MC3361

MC3361
MC3361

固态继电器应用电路图大全

固态继电器应用电路图大全 ■应用电路图 1. 与传感器的连接 SSR可直接连接接近开关、光电开关等传感器。 2. 白炽灯的闪烁控制 3.电气炉的温度控制 4. 单相感应电动机的正反运转

注1. SR1、SSR2其中一个为断开侧SSR的LOAD端子间电压,由于通过 LC结合,电压约为电源电压的2倍, 请务必使用具备电源电压2倍以上的输出额定电压的SSR (例)电源电压交流100V的单相感应电动机的正反运转,应使用有交流200V以上输出电压的SSR 注2. 切换SW1和SW2时,请务必确保有30ms以上的时滞。 5. 三相感应电动机的接通、断开控制 6. 三相电机的正反运转 SSR三相电机正反运转时,请注意SSR的输入信号。如右上图所示,同时切换SW1和SW2时,负载侧发生相间短路,会损坏SSR 的输出元件。这是由于即使没有至SSR输入端子的输入信号,输出元件(三端双向可控硅开关)仍处于导通状态,直至负载电流为0。因此,切换SW1和SW2时,请务必设定30ms以上的时滞。 另外,由于至SSR输入电路的干扰等导致的SSR误动作,也会导致相间短路、SSR损坏。作为此时的对策例,在电路中接入防止产生短路事故的保护电阻R。对于保护电阻R,请根据SSR的浪涌接通电流容量确定。例如, G3NA-220B的浪涌接通电流容量为 220Apeak,因此为R>220V×√2/220A=1.4Ω。另外,考虑到电路电流、通电时间等,请插到消耗功率较小的一侧。 另外,对于电阻的功率,请根据P=I2R×安全率进行计算。 (I=负载电流、R=保护电阻、安全率3~5)

7. 变压器负载的冲击电流 变压器负载时的冲击电流,在电抗不运作的2次侧开放状态下为最大。另外,由于其最大电流是电源频率的1/2周,若不用示波器将很难进行测定。为此,应测定变压器一次侧的直流电阻,据此预测冲击电流。(实际上,由于固有电抗运作,其结果比该计算值还少)。 I peak=V peak/R=(√2×V)/R 假设在负载电源电压220V 使用一次侧的直流电阻3 欧姆的变压器,则此时的冲击电流为, I peak=(1.414×220)/3=103.7A 本公司规定SSR的浪涌接通电流容量为非反复(1天1-2次),请选择能反复使用具备该I peak的2倍的浪涌接通电流容量的SSR。此时,请选择具备207.4A 以上浪涌接通电流容量、G3□□-220□以上的SSR。 另外,若对此进行逆运算,即可算出满足SSR的变压器一次侧的直流电阻值。R=V peak/I peak=(√2×V)/I peak 有关变压器一次侧的直流电阻值适用SSR的一览表,请参考附件。 另外,该一览表表示「满足冲击电流的SSR」,还必须结合「变压器的稳定电流满足各SSR的额定电流」。 〈SSR的额定电流〉 G3□□-240□ 下划线2位的数字显示稳定电流。(此时为40A)

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.360docs.net/doc/a118844773.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

运放的应用实例和设计指南

1.1运放的典型设计和应用 1.1.1运放的典型应用 运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使用该基本分析方法。 运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。 1) 运放在有源滤波中的应用 图有源滤波 上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。 其中电阻R280是防止输入悬空,会导致运放输出异常。 滤波最常用的3种二阶有源低通滤波电路为 巴特沃兹,单调下降,曲线平坦最平滑; 切比雪夫,迅速衰减,但通带中有纹波; 贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。

二阶有源低通滤波 电路的画法和截止频率 2) 运放在电压比较器中的应用 R785K1 ACH_BF1 FREN1 U85PS2801-1 1 2 4 3 R273 1K R274 1K C213 22nF FREN1 R292 200K - + U87B LM393DR2G 5 6 7 R275 1K 图电压比较 上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。 该电路实际上是过零比较器和深度放大电路的结合。 将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。 该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。 3) 恒流源电路的设计 如图所示,恒流原理分析过程如下: U5B(上图中下边的运放)为电压跟随器,故V4 V1=; 由运算放大器的虚短原理,对于运放U4A(上图中上边的运放)有:V5 V3=;

经典的20个模拟电路原理及其电路图汇总

经典的20个模拟电路原理及其电路图对模拟电路的掌握分为三个层次:初级层次:是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次:是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。 高级层次:是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。 一、桥式整流电路 1、二极管的单向导电性: 伏安特性曲线: 理想开关模型和恒压降模型: 2、桥式整流电流流向过程: 输入输出波形: 3、计算:Vo, Io,二极管反向电压。

二、电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用: 与电源滤波器的区别和相同点: 2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。 计算谐振频率。

四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。

LED电路图大全

LED节能灯的驱动电源电路图 LED电源电路大多是由开关电源电路+反馈电路这样的形式构成,反馈电路从负载处取样后对开关电路进行脉冲的占空比调整或频率调整,以达到控制开关电路输出的目的。 LED手电筒驱动电路原理图 市场上出现一种廉价的LED手电筒,这种手电前端为5~8个高亮度发光管,使用1~2节电池。由于使用超高亮度发光管的原因,发光效率很高,工作电流比较小,实测使用一节五号电池5头电筒,电流只有100mA左右。非常省电。如果使用大容量充电电池,可以连续使用十几个小时,笔者就买了一个。从前端拆开后,根据实物绘制了电路图,如图所示。

LED手电筒驱动电路 工作原理: 接通电源后,VT1因R1接负极,而c1两端电压不能突变。VT1(b)极电位低于e极,VT1导通,VT2(b)极有电流流入,VT2也导通,电流从电源正极经L、VT2(c)极到e极,流回电源负极,电源对L充电,L储存能量,L上的自感电动势为左正右负。经c1的反馈作用,VT1基极电位比发射极电位更低,VT1进入深度饱和状态,同时VT2也进入深度饱和状态,即Ib>Ic/β(β为放大倍数)。随着电源对c1的充电,C1两端电压逐渐升高,即V TI(b)极电位逐渐上升,Ib1逐渐减小,当Ib1<=Ic1/β时,VT1退出饱和区,VT2也退出饱和区,对L的充电电流减小。此时.L上的自感电动势变为左负右正,经c1反馈作用。VT1基极电位进一步上升,VT1迅速截止,VT2也截止,L上储存的能量释放,发光管上的电源电压加到L上产生了自感电动势,达到升压的目的。此电压足以使LED发光。LED: 是一种能够将电能转化为可见光的固态的半导体器件。通常叫发光二极管,英文名Light Emitting Diode,简称LED。 LED节能灯电路原理电路图

经典运放电路分析

从虚断,虚短分析基本运放电路 运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出 Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了! 今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接

近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖 丁解牛”了。 1)反向放大器: 图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。 流过R1的电流:I1 = (Vi - V-)/R1 ………a 流过R2的电流:I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ………………c I1 = I2 ……………………d

运算放大器11种经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出 Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

电路图符号大全

电路图形大全一、图形

二、电工电路图符号大全 电流表PA 电压表PV 有功电度表PJ 无功电度表PJR 频率表PF 相位表PPA 最大需量表(负荷监控仪) PM 功率因数表PPF 有功功率表PW 无功功率表PR 无功电流表PAR 声信号HA 光信号HS 指示灯HL 红色灯HR 绿色灯HG 黄色灯HY 蓝色灯HB 白色灯HW 连接片XB 插头XP 插座XS 端子板XT 电线,电缆,母线W 直流母线WB 插接式(馈电)母线WIB 电力分支线WP 照明分支线WL 应急照明分支线WE 电力干线WPM 照明干线WLM 应急照明干线WEM 滑触线WT 合闸小母线WCL

控制小母线WC 信号小母线WS 闪光小母线WF 事故音响小母线WFS 预告音响小母线WPS 电压小母线WV 事故照明小母线WELM 避雷器F 熔断器FU 快速熔断器FTF 跌落式熔断器FF 限压保护器件FV 电容器C 电力电容器CE 正转按钮SBF 反转按钮SBR 停止按钮SBS 紧急按钮SBE 试验按钮SBT 复位按钮SR 限位开关SQ 接近开关SQP 手动控制开关SH 时间控制开关SK 液位控制开关SL 湿度控制开关SM 压力控制开关SP 速度控制开关SS 温度控制开关,辅助开关ST 电压表切换开关SV 电流表切换开关SA 整流器U 可控硅整流器UR 控制电路有电源的整流器VC 变频器UF 变流器UC 逆变器UI

电动机M 异步电动机MA 同步电动机MS 直流电动机MD 绕线转子感应电动机MW 鼠笼型电动机MC 电动阀YM 电磁阀YV 防火阀YF 排烟阀YS 电磁锁YL 跳闸线圈YT 合闸线圈YC 气动执行器YPA,YA 电动执行器YE 发热器件(电加热) FH 照明灯(发光器件) EL 空气调节器EV 电加热器加热元件EE 感应线圈,电抗器L 励磁线圈LF 消弧线圈LA 滤波电容器LL 电阻器,变阻器R 电位器RP 热敏电阻RT 光敏电阻RL 压敏电阻RPS 接地电阻RG 放电电阻RD 启动变阻器RS 频敏变阻器RF 限流电阻器RC 光电池,热电传感器 B

电子式镇流器电路图大全

电子变压器工作原理图 电子变压器就是开关稳压电源。它实际上就是一种逆变器。首先把交流电变为直流电,然后用电子元件组成一个振荡器直流电变为高频交流电。通过开关变压器输出所需要的电压然后二次整流供用电器使用。 开关稳压电源具有体积小,重量轻,价格低等优点,所以被广泛用在各种电器中。开关稳压电源的原理较复杂。 下面一种电子变压器电路图的分析,输入为AC220V,输出为AC12V,功率可达50W。它主要是在高频电子镇流器电路的基础上研制出来的一种变压器电路,其性能稳定,体积小,功率大,因而克服了传统的硅钢片变压器体大、笨重、价高等缺点。 电子变压器电路图: 电子变压器工作原理电路如图所示。电子变压器原理与开关电源工作原理相似,二极管VD1~VD4构成整流桥把市电变成直流电,由振荡变压器T1,三极管VT1、VT2组成的高频振荡电路,将脉动直流变成高频电流,然后由铁氧体输出变压器T2对高频高压脉冲降压,获得所需的电压和功率。R1为限流电阻。电阻R2、电容C1和双向触发二极管VD5构成启动触发电路。三极管VT1、VT2选用S13005,其B为15~2 0倍。也可用C3093等BUceo>=35OV的大功率三极管。触发二极管VD5选用32V 左右的DB3或VR60。振荡变压器可自制,用音频线绕制在 H7 X 10 X 6的磁环上。TIa、T1b绕3匝,Tc绕1匝。铁氧体输出变压器T2也需自制,磁心选用边长27mm、宽20mm、厚10mm的EI型铁氧体。T2a用直径为0.45mm高强度漆包线绕100匝,T2b用直径为1.25mm高强度漆包线绕8匝。二极管VD1~VD4选用 IN4007型,双向触发二极管选用DB3型,电容C1~C3选用聚丙聚酯涤纶电容,耐压250V。

典型的运算放大器OP应用电路结构(精华版)

1.波形变换电路 波形变换电路属非线性变换电路,其传输函数随输入信号的幅度、频率或相位而变,使输出信号波形不同于输入信号波形。 1.1 检波与绝对值电路 1.1.1检波电路 图1.1.1所示为线性检波电路及其传输特性。电路中,把检波二极管D,接在反馈支路中,D2接在运放A输出端与电路输出端之间。该电路能克服普通小信号二极管检波电路失真大,传输效率低及输入的检波信号需大于起始电压(约为0. 3 V的固有缺点,即使输入信号远小于0.3 V,也能进行线性检波,因而检波效率能大大地提高。 图1.1.1 线性检波电路及其传输特性 线性检波电路的死区电压大小不决定于二极管的导通电压值,而是取决于D2正向压降VD的影响程度。 1.1.2绝对值电路 绝对值电路又称为整流电路,其输出电压等于输入信号电压的绝对值,而与输入信号电压的极性无关。采用绝对值电路能把双极性输入信号变成单极性信号。 在线性检波器的基础上,加一级加法器,让输入信号vi的另一极性电压不经检波,而直接送到加法器,与来自检波器的输出电压相加,便构成绝对值电路。其原理电路如图1.1.2所示。

图1.1.2 绝对值电路 输出电压值等于输入电压的绝对值,而且输出总是负电压。 若要输出正的绝对值电压,只需把图 1.1.2所示电路中的二极管D1、D2的正负极性对调。 1.2限幅电路 限幅电路的功能是:当输入信号电压进入某一范围(限幅区)后,其输出信号电压不再跟随输入信号电压变化,或是改变了传输特性。 1.2.1串联限幅电路 图 1.2.1所示为简单串联限幅电路及其传输特性。起限幅控制作用的二极管D 与运放A输入端串联,参考电压(-VR)作D的反偏电压,以控制限幅器的限幅 门限电压Vth。

3842典型应用电路全集

UC3842典型应用电路 电路中的芯片有:UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(RT×CT);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。 电流控制型脉宽调制器UC3842工作原理及应用 UC3842是美国Unitrode公司(该公司现已被TI公司收购)生产的一种高性能单端输出式电流控制型脉宽调制器芯片,可直接驱动双极型晶体管、MOSFEF 和IGBT 等功率型半导体器件,具有管脚数量少、外围电路简单、安装调试简便、性能优良等诸多优点,广泛应用于计算机、显示器等系统电路中作开关电源驱动器件。

1 UC384 2 内部工作原理简介 图1 示出了UC3842 内部框图和引脚图,UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下: ①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性; ②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度; ③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态; ④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(R T×C T); ⑤脚为公共地端; ⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ; ⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW; ⑧脚为5V 基准电压输出端,有50mA 的负载能力。 图1 UC3842 内部原理框图 2 UC3842 组成的开关电源电路 图2 是由UC3842 构成的开关电源电路,220V 市电由C1、L1滤除电磁干扰,负温度系数的热敏电阻R t1限流,再经VC 整流、C2滤波,电阻R1、电位器RP1降压后加到UC3842 的供电端(⑦脚),为UC3842 提供启动电压,电路启动后变压器的付绕组③④的整流滤波电压一方面为UC3842 提供正常工作电压,另一方面经R3、R4分压加到误差放大器的反相输入端②脚,为UC3842 提供负反馈电压,其规律是此脚电压越高驱动脉冲的占空比越小,以此稳定输出电压。④脚和⑧脚外接的R6、C8决定了振荡频率,其振荡频率的最大值可达500KHz。R5、C6用于改善增益和频率特性。⑥脚输出的方波信号经R7、R8分压后驱动MOSFEF 功率管,变压器原边绕组①②的能量传递到付边各绕组,经整流滤波后输出各数值不同的直流电压供负载使用。电阻R10用于电流检测,经R9、C9滤滤后送入UC3842 的③脚形成电流反馈环. 所以由UC3842 构成的电源是双闭环控制系统,电压稳定度非常高,当UC3842 的③脚电压高于1V 时振荡器停振,保护功率管不至于过流而损坏。

简析集成运算放大器的发展及典型精典应用电路

模拟电子技术科技小论文 简析集成运算放大器的发展及典型精典 应用电路 姓名: 学院:电子工程学院 专业:电子信息工程 班级:2016级5班 指导老师:

一、集成运算放大器的发展历史及现状 1934年的某天,哈里·布莱克(Harry·Black)搭渡从他家所在的纽约到贝尔实验室所在的新泽西去上班。渡船舒缓了他那紧张的神经,使得他可以做一些概念性的思考。哈里有个难题要解决:当电话线延伸得很长时,信号需要放大。但放大器是如此的不可靠,使得服务质量受到严重制约。首先,初始增益误差很大,但这个问题很快就通过使用一个调节器解决了。第二,即使放大器在出厂时调节好了,但是在现场应用的时候,增益的大范围漂移使得音量太低或者输入的语音失真。 为了制造一个稳定的放大器,很多的方法都尝试过了,但是变化的温度和极差的电话线供电状况所导致的增益漂移,一直难以克服。被动元件比主动元件有更好的漂移特性,如果放大器的增益取决于被动元件的话,问题不就解决了吗?在这次搭渡途中,哈里构思了这样一个新奇的解决方法,并记录了下来。 这个方法首先需要制造一个增益比实际应用所需增益要大的放大器,然后将部分的输出信号反馈到输入端,使得电路(包括放大器和反馈元件)增益取决于反馈回路而不是放大器本身。这样,电路增益也就取决于被动的反馈元件而不是主动的放大器,这叫做负反馈,是现代运算放大器的工作原理。哈里在渡船上记录了史上第一个有意设计的反馈电路,但是我们可以肯定在这之前,有人曾无意构建过反馈电路,只不过忽视了它的效果而已。起初,管理层和放大器设计者有很大的抱怨:“设计一个30-KHz增益带宽积(GBW)的放大器已经够难的了,现在这个傻瓜想要我们设计成3-MHz的增益带宽积,但他却只是用来搭建一个30-KHz增益带宽积的电路!”然而,时间证明哈里是对的。但是哈里没有深入探讨这带来的一个次要问题——振荡。当使用大开环增益的放大器来构建闭环电路时,有时会振荡。直至40年代人们才弄懂了个中原因,但是要解决这个问题需要经过冗长繁琐的计算,多年过去了也没有人能想出简单易懂的方法来。 1945年,H.W.Bode提出了图形化方式分析反馈系统稳定性的方法。此前反馈的分析是通过乘除法来完成的,传函的计算十分费时费力,需要知道的是,直至70年代前工程师是没有计算器和计算机的。波特使用了对数的方法将复杂的数学计算转变成简单直观的图形分析,虽然设计反馈系统仍然很复杂,但不再是只被“暗室”里的少数电子工程师所掌握的“艺术”了。任何电子工程师都可以使用波特图去寻找反馈电路的稳定性,反馈的应用也得以迅速增长。 世界上第一台计算机是模拟计算机!它使用预先编排的方程和输入数据来计算输出,因为这种“编程”是硬件连线的——搭建一系列的电路,这种局限性最

固态继电器应用电路图大全

固态继电器应用电路图大全 发布时间:12-02-22 来源:点击量:17326 更多 固态继电器应用电路图大全 ■应用电路图 1. 与传感器的连接 SSR可直接连接接近开关、光电开关等传感器。 2. 白炽灯的闪烁控制 3.电气炉的温度控制 4. 单相感应电动机的正反运转 注1. SR1、SSR2其中一个为断开侧SSR的LOAD端子间电压,由于通过 LC结合,电压约为电源电压的2倍, 请务必使用具备电源电压2倍以上的输出额定电压的SSR (例)电源电压交流100V的单相感应电动机的正反运转,应使用有交流200V以上输出电压的SSR

注2. 切换SW1和SW2时,请务必确保有30ms以上的时滞。 5. 三相感应电动机的接通、断开控制 6. 三相电机的正反运转 SSR三相电机正反运转时,请注意SSR的输入信号。如右上图所示,同时切换SW1和SW2时,负载侧发生相间短路,会损坏SSR 的输出元件。这是由于即使没有至SSR输入端子的输入信号,输出元件(三端双向可控硅开关)仍处于导通状态,直至负载电流为0。因此,切换SW1和SW2时,请务必设定30ms以上的时滞。 另外,由于至SSR输入电路的干扰等导致的SSR误动作,也会导致相间短路、SSR损坏。作为此时的对策例,在电路中接入防止产生短路事故的保护电阻R。对于保护电阻R,请根据SSR的浪涌接通电流容量确定。例如, G3NA-220B的浪涌接通电流容量为 220Apeak,因此为R>220V×√2/220A=1.4Ω。另外,考虑到电路电流、通电时间等,请插到消耗功率较小的一侧。 另外,对于电阻的功率,请根据P=I2R×安全率进行计算。 (I=负载电流、R=保护电阻、安全率3~5)

运算放大器在实际中的应用

运算放大器在实际中的应用 广西大学电气工程学院摘要:运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 关键词:结构组成,工作原理,基本原理电路,实际应用 The application of Operational amplifier in practice Abstract:Operational amplifier is one of the most widely used devices, when external access different linear or nonlinear components of input and negative feedback circuit, can flexibly implement specific function. In the aspects of linear composition proportion, addition, subtraction, integral, differential, logarithm, simulation operation circuit. Keywords:structure ,working principle,The basic principle of the circuit ,The practical application 绪论:模拟运算放大器从诞生至今,已有40多年的历史了。运算放大器最早被设计出来的目的是用来进行加、减、微分、积分的模擬数学运算,因此被称为“运算放大器。直流放大电路在工业技术领域中,特别是在一些测量仪器和自动化控制系统中应用非常广泛。如在一些自动控制系统中,首先要把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示,从而达到自动控制和测量的目的。因为被放大的信号多数变化比较缓慢的直流信号,分析交流信号放大的放大器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放大。能够有效地放大缓慢变化的直流信号的最常用的器件是运算放大器。 运算放大器最早被发明作为模拟信号的运算(实现加减乘除比例微分积分等)单元,是模拟电子计算机的基本组成部件,由真空电子管组成。目前所用的运算放大器,是把多个晶体管组成的直接耦合的具有高放大倍数的电路,集成在一块微小的硅片上。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。 一、运算放大器的结构组成和工作原理 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。

保护电路大全

蓄电池放电保护器电路图 蓄电池深度放电,会使极板硫化,缩短蓄电池的使用寿命。为此可设置放电保护器。电路如图所示。当蓄电池电压下降到终止值(可由电位器RP来改变动作阈值),继电器KA释放,切断负载回路,使蓄电池停止放电。 电瓶电压缺电保护电路 一款电瓶缺电保护电路,手动开关是打嗝式保护,间隔约30秒钟.固定开关一经跳闸永久保护.《关断稍等片刻从开可以再启动》电瓶电压低落到9.6v保护动作,LED指示灯亮. 图只画缺电保护部分,不牵涉其它电路,看不清图片可以放大。 注解: 这9.6v保护动作的电压是大电流时瞬态跌落的电压,不是电瓶耗尽时的平均电压.如果装了这个电路用小电瓶开大机器没几下机器就保护了,因为小电瓶供不了特大电流,电压瞬态跌落很正常。取样电压的高低可选换 9.1v稳压管,业余可串几个P/N结徽调一下。如果大家以为线路复杂的话,下图是简单一点的电路图。

黑图比白图节省了二个另件,换大了一个电容,但性能上还是有差异的,这个图相对来说是比较简单的。 设计这个电路的必需功能: 基准电压必需: 电瓶电压下跌计数 取样放大必需: 很难设计直接推继电器 功率输出必需: 可以设计晶体管直接输出,但不能应付稍大电流 小功率继电器必需:300w以下机器可直接控制全电源 LED指示灯必需:可以防止误认为机器故障 锁定电路必需:锁定继电器缺电后的释放,避免连续误动作引起逆变烧管故障 共12个元件加一个继电器,巳经不能再精简一个元件,如果少一个另件必缺少一项功能。而且这个电路的可靠工作还借用了“图”外的元件。 实际的功能: LED缺电指示灯,发光指示,告知电瓶巳经缺电,机器不能启动了。 锁定电路,电瓶电压压低于设定值时锁定电路工作,继电器不再吸合,锁定电路的存在实施了“完美的缺电保护功能”, 小功率的这个取样点是要高一许,或许是10.5v很全适,大功率的9.6v可能还嫌高,因为取样电路取的是瞬态值,这个电压是大电流时瞬态跌落的电压,不是电瓶耗尽时的平均电压。取样电压的高低可选换9.1v稳压管,业余可串几个P/N结徽调一下。 漏电报警电路图 下面介绍两种简易市电漏电报警器电路与制作

常用电路图符号最全汇总

常用电路图符号最全汇总 电路图,是一种以物理电学标准符号来绘制各电子元器件组成和关系的电路原理布局图,它被广泛应用于人类工程规划和电路研究。通过分析电路图,可以得知电子元器件之间的工作原理,并为性能、安装线路提供规划方案。在设计的过程,可以在纸上或电脑上进行绘制,等确定无误之后,在付诸实际。 电路图符号大全 电路图符号是绘制电路图的基础,只有了解对应的电路图符号,才能轻松上手绘制。电路图符号数量众多,大致可以分为四个类别:传输路径、集成电路组件、限定符号、开关和继电器符号;齐全的电路图符号便于用户随时选用,帮助用户更高效率地完成任务。 基本电路符号

汇聚基本的电路图符号,例如:电池、接地线、二极管等,可以满足基础电路的绘制需求。 传输路径符号 基本的电路符号,用于连接各元器件,起到“桥梁互通”的作用。 集成电路组件符号

以寄存器、转换器、计数器为代表的基础集成电路元器件,在电路图中较为常见。 限定符号 用于表示电路的属性,如脉冲、材料、温度等。 开关和继电器符号 是电路图中的控制元件,能够调节或改变电路的工作性能。

字符电路图符号大全 AAT 电源自动投入装置AC 交流电DC 直流电EUI 电动势电压电流f 频率FR——热继电器FU 熔断器FU——熔断器FU——熔断器G 发电机HG 绿灯HP 光字牌HR 红灯HW 白灯K 继电器KA 瞬时继电器;瞬时有或无继电器;交流继电器KA(NZ)电流继电器(负序零序)KA——1、瞬时接触继电器 2、瞬时有或无继电器 3、交流继电器KD 差动继电器KF 闪光继电器KH 热继电器KI 阻抗继电器KM 接触器KM 中间继电器KM——接触器KM——接触器KOF 出口中间继电器KP 极化继电器KR 干簧继电器KS 信号继电器KT 时间继电器KT——延时有或无继电器KT——延时有或无继电器KV(NZ)电压继电器(负序零序)KV电压继电器KW(NZ)功率方向继电器(负序零序)L 线路M 电动机PQS 有功无功视在功率QF 断路器QS 隔离开关Q— —电路的开关器件Q——电路的开关器件SA 转换开关SB——按钮开

运算放大器在电路中发挥重要的作用

运算放大器在电路中发挥重要的作用,其应用已经延伸到汽车电子、通信、消费等各个领域,并将在支持未来技术方面扮演重要角色。在运算放大器的实际应用中,设计工程师经常遇到诸如选型、供电电路设计、偏置电路设计、PCB设计等方面的问题。在电子工程专辑网站举行的《运算放大器应用设计》专题讨论中,圣邦微电子有限公司总裁张世龙先生应邀回答与工程师进行互动。我们也基于此专题讨论,总结出了运算放大器应用设计的几个技巧,以飨读者。 一、如何实现微弱信号放大? 传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?张世龙指出,对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励,电流转电压放大器,和同步解调三部分。他表示,需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。另外同步解调需选用双路的SPDT模拟开关。 另有工程师朋友建议,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。有网友对这类问题的解决也进行了补充,如网友“1sword”建议: 1)电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI收购)、ADI等公司关于运放的设计手册中均可以查到。 2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。 3)对于传感器输出的nA级,选择输入电流pA级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好了,就是成本高些。 4)若选用非仪表运放,反馈电阻就不要太大了,M欧级好一些。否则对电阻要求比较高。后级再进行2级放大,中间加入简单的高通电路,抑制50Hz干扰。 二、运算放大器的偏置设置 在双电源运放在接成单电源电路时,工程师朋友在偏置电压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?有的网友建议用参考电压源,理由是精度高,此外还能提供较低的交流旁路,有的网友建议用电阻,理由是成本低而且方便,对此,张世龙没有特别指出用何种方式,只是强调双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。这种基准电压使系统设计得到最小的噪声和最高的PSRR。但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。 三、如何解决运算放大器的零漂问题?

电气系统图大全

电气系统图大全精选文 档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

电气系统图中电气原理图应用最多,为便于阅读与分析控制线路,根据简单、清晰的原则,采用电气元件展开的形式绘制而成。它包括所有电气元件的导电部件和接线端点,但并不按电气元件的实际位置来画,也不反应电气元件的形状、大小和安装方式。 由于电气原理图具有结构简单、层次分明、适于研究、分析电路的工作原理等优点,所以无论在设计部门还是生产现场都得到了广泛应用。 (1)识读图的方法和步骤 阅读继电器—接触器控制原理图时,要掌握以下几点: A、电气原理图主要分主电路和控制电路两部分。电动机的通路为主电路,接触器吸引线圈的通路为控制电路。此外还有信号电路、照明电路等。 B、原理图中,各电器元件不画实际的外形图,而采用国家规定的统一标准,文字符号也要符合国家规定。 电气系统图中电气原理图应用最多,为便于阅读与分析控制线路,根据简单、清晰的原则,采用电气元件展开的形式绘制而成。它包括所有电气元件的导电部件和接线端点,但并不按电气元件的实际位置来画,也不反应电气元件的形状、大小和安装方式。 由于电气原理图具有结构简单、层次分明、适于研究、分析电路的工作原理等优点,所以无论在设计部门还是生产现场都得到了广泛应用。 (1)识读图的方法和步骤 阅读继电器—接触器控制原理图时,要掌握以下几点: A、电气原理图主要分主电路和控制电路两部分。电动机的通路为主电路,接触器吸引线圈的通路为控制电路。此外还有信号电路、照明电路等。 B、原理图中,各电器元件不画实际的外形图,而采用国家规定的统一标准,文字符号也要符合国家规定。 C、在电气原理图中,同一电器的不同部件常常不画在一起,而是画在电路的不同地方,同一电器的不同部件都用相同的文字符号标明,例如接触器的主触头通常画在主电路中,而吸引线圈和辅助触头则画在控制电路中,但它们都用KM表示。 D、同一种电器一般用相同的字母表示,但在字母的后边加上数码或其他字母下标以示区别,例如两个接触器分别用KM1、KM2表示,或用KMF、KMR表示。 E、全部触头都按常态给出。对接触器和各种继电器,常态是指未通电时的状态;对按钮、行程开关等,则是指未受外力作用时的状态。 F、原理图中,无论是主电路还是辅助电路,各电气元件一般按动作顺序从上到下,从左到右依次排列,可水平布置或者垂直布置。 G、原理图中,有直接电联系的交叉导线连接点,要用黑圆点表示。无直接联系的交叉导线连接点不画黑圆点。

相关文档
最新文档