA′,由光电效应规律知eU KA′=1

2m v

2=hν-W

,因都是频率相同的光照射钠

极板,即ν、W0均相同,故强光和弱光的遏止电压相同;当U AK=0时,强光的光电流应大于弱光的光电流。所以C对。

(2)因为电子从金属表面逸出的过程中受到金属表面层中力的阻碍作用,所以其动量会减小。

(3)氢原子放出的光子能量E=E3-E2,代入数据得E=1.89 eV。金属钠的逸出功W0=hνc,

代入数据得W0=2.3 eV。因为E

所以不能发生光电效应。

答案(1)C(2)减小光电子受到金属表面层中力的阻碍作用(或需要克服逸出功)(3)见解析

第3课时原子结构原子核

[知识梳理]

知识点一、氢原子光谱、氢原子的能级、能级公式

1.原子的核式结构

(1)电子的发现:英国物理学家汤姆孙发现了电子。

(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。

(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。

2.光谱

(1)光谱

用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。

(2)光谱分类

有些光谱是一条条的亮线,这样的光谱叫做线状谱。

有的光谱是连在一起的光带,这样的光谱叫做连续谱。

(3)氢原子光谱的实验规律

巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1

λ=R(

)

1

22-

1

n2,(n=3,4,5,…),R是里德伯常量,

R=1.10×107 m-1,n为量子数。

3.玻尔理论

(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。

(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n。(h是普朗克常量,h=6.63×10-34 J·s)

(3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道也是不连续的。

4.氢原子的能级、能级公式

(1)氢原子的能级

能级图如图1所示

图1

(2)氢原子的能级和轨道半径

①氢原子的能级公式:E n=1

n2E1 (n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV。

②氢原子的半径公式:r n=n2r1 (n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m。

知识点二、原子核的组成、放射性、原子核的衰变、半衰期、放射性同位素

1.原子核的组成:原子核是由质子和中子组成的,原子核的电荷数等于核内的质子数。

2.天然放射现象

(1)天然放射现象

元素自发地放出射线的现象,首先由贝克勒尔发现。天然放射现象的发现,说明原子核具有复杂的结构。

(2)放射性和放射性元素

物质发射某种看不见的射线的性质叫放射性。具有放射性的元素叫放射性元素。

(3)三种射线:放射性元素放射出的射线共有三种,分别是α射线、β射线、γ射线。

(4)放射性同位素的应用与防护

①放射性同位素:有天然放射性同位素和人工放射性同位素两类,放射性同位素的化学性质相同。

②应用:消除静电、工业探伤、作示踪原子等。

③防护:防止放射性对人体组织的伤害。

3.原子核的衰变

(1)衰变:原子核放出α粒子或β粒子,变成另一种原子核的变化称为原子核的衰变。

(2)分类

α衰变:A Z X→A-4

Y+42He

Z-2

β衰变:A Z X→A Z+1Y+0-1e

(3)半衰期:放射性元素的原子核有半数发生衰变所需的时间。半衰期由原子核内部的因素决定,跟原子所处的物理、化学状态无关。

知识点三、核力、结合能、质量亏损

1.核力

(1)定义:

原子核内部,核子间所特有的相互作用力。

(2)特点:

①核力是强相互作用的一种表现;

②核力是短程力,作用范围在1.5×10-15m之内;

③每个核子只跟它的相邻核子间才有核力作用。

2.结合能

核子结合为原子核时释放的能量或原子核分解为核子时吸收的能量,叫做原子核的结合能,亦称核能。3.比结合能

(1)定义:

原子核的结合能与核子数之比,称做比结合能,也叫平均结合能。

(2)特点:

不同原子核的比结合能不同,原子核的比结合能越大,表示原子核中核子结合得越牢固,原子核越稳定。4.质能方程、质量亏损

爱因斯坦质能方程E=mc2,原子核的质量必然比组成它的核子的质量和要小Δm,这就是质量亏损。由质量亏损可求出释放的核能ΔE=Δmc2。

知识点四、裂变反应和聚变反应、裂变反应堆核反应方程

1.重核裂变

(1)定义:质量数较大的原子核受到高能粒子的轰击而分裂成几个质量数较小的原子核的过程。

(2)典型的裂变反应方程:

235

U+10n→8936Kr+14456Ba+310n。

92

(3)链式反应:由重核裂变产生的中子使裂变反应一代接一代继续下去的过程。

(4)临界体积和临界质量:裂变物质能够发生链式反应的最小体积及其相应的质量。

(5)裂变的应用:原子弹、核反应堆。

(6)反应堆构造:核燃料、减速剂、镉棒、防护层。

2.轻核聚变

(1)定义:两轻核结合成质量较大的核的反应过程。轻核聚变反应必须在高温下进行,因此又叫热核反应。

(2)典型的聚变反应方程:

2

H+31H→42He+10n+17.6 MeV

1

思维深化

判断正误,正确的画“√”,错误的画“×”。

(1)α粒子散射实验说明了原子的正电荷和绝大部分质量集中在一个很小的核上。()

(2)氢原子由能量为E n的定态向低能级跃迁时,氢原子辐射的光子能量为hν=E n。()

(3)氡的半衰期为3.8天,若取4个氡原子核,经7.6天后就剩下一个原子核了。()

(4)核反应遵循质量数守恒而不是质量守恒,同时遵循电荷数守恒。()

(5)爱因斯坦质能方程反映了物体的质量就是能量,它们之间可以相互转化。()

答案(1)√(2)×(3)×(4)√(5)×

[题组自测]

题组一原子的核式结构模型

1.(多选)关于原子结构,下列说法正确的是()

A.玻尔原子模型能很好地解释氢原子光谱的实验规律

B.卢瑟福核式结构模型可以很好地解释原子的稳定性

C.卢瑟福的α粒子散射实验表明原子内部存在带负电的电子

D.卢瑟福的α粒子散射实验否定了汤姆孙关于原子结构的“西瓜模型”

解析玻尔提出的原子模型能很好地解释氢原子光谱的实验规律;卢瑟福核式结构模型不能解释原子的稳定性;卢瑟福的α粒子散射实验表明原子具有核式结构,否定了汤姆孙关于原子结构的“西瓜模型”,故A、D正确,B、C错误。

答案AD

2.在卢瑟福α粒子散射实验中,金箔中的原子核可以看作静止不动,下列各图画出的是其中两个α粒子经历金箔散射过程的径迹,其中正确的是()

解析金箔中的原子核与α粒子都带正电,α粒子接近原子核过程中受到斥力而不是引力作用,A、D错误;由原子核对α粒子的斥力作用及物体做曲线运动的条件,知曲线轨迹的凹侧应指向受力一方,选项B错、C对。

答案 C

题组二氢原子能级及能级跃迁

3.图2所示为氢原子的四个能级,其中E1为基态,若氢原子A处于激发态E2,氢原子B处于激发态E3,则下列说法正确的是()

图2

A.原子A可能辐射出3种频率的光子

B.原子B可能辐射出3种频率的光子

C.原子A能够吸收原子B发出的光子并跃迁到能级E4

D.原子B能够吸收原子A发出的光子并跃迁到能级E4

解析原子A从激发态E2跃迁到E1,只辐射一种频率的光子,A错。原子B从激发态E3跃迁到基态E1可能辐射三种频率的光子,B对。由原子能级跃迁理论可知,原子A可能吸收原子B由E3跃迁到E2时放出的光子并跃迁到E3,但不能跃迁到E4,C错。A原子发出的光子能量ΔE=E2-E1大于E4-E3,故原子B 不可能跃迁到能级E4,D错。

答案 B

4.根据玻尔原子结构理论,氦离子(He+)的能级图如图3所示。电子处在n=3轨道上比处在n=5轨道上离氦核的距离________(选填“近”或“远”)。当大量He+处在n=4的激发态时,由于跃迁所发射的谱线有________条。

图3

解析根据玻尔原子理论,量子数n越小,轨道越靠近原子核,所以n=3比n=5的轨道离原子核近,大量处于n=4激发态的原子跃迁一共有6种情形,即产生6条谱线。

答案近 6

题组三原子核的衰变及核反应方程

5.(多选)在下列4个核反应方程中,X表示α粒子的是()

A.3015P→3014Si+X

B.23892U→23490Th+X

C.2713Al+X→2712Mg+11H

D.2713Al+X→3015P+10n

解析根据质量数守恒和电荷数守恒可知,四个选项中的X分别代表:01e、42He、10n、42He,选项B、D正

确。

答案BD

6.23592U经过m次α衰变和n次β衰变,变成20782Pb,则()

A.m=7,n=3 B.m=7,n=4

C.m=14,n=9 D.m=14,n=18

解析衰变过程满足质量数守恒和电荷数守恒。写出核反应方程:23592U→20782Pb+m42He+n0-1e根据质量数守恒和电荷数守恒列出方程

235=207+4m,92=82+2m-n

解得m=7,n=4,故选项B正确,选项A、C、D错误。

答案 B

7.恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108 K时,可以发生“氦燃烧”。

①完成“氦燃烧”的核反应方程:42He+________→84Be+γ。

②84Be是一种不稳定的粒子,其半衰期为2.6×10-16s。一定质量的84Be,经7.8×10-16s后所剩84Be占开始时的________________。

解析①由质量数、电荷数守恒

4

2

He+42He→84Be+γ

②在t=7.8×10-16s时间内,原子核衰变的次数n=t

T=3故m=

1

8m0

答案①42He(或α)②1

8或(12.5%)

题组四质量亏损及核能的计算

8.(多选)[2013·新课标全国卷Ⅱ,35(1)]关于原子核的结合能,下列说法正确的是()

A.原子核的结合能等于使其完全分解成自由核子所需的最小能量

B.一重原子核衰变成α粒子和另一原子核,衰变产物的结合能之和一定大于原来重核的结合能

C.铯原子核(13355Cs)的结合能小于铅原子核(20882Pb)的结合能

D.比结合能越大,原子核越不稳定

E.自由核子组成原子核时,其质量亏损所对应的能量大于该原子核的结合能

解析由原子核的结合能定义可知,原子核分解成自由核子时所需的最小能量为原子核的结合能,选项A 正确;重原子核的核子平均质量大于轻原子核的平均质量,因此原子核衰变产物的结合能之和一定大于衰变前的结合能,选项B正确;铯原子核的核子数少,因此其结合能小,选项C正确;比结合能越大的原子核越稳定,选项D错误;自由核子组成原子核时,其质量亏损所对应的能量等于该原子核的结合能,选项E错误。

答案ABC

9.当前,发电站温室气体排放问题引起了越来越多的关注,相比煤炭等传统能源,核电能够大幅降低二氧化碳、二氧化硫、氮氧化物和粉尘等物质的排放,已成为世界快速发展的电力工业。经广大科技工作者的不懈努力,我国的核电技术已进入世界的先进行列,世界各地现在正在兴建的核电反应堆达到57座,我国

以20座名列第一。核电站的最核心部分是核反应堆,核反应堆中的燃料235 92U 产生裂变,在短时间内释放出

大量的核能可供人类利用。核反应堆中的镉棒起________作用,核反应方程应为235 92U +________→9236Kr +141 56

Ba +310n 。若其质量分别为m U =390.313 9×10-27

kg ,m n =1.674 9×10

-27

kg ,m Ba =234.001 6×10

-27

kg ,

m Kr =152.604 7×10

-27

kg ,核反应中释放的能量为ΔE =________ J 。

解析 控制中子数可以控制反应速度;Δm =m U +m n -m Ba -m Kr -3m n =0.357 8×10-27 kg ,ΔE =Δmc 2=3.22×10-11 J 。

答案 吸收中子控制核反应速度 10n 3.22×10

-11

考点一 氢原子能级及能级跃迁 1.定态间的跃迁——满足能级差

(1)从低能级(n 小)――→跃迁 高能级(n 大)―→吸收能量。

hν=E n 大-E n 小

(2)从高能级(n 大)――→跃迁

低能级(n 小)―→放出能量。

hν=E n 大-E n 小 2.电离 电离态与电离能 电离态:n =∞,E =0

基态→电离态:E 吸=0-(-13.6 eV)=13.6 eV 电离能。 n =2→电离态:E 吸=0-E 2=3.4 eV

如吸收能量足够大,克服电离能后,获得自由的电子还携带动能。

【例1】 (多选) (2014·山东卷,39)氢原子能级如图4,当氢原子从n =3跃迁到n =2的能级时,辐射光的波长为656 nm 。以下判断正确的是( )

图4

A .氢原子从n =2跃迁到n =1的能级时,辐射光的波长大于656 nm

B .用波长为325 nm 的光照射,可使氢原子从n =1跃迁到n =2的能级

C .一群处于n =3能级上的氢原子向低能级跃迁时最多产生3种谱线

D .用波长为633 nm 的光照射,不能使氢原子从n =2跃迁到n =3的能级

解析 由玻尔的能级跃迁公式E m -E n =hν=h c λ得:E 3-E 2=h c λ1,E 2-E 1=h c

λ2,又λ1=656 nm ,结合能级图

上的能级值解得λ2=122 nm<656 nm ,故A 、B 均错,D 对;根据C 23=3可知,一群处于n =3能级氢原子

向低级跃迁,辐射的光子频率最多3种,故C 对。 答案 CD

解答氢原子能级图与原子跃迁问题应注意:

(1)能级之间发生跃迁时放出(吸收)光子的频率由hν=E m -E n 求得。若求波长可由公式c =λν求得。 (2)一个氢原子跃迁发出可能的光谱线条数最多为(n -1)。 (3)一群氢原子跃迁发出可能的光谱线条数的两种求解方法。 ①用数学中的组合知识求解:N =C 2n =

n (n -1)

2

。 ②利用能级图求解:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,然后相加。

【变式训练】1.如图5所示是某原子的能级图,a 、b 、c 为原子跃迁所发出的三种波长的光。在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( )

图5

解析 根据玻尔的原子跃迁公式h c

λ=E m -E n 可知,两个能级间的能量差值越大,辐射光的波长越短,从图

中可看出,能量差值最大的是E 3-E 1,辐射光的波长a 最短,能量差值最小的是E 3-E 2,辐射光的波长b 最长,所以谱线从左向右的波长依次增大的是a 、c 、b ,C 正确。 答案 C

考点二 原子核的衰变及半衰期 1.衰变规律及实质 (1)α衰变和β衰变的比较

半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k 关系决定。 1.4本征半导体 既无杂质有无缺陷的理想半导体材料。 1.4空穴 空穴是为处理价带电子导电问题而引进的概念。设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

初中物理知识点总结(最新最全)

初中物理知识点总结(大全) 第一章声现象知识归纳 1 . 声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:S=1/2vt 5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。 6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱; (3)在人耳处减弱。 7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz的声波;次声波:频率低于20Hz的声波。 8.超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。 第二章物态变化知识归纳 1. 温度:是指物体的冷热程度。测量的工具是温度计, 温度计是根据液体的热胀冷缩的原理制成的。 2. 摄氏温度(℃):单位是摄氏度。1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。 3.常见的温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。 体温计:测量范围是35℃至42℃,每一小格是0.1℃。 4. 温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。 5. 固体、液体、气体是物质存在的三种状态。

物理选修3-5_知识点总结

物理选修3-5_知识点 总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理选修3-5知识点梳理 一、动量 动量守恒定律 1、动量:P = mv 。单位是s m kg ?.动量是矢量,其向就是瞬时速度的向。因为速度是相对的,所以动量也是相对的。 冲量:Ft I = 冲量是矢量,在作用时间力的向不变时,冲量的向与力的向相同;如果力的向是变化的,则冲量的向与相应时间物体动量变化量的向相同。若力为同一向均匀变化的力,该力的冲量可以用平均力计算;若力为一般变力,则不能直接计算冲量。同一向上动量的变化量=这一向上各力的冲量和。 动量定理:00P P mv mv I t t -=-= 动量与力的关系:物体动量的变化率等于它所受的力。 2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。(适用于目前物理学研究的一切领域。) 动量守恒定律成立的条件:①系统不受外力作用。②系统虽受到了外力的作用,但所受合外力为零。③系统所受的外力远远小于系统各物体间的力时,系统的总动量近似守恒(碰撞,击打,爆炸,反冲)。④系统所受的合外力不为零,但在某一向上合外力为零,则系统在该向上动量守恒。⑤系统受外力,但在某一向上力远大于外力,也可认为在这一向上系统的动量守恒。 常见类型:①由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短或拉伸到最长时,弹簧两端的两个物体的速度必然相等。②在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于物体间弹力的作用,斜面在水平向上将做加速运动,物体滑到斜面上最高点的临界条件是物体与斜面沿水平向具有共同的速度,物体到达斜面顶端时,在竖直向上的分速度等于零。③子弹刚好击穿木块的临界条件为子弹穿出时的速度与木块的速度相同,子弹位移为木块位移与木块厚度之和。 二、验证动量守恒定律(实验、探究) Ⅰ 【注意事项】 1.“水平”和“正碰”是操作中应尽量予以满足的前提条件. 2.入射球的质量应大于被碰球的质量. 3.入射球每次都必须从斜槽上同一位置由静止开始滚下.法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球. 4.若利用气垫导轨进行实验,调整气垫导轨时注意利用水平仪器确保导轨水平。 【误差分析】 误差来源于实验操作中,两个小球没有达到水平正碰,一是斜槽不够水平,二是两球球心不在同一水平面上,给实验带来误差.每次静止释放入射小球的释放点越高,两球相碰时作用力就越大,动量守恒的误差就越小.应进行多次碰撞,落点取平均位置来确定,以减小偶然误差.

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

物理选修3-4知识点(全)

选修3—4考点汇编 一、机械振动(*振动图象是历年考查的重点:同一质点在不同时刻的位移) 1、只要回复力满足F kx =-或位移满足sin()x A t ω?=+的运动即为简谐运动。 说明:①做简谐运动的物体,加速度、速度方向可能一致,也可能相反。 ②做简谐运动的物体,在平衡位置速度达到最大值,而加速度为零。 ③做简谐运动的物体,在最大位移处加速度达到最大值,而速度为零。 2、质点做简谐运动时,在T/4内通过的路程可能大于或等于或小于A (振幅),在3T/4内通过的路程可能大于或等于或小于3A 。 3、质点做简谐运动时,在1T 内通过的路程一定是4A ,在T/2内通过的路程一定是2A 。 4、简谐运动方程sin()x A t ω?=+中t ω?+叫简谐运动的相位,用来表示做简谐运动的质点此时正处于一个运动周期中的哪个状态。 5、单摆的回复力是重力沿振动方向(垂直于摆线方向)的分力,而不是摆球所受的合外力(除两个极端位置外)。 6、单摆的回复力sin /F mg mgx L θ=≈-,其中x 指摆球偏离平衡位置的位移,x 前面的是常数mg/L ,故可以认为小角度下摆球的摆动是简谐运动。 7、摆的等时性是意大利科学家伽利略发现的,而单摆的周期公式是由荷兰科学家惠更斯发现的,把调准的摆钟,由北京移至赤道,这个钟变慢了,要使它变准应该增加摆长。(附单摆的周期公式:2L T g π=) 8、阻尼振动是指振幅逐渐减小的振动,无阻尼振动是指振幅不变的振动。 9、物体做受迫振动时,频率由驱动力频率决定与固有频率无关。 10、如果驱动力频率等于振动系统的固有频率,受迫振动的振幅最大,这种现象叫共振,共振现象的应用有转速计和共振筛等,军队过桥要便步走,火车过桥要慢行,厂房建筑物的固有频率要远离机器运转的频率范围之内都是为了减小共振。 11、轮船航行时,如果左右摆动有倾覆危险,可采用改变航向和速度,使波浪冲击力的频率远离轮船摇摆的固有频率。这是共振防止的一种方法。 12、简谐波中,其他质点的振动都将重复振源质点的振动,既是振源带动下的振动,故应为受迫振动。 13、一切复杂的振动虽不是简谐振动,但它们都可以看作是由若干个振幅和频率不同的简谐运动合成的。 二、机械波(*波形图为历年来考查的重点:一列质点在同一时刻的位移) 14、有机械波必有机械振动,有机械振动不一定有机械波。 15、当波动的振源停止振动时,已形成的波动将仍能往前传播,直至能量衰减至零为止。 16、发生地震时,从地震源传出的地震波,既有横波,也有纵波。 17、机械波传播的只是振动形式,质点本身并不随波一起传播,在波的传播过程中,任一质点的起振方向都与波源的起振方向相同。 18、机械波的传播需要介质,当介质中本来静止的质点,随着波的传来而发生振动,表示质点获得能量。波不但传递着能量,而且可以传递信息。 19、在波动中振动相位总是相同两个相邻质点间的距离叫做波长,在波动中振动相位总是相反两个质点间的距离为半个波长的奇数倍。 20、任何振动状态相同的点组成的圆叫波面,与之垂直的线叫波线,表示了波的传播方向。 21、惠更斯原理是指介质中任一波面上的点都可以看作发射子波的波源,其后任意时刻,这些子波在波德

(完整版)人教版高中物理选修3-5知识点总结

人教版高中物理选修3-5知识点总结 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。(二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1、1 半导体 通常就是指导电能力介于导体与绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1、2能带 晶体中,电子的能量就是不连续的,在某些能量区间能级分布就是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1、2能带论就是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程与周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1、2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型就是为分析晶体中电子运动状态与E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上就是周期函数,而且某些能量区间能级就是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1、2导带与价带 1、3有效质量 有效质量就是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k

【人教版】版高中物理选修35知识点清单

精品“正版”资料系列,由本公司独创。旨在将“人教 版”、”苏教版“、”北师大版“、”华师大版“等涵盖几 乎所有版本的教材教案、课件、 导学案及同步练习和检测题分 享给需要的朋友。 本资源创作于2020年12月, 是当前最新版本的教材资源。 包含本课对应内容,是您备课、 上课、课后练习以及寒暑假预 习的最佳选择。 通过我们的努力,能 够为您解决问题,这是我们的 宗旨,欢迎您下载使用! 一、动量 动量守恒定律 高中物理选修 3-5 知识点 第十六章 动量守恒定律 1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积, 叫做物体的动量。②动量是物体机械运动的一种量度。 动量的表达式 P = mv 。单位是kg m s .动量是矢量, 其方向就是瞬时速度的方向。 因为速度是相对的, 所以动量也是相对的。 2、动量守恒定律:当系统不受外力作用或所受合外力为零, 则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式, 一般常用等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的, 对单个物体谈动量守恒没有意义。 ②对于某些特定的问题, 例如碰撞、爆炸等, 系统在一个非常短的时间内, 系统内部各物体相互作用力, 远比它们所受到外界作用力大, 就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。

③计算动量时要涉及速度, 这时一个物体系内各物体的速度必须是相对于同一惯性参照系的, 一般取地面为参照物。 ④动量是矢量, 因此“系统总动量”是指系统中所有物体动量的矢量和, 而不是代数和。 ⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零, 但只要在某一方面上的合外力分量为零, 那么在这个方向上系统总动量的分量是守恒的。 ⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零, 那么系统内部各物体的相互作用, 不论是万有引力、弹力、摩擦力, 还是电力、磁力, 动量守恒定律都适用。系统内部各物体相互作用时, 不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,

物理选修35知识点总结

知识点梳理高中物理选修3-5动量守恒定律一、动量 kg ms mvP.。单位是1、动量:动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。= I Ft 冲量:冲量是矢量,在作用时间内力的方向不变时,冲量的方向与力的方向相同;如果力的方向是变化的,则冲量的方向与相应时间内物体动量变化量的方向相同。若力为同一方向均 匀变化的力,该力的冲量可以用平均力计算;若力为一般变力,则不能直接计算冲量。同一方向 上动量的变化量=这一方向上各力的冲量和。 1mv mv P P动量定理:otot 动量与力的关系:物体动量的变化率等于它所受的力。 2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。(适用于目前 物理学研究的一切领域。)_____ _ __ _____ _ _________ _____ __________ 动量守恒定律成立的条件:①系统不受外力作用。②系统虽受到了外力的作用,但所受合外 力为零。③系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒(碰撞,击打,爆炸,反冲)。④系统所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。⑤系统受外力,但在某一方向上内力远大于外力,也可认为在这一方向上系统的 动量守恒。 常见类型:①由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短或拉伸到最长时,弹簧两端的两个物体的速度必然相等。②在物体滑上斜面(斜面放在光滑水平面 上)的过程中,由于物体间弹力的作用,斜面在水平方向上将做加速运动,物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体到达斜面顶端时,在竖直方向上的 分速度等于零。③子弹刚好击穿木块的临界条件为子弹穿出时的速度与木块的速度相同,子弹位 移为木块位移与木块厚度之和。 二、验证动量守恒定律(实验、探究)I 【注意事项】 1?“水平”和“正碰”是操作中应尽量予以满足的前提条件. 2.入射球的质量应大于被碰球的质量. 3?入射球每次都必须从斜槽上同一位置由静止开始滚下?方法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球. 4.若利用气垫导轨进行实验,调整气垫导轨时注意利用水平仪器确保导轨水平。 【误差分析】 误差来源于实验操作中,两个小球没有达到水平正碰,一是斜槽不够水平,二是两球球心不在同 一水平面上,给实验带来误差.每次静止释放入射小球的释放点越高,两球相碰时作用力就越大, 动量守恒的误差就越小?应进行多次碰撞,落点取平均位置来确定,以减小偶然误差. 三、碰撞与爆炸 1.碰撞的特点:①相互作用的时间极短,可忽略不计。②系统的内力远大于外力,外力可忽略③速度发生突变,物体发生的位移极小,可认为碰撞前后物体处于同一位置。 2.爆炸的特点:作用时间短,内力非常大,机械能增加,动能会增加。 3.碰撞中遵循的规律:动量守恒,动能不增加。 4.一维碰撞:两个物体碰撞前后斗艳同一直线运动,这种碰撞叫做一维碰撞。

江苏省高考物理选修35知识点梳理.pdf

选修3-5 动量 动量守恒定律Ⅱ 1、冲量 冲量可以从两个侧面的定义或解释。①作用在物体上的力和力的作用时间的乘积, 叫做该力对这物体的冲量。②冲量是力对时间的累积效应。力对物体的冲量, 使物体的动量发生变化; 而且冲量等于物体动量的变化。 冲量的表达式 I = F ·t 。单位是牛顿·秒 冲量是矢量, 其大小为力和作用时间的乘积, 其方向沿力的作用方向。如果物体在时间t 内受到几个恒力的作用, 则合力的冲量等于各力冲量的矢量和, 其合成规律遵守平行四边形法则。 2、动量 可以从两个侧面对动量进行定义或解释。①物体的质量跟其速度的乘积, 叫做物体的动量。②动量是物体机械运动的一种量度。动量的表达式P = mv 。单位是千克米 / 秒。动量是矢量, 其方向就是瞬时速度的方向。因为速度是相对的, 所以动量也是相对的, 我们啊 3、动量定理 物体动量的增量, 等于相应时间间隔力, 物体所受合外力的冲量。表达式为I = ?P 或12mv mv Ft ?=。 运用动量定理要注意①动量定理是矢量式。合外力的冲量与动量变化方向一致, 合外力的冲量方向与初末动量方向无直接联系。②合外力可以是恒力, 也可以是变力。在合外力为变力时, F 可以视为在时间间隔t 内的平均作用力。③动量定理不仅适用于单个物体, 而且可以推广到物体系。 4、动量守恒定律 当系统不受外力作用或所受合外力为零, 则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式, 一般常用P P P P A B A B +='+'等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的, 对单个物体谈动量守恒没有意义。 ②对于某些特定的问题, 例如碰撞、爆炸等, 系统在一个非常短的时间内, 系统内部各物体相互作用力, 远比它们所受到外界作用力大, 就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。 ③计算动量时要涉及速度, 这时一个物体系内各物体的速度必须是相对于同一惯性参照系的, 一般取地面为参照物。 ④动量是矢量, 因此“系统总动量”是指系统中所有物体动量的矢量和, 而不是代数和。 ⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零, 但只要在某一方面上的合外力分量为零, 那么在这个方向上系统总动量的分量是守恒的。 ⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零, 那么系统内部各物体的相互作用, 不论是万有引力、弹力、摩擦力, 还是电力、磁力, 动量守恒定律都适用。系统内部各物体相互作用时, 不论具有相同或相反的运动方向; 在相互作用时不论是否直接接触; 在相互作用后不论是粘在一起, 还是分裂成碎块, 动量守恒定律也都适用。 5、动量与动能、冲量与功、动量定理与动能定理、动量守恒定律与机械能守恒定律的比较。动量与动能的比较: ①动量是矢量, 动能是标量。 ②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒, 若要研究碰撞过程改变成内能的机械能则要用动能为损失去

物理选修3-5知识总结

选修3-5公式 一、碰撞与动量守恒 1、动量:mv p =,矢量,单位:kg ·m/s 2、动量的变化:12mv mv p -=? (一维) 是矢量减法,一般选初速度方向为正方向 3、动量与动能的关系:k mE p 2=,m p E k 22 = 4、冲量:Ft I =(力与力的作用时间的乘积),矢量,单位:N ·s 5、动量定理:p I ?=,或12mv mv Ft -= 6、动量守恒定律:''221121v m v m mv mv +=+ 条件:系统受到的合外力为零. 7、实验——验证动量守恒定律: M O m ON m OP m '211?+?=? 8、弹性碰撞:没有动能损失 021211'v m m m m v +-=,021122'v m m m v += 9、完全非弹性碰撞:(碰后黏一起)系统损失的动能最多 ')(2101v m m v m += 10、若m 、M 开始均静止,且系统动量守恒,则:mv 1=Mv 2,ms 1=Ms 2 二、波粒二象性 1、光子的能量:λ νhc h E == (ν为光的频率,λ为光的波长) 其中h =×10-34 J ·s 2、遏止电压:km E mv eU ==2max 2 1 3、爱因斯坦光电效应方程:W mv h +=2max 2 1ν 4、康普顿效应——光子的动量:λ h p = 5、德布罗意波的波长:p h =λ

三、原子结构之谜 1、汤姆生用电磁场测定带电粒子的荷质比: 22d B Eh m q = 2、原子的半径约为10-10 m ,原子核的半径约为10-15 m 3、巴耳末系(可见光区):..., , ), n n R(λ543121122=-= 对于氢原子,里德伯常量R=×107m -1 4、氢原子的能级公式:121E n E n =,轨道半径公式:12r n r n = 其中n 叫量子数,n=1, 2, 3…. E 1=- eV ,r 1=×10-10m 5、能级跃迁:n m E E h -=ν 四、原子核 1、剩余的放射性元素质量:T t m m )2 1(0=(T 为半衰期) 2、剩余的放射性元素个数:T t N N )2 1(0= 3、α衰变: He Th U 422349023892+→ 4、β衰变:e 0-1234 90Pa Th +→234 91 γ射线伴随着α衰变、β衰变产生 5、卢瑟福发现质子:H O He N 1117842147+→+ 6、査德威克发现中子:n C He Be 101264294+→+ 7、居里夫妇发现人工放射性同位素:n P He Al 1 03015422713+→+ P 30 15具有放射性,e S P 01301430 15+→i 8、爱因斯坦质能方程:2c m E ?=,2 c m E ??=? 9、重核的裂变:n 3Ba Kr n U 101445680 3610235 92++→+

半导体物理知识点梳理

半导体物理考点归纳 一· 1.金刚石 1) 结构特点: a. 由同类原子组成的复式晶格。其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成 b. 属面心晶系,具立方对称性,共价键结合四面体。 c. 配位数为4,较低,较稳定。(配位数:最近邻原子数) d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。 2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。 2.闪锌矿 1) 结构特点: a. 共价性占优势,立方对称性; b. 晶胞结构类似于金刚石结构,但为双原子复式晶格; c. 属共价键晶体,但有不同的离子性。 2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。 3.电子共有化运动: 原子结合为晶体时,轨道交叠。外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。 4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数, 5.布里渊区: 禁带出现在k=n/2a 处,即在布里渊区边界上; 允带出现在以下几个区: 第一布里渊区:-1/2a

【精品】物理选修35_知识点总结提纲_精华版

高中物理选修3-5知识点梳理 一、动量动量守恒定律 1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。②动量是物体机械运动的一种量度。 动量的表达式P=mv.单位是s kg 。动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动 m 量也是相对的。 2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。 ②对于某些特定的问题,例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理,在这一短暂时间内遵循动量守恒定律。 ③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。 ④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。

⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的. ⑥

动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用. 3、动量与动能、动量守恒定律与机械能守恒定律的比较。 动量与动能的比较: ①动量是矢量,动能是标量。 ②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。比如完全非弹性碰撞过程研究机械运动转移--速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了.所以动量和动能是从不同侧面反映和描述机械运动的物理量. 动量守恒定律与机械能守恒定律比较:前者是矢量式,有广泛的适用范围,而后者是标量式其适用范围则要窄得多。这些区别在使用中一定要注意。 4、碰撞:两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状态发生显著化的现象叫做碰撞。 以物体间碰撞形式区分,可以分为“对心碰撞”(正碰),而物体碰前速度沿它们质心的连线;“非对心碰撞"——中学阶段不研究。 以物体碰撞前后两物体总动能是否变化区分,可以分为:“弹性碰撞”。碰撞前

苏教版初中物理知识点归纳

初中物理知识点总结 第一章声现象知识归纳 1 、声音得发生:由物体得振动而产生。振动停止,发声也停止。 2.声音得传播:声音靠介质传播。真空不能传声。通常我们听到得声音就是靠空气传来得。 3.声速:在空气中传播速度就是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:S=1/2vt 5.乐音得三个特征:音调、响度、音色。(1)音调:就是指声音得高低,它与发声体得频率有关系。(2)响度:就是指声音得大小,跟发声体得振幅、声源与听者得距离有关系。 6.减弱噪声得途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 7.可听声:频率在20Hz~20000Hz之间得声波:超声波:频率高于20000Hz得声波;次声波:频率低于20Hz得声波。 8. 超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波得特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度得次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中得火山爆发、海啸地震等,另外人类制造得火箭发射、飞机飞行、火车汽车得奔驰、核爆炸等也能产生次声波。 第二章物态变化知识归纳 1、温度:就是指物体得冷热程度。测量得工具就是温度计, 温度计就是根据液体得热胀冷缩得原理制成得。 2、摄氏温度(℃):单位就是摄氏度。1摄氏度得规定:把冰水混合物温度规定为0度,把一标准大气压下沸水得温度规定为100度,在0度与100度之间分成100等分,每一等分为1℃。 3.常见得温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。 体温计:测量范围就是35℃至42℃,每一小格就是0、1℃。 4、温度计使用:(1)使用前应观察它得量程与最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱得上表面相平。 5、固体、液体、气体就是物质存在得三种状态。 6、熔化:物质从固态变成液态得过程叫熔化。要吸热。 7、凝固:物质从液态变成固态得过程叫凝固。要放热、 8、熔点与凝固点:晶体熔化时保持不变得温度叫熔点;。晶体凝固时保持不变得温度叫凝固点。晶体得熔点与凝固点相同。 9、晶体与非晶体得重要区别:晶体都有一定得熔化温度(即熔点),而非晶体没有熔点。 10、熔化与凝固曲线图:

物理选修35知识点归纳.pdf

物理选修3-5知识点总结 一、量子理论的建立黑体和黑体辐射、 1、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。 2、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动。(普朗克的能量子理论很好的解释了这一现象) 3、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε= hνh为普朗克常数(6.63×10-34J.S) 二、光电效应光子说光电效应方程 1、光电效应(表明光子具有能量) (1)光的电磁说使光的波动理论发展到相当完美的地步,但是它并不能解释光电效应的现象。在光(包括不可见光)的照射下从物体发射出电子的现象叫做光电效应,发射出来的电子叫光电子。 (2)光电效应的研究结果: ①存在饱和电流,这表明入射光越强,单位时间内发射的光电子数越多;②存在遏止电压:当所加电压U为0时,电流I并不为0。只有施加反 向电压,也就是阴极接电源正极阳极接电源负极,在光电管两级形成使电子减速的电场,电流才可能为0。使光电流减小到0的反向电压Uc 称为遏止电压E k=eU c。遏止电压的存在意味着光电子具有一定的初速度;③截止频率:光电子的能量与入射光的频率有关,而与入射光的强弱无关,当入射光的频率高于截止频率时才能发生光电效应v c=w0/h;④光电效应具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9s。 规律:①任何一种金属,都有一个极限频率,入射光的频率 ..........,才能产生光电效应;低于这个频率的光不能产生光电效应; ......必须大于这个极限频率 ②光电子的最大初动能与入射光的强度无关 ............,一般 ..;③入射光照到金属上时,光电子的发射几乎是瞬时的..................,只随着入射光频率的增大 ..而增大 不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 (1)判断和描述时应理清三个关系: ①光电效应的实质(单个光子与单个电子间相互作用产生的). ②光电子的最大初动能的来源(金属表面的自由电子吸收光子后克服逸 出功逸出后具有的动能). ③入射光强度与光电流的关系(当入射光的频率大于极限频率时光电流 的强度与入射光的强度成正比). (2)定量分析时应抓住三个关系式: ①爱因斯坦光电效应方程:E k=hν-W0. ②最大初动能与遏止电压的关系:E k=eU c. ③逸出功与极限频率的关系:W0=hν 0. 2、光子说:光本身就是由一个个不可分割的能量子组成的, 频率为ν的光的能量子为hν。这些能量子被成为光子。 3、光电效应方程:E K = hυ- W O hυ截止= W O(E k是光电子的最大初动能 .... .....;W0是逸出功,即从金属表面 直接飞出的光电子克服电荷引力所做的功。) 三、康普顿效应(表明光子具有动量) 1、1918-1922年康普顿(美)在研究石墨对X射线的散射时发现:光子在介质中和物质微粒相互作用,可以使光的传播方向发生改变,这种现象 叫光的散射。 2、在光的散射过程中,有些散射光的波长比入射光的波长略大.,这种现象叫康普顿效应。 3、光子的动量: p=h/λ 四、光的波粒二象性物质波概率波不确定关系 1、光的波粒二象性:干涉、衍射和偏振 ..........又用无可辩驳的事实表明光是一种粒子,由于........以无可辩驳的事实表明光是一种波;光电效应和康普顿效应 光既有波动性,又有粒子性,只能认为光具有波粒二象性。但不可把光当成宏观观念中的波,也不可把光当成宏观观念中的粒子。少量的光子表现出粒子性,大量光子运动表现为波动性;光在传播时显示波动性,与物质发生作用时,往往显示粒子性;频率小波长大的波动性显著,频率大波长小的粒子性显著。 2、光子的能量E=hν,光子的动量p=h/λ表示式也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表 示波的特征的物理量——频率ν和波长λ。由以上两式和波速公式c=λν还可以得出:E = p c。 3、物质波:1924年德布罗意(法)提出,实物粒子和光子一样具有波动性,任何一个运动 ..着的物体都有一种与之对应的波,波长λ=h / p 这种波叫物质波,也叫德布罗意波。(电子的衍射图样;电子显微镜的分辨率为何远远高于光学显微镜) 4、概率波(了解):从光子的概念上看,光波是一种概率波。 5、不确定关系(了解):△x△p=h/4π,△x表示粒子位置的不确定量,△p表示粒子在x方向上的动量的不确定量。 五、原子核式模型机构 1、1897年汤姆 ........,提出原子的枣糕模型,揭开了研究原子结构的序幕(原子可再分)。(谁发现了阴极射线?是汤姆孙吗?)..孙.(英)发现了电子 2、1909年起英国物理学家卢瑟福做了α粒子轰击金箔的实验,即α粒子散射实验,得到出乎意料的结果:绝大多数α粒子穿过金箔后仍沿原来 的方向前进,少数α粒子却发生了较大的偏转,并且有极少数α粒子偏转角超过了90°,有的甚至被弹回,偏转角几乎达到180°。(P53图) 3、卢瑟福在1911年提出原子的核式结构学说:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核

相关文档
最新文档