巧用定义求椭圆中四类最值问题

巧用定义求椭圆中四类最值问题
巧用定义求椭圆中四类最值问题

巧用定义求椭圆中四类最值问题

聂文喜

圆锥曲线的定义既是推导圆锥曲线标准方程的依据,又是用来解决一些问题的重要方法,一般情况下,当问题涉及焦点或准线,且用其它方法不易求解时,可考虑运用定义求解,下面以椭圆为例归纳四类最值问题。

一、|PA|+e

1|PF|的最值 若A 为椭圆内一定点(异于焦点),P 是C 上的一个动点,F 是C 的一个焦点,e 是C 的离心率,求PA e

PF +1的最小值。 例1. 已知椭圆C x y :22

2516

1+=内有一点A (2,1),F 是椭圆C 的左焦点,P 为椭圆C 上的动点,求PA PF +53

的最小值。 分析:注意到式中的数值“

53”恰为1e ,则可由椭圆的第二定义知53PF 等于椭圆上的点P 到左准线的距离。这种方法在本期《椭圆中减少运算量的主要方法》一文中已经介绍过,这里不再重复,答案为

313

二、|PA|+|PF|的最值

若A 为椭圆C 内一定点(异于焦点),P 为C 上的一个动点,F 是C 的一个焦点,求PA PF +的最值。 例 2. 已知椭圆x y 22

2516

1+=内有一点A (2,1),F 为椭圆的左焦点,P 是椭圆上动点,求PA PF +的最大值与最小值。

解:如图1,设椭圆的右焦点为F ',可知其坐标为(3,0)

图1 由椭圆的第一定义得:PF PF +='10

∴=-∴+=+-=+-PF PF PA PF PA PF PA PF 101010'

''

可知,当P 为AF '的延长线与椭圆的交点时,PA PF -'最大,最大值为AF '=

2,当P

为F A '的延长线与椭圆的交点时,PA PF -'最小,最小值为-=-AF '2。 故PA PF +的最大值为102+,最小值为102-。

三、|PA|+ed 的最值 若A 为椭圆C 外一定点,l 为C 的一条准线,

P 为C 上的一个动点,P 到l 的距离为d ,求PA ed +的最小值。

例3. 已知椭圆x y 22

2516

1+=外一点A (5,6),l 为椭圆的左准线,P 为椭圆上动点,点P 到l 的距离为d ,求PA d +35

的最小值。 解:如图2,设F 为椭圆的左焦点,可知其坐标为()

F -30,

图2 根据椭圆的第二定义有:PF

d e ==35,即PF d =35 ∴+=+PA d PA PF 35

可知当P 、F 、A 三点共线且P 在线段AF 上时,PA PF +最小,最小值AF =10。 故PA d +

35

的最小值为10。 四、椭圆上定长动弦中点到准线距离的最值

例4. 定长为d d b a ≥?? ???22的线段AB 的两个端点分别在椭圆x a y b

a b 222

210+=>>()上移动,求AB 的中点M 到椭圆右准线l 的最短距离。

解:设F 为椭圆的右焦点,如图3,作AA l '⊥于A',BB'⊥l 于B',MM'⊥l 于M'

图3 则()MM AA BB AF e BF e e AF BF AB e d e

'''

=+=+?? ???=+≥=2121222

当且仅当AB过焦点F时等号成立。

故M到椭圆右准线的最短距离为d

e2

评注:22b

a

是椭圆的通径长,是椭圆焦点弦长的最小值,d

b

a

22

是AB能过焦点的充要条件。

高中数学椭圆中的常见最值问题

椭圆中的常见最值问题 1、椭圆上的点P 到二焦点的距离之积||||21PF PF 取得最大值的点是椭圆短轴的端点,取得最小值的点在椭圆长轴的端点。 例1、椭圆19 252 2=+y x 上一点到它的二焦点的距离之积为m ,则m 取得的 最大值时,P 点的坐标是 。P (0,3)或(0,-3) 例2、已知椭圆方程122 22=+b y a x (222,0c b a b a +=>>)p 为椭圆上一点, 21,F F 是椭圆的二焦点,求||||21PF PF 的取值范围。 分析:22221))((||||x e a ex a ex a PF PF -=-+=,)|(|a x ≤ 当a x ±=时,min 21||||PF PF =222b c a =-,当0=x 时,2max 21||||a PF PF = 即≤2b ||||21PF PF 2a ≤ 2、椭圆上到的椭圆内一个定点的距离与它到焦点距离之差取得最大值或最小值的点是这个定点与焦点连线延长线或反向延长线与椭圆的交点,最大值、最小值分别是定点到该焦点的距离和其相反数。 例3、已知)1,1(A ,1F 、2F 是椭圆15 92 2=+y x 的左右焦点,P 为椭圆上一动 点,则||||2PF PA -的最大值是 ,此时P 点坐标为 。||||2PF PA -的最小值是 ,此时P 点坐标为 。 3、椭圆上到椭圆内定点的距离与它到椭圆的一个焦点的距离之和取得最小值或最大值的点是另一焦点与定点连线的延长线或反向延长线与椭圆的交点。 例4、已知)1,1(A ,1F 是椭圆15 92 2=+y x 的左焦点,P 为椭圆上一动点,则

椭圆的常见题型及解法(一).

椭圆的常见题型及其解法(一) 椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助. 一、椭圆的焦半径 椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 1.公式的推导 设P (,)是椭圆上的任意一点, 分别是椭圆的左、右焦点,椭圆 ,求证,。证法1: 。 因为,所以 ∴ 又因为,所以 ∴, 证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知1 1 PF e d ,又,所 以, 而 。

∴,。 2.公式的应用 例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4, 0)的距离成等差数列,则 12 x x + . 解:在已知椭圆中,右准线方程为 25 4x = ,设A 、B 、C 到右准线的距离为 , 则、、。 ∵ , , ,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 例2.12,F F 是椭圆22 14x y +=的两个焦点,P 是椭圆上的动点,求 的最大值和最 小值。 解:设 ,则10202,2.PF x PF x =+ =-2 12034.4 PF PF x ?=- P 在椭圆上,022x ∴-≤≤,12PF PF ?的最大值为4,最小值为1. 变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。 解:由已知 可得 ,所以直线AB 的方程 为 ,代入椭圆方程 得 设 ,则 ,从而 变式练习2. 设Q 是椭圆22 221(0)x y a b a b +=>>上任意一点,求证:以2QF (或1QF )为

与椭圆有关的最值问题

与椭圆有关的最值问题 圆锥曲线在高考中占很重要的地位,每年必考。对椭圆、双曲线、抛物线的研究方法基本相同,椭圆 为三曲线之首,对椭圆的学习就更为重要了。而椭圆中的最值问题是比较重要的课题,它主要体现了转化 思想及数形结合的应用,涉及到的知识有椭圆定义、标准方程、参数方程、三角函数、二次函数、不等式 等内容。能够考查学生的分析能力、理解能力、知识迁移能力、解决问题的能力等等。下面介绍几种常见 的与椭圆有关的最值问题的解决方法。 1 ?定义法 2 2 例1。P(-2, 3 ),F2为椭圆——=1的右焦点,点M 在椭圆上移动,求丨MP| + | MF 2 |的最大值 25 16 和最小值。 分析:欲求丨MP| + | MF 丨的最大值和最小值 可转化为距离差再求。由此想到椭圆第一定义 | MF | =2a- | MF | , F 1为椭圆的左焦点。 解:| MP| + | MF | = | MP| +2a- | MF | 连接 PR 延长 PF 1 交椭圆于点M 1,延长F 1P 交椭圆于点M 2由三角形三边关系知 -| PF |兰| MP| - | MF |兰| PR |当且仅当M 与M 1重合时取右等号、M 与M 2重合时取左等号。因为 2a=10, | PF 1 | =2所以(| MP| + | MF |) ma>=12, (| MP | + | MF | ) min =8 2 2 X y 结论1:设椭圆二 2 =1的左右焦点分别为F 1、F 2, P(x o ,y o )为椭圆内一点,M(x,y)为椭圆上任意 a b 一点,则| MP | + | MF |的最大值为 2a+ | PF 1 |,最小值为2a - | PR |。 2 2 例 2: P(-2,6),F 2为椭圆— -L 25 16 M ,此点使| MP| + | MF |值最小,求最大值方法同例 1。 MF |连接PF 1并延长交椭圆于点 皿仆则M 在M 1处时| MP | - | MF I 取最大值| PF 1 |。二| MP | + | MF |最大值是10+ , 37,最小值是,41 2 2 x y 结论2:设椭圆一2 - =1的左右焦点分别为F 1、F 2, P(x o ,y o )为椭圆外一点,M(x,y)为椭圆上任意一点, a b 则| MP | + | MF |的最大值为 2a+ | PF 1 |,最小值为 PF ?。 2. 二次函数法 2 2 例3?求定点A(a,0)到椭圆务'£ =1上的点之间的最短距离。 a b 分析:在椭圆上任取一点,由两点间距离公式表示| PA |,转化为x,y 的函数,求最小值。 1 1 解:设 P(x,y)为椭圆上任意一点,| PA | 2=(x-a) 2+y 2 =(x-a) 2+1- x 2 = (x_ 2a)2+1d 由椭圆方 =1的右焦点,点 M 在椭圆上移动,求| MP | + | MF |的最大值和 最小值。 分析:点P 在椭圆外,PF 2交椭圆于 解:| MP | + | MH | = | MP | +2a- | M 1 M 2

习题课:椭圆第二定义的应用(精)

人教版高二数学上册§8.2 椭圆第二定义的应用(习题课 班级姓名自我学习评价 :优良还需努力 【学习目标】1. 进一步加深对椭圆第二定义及其性质的认识,会熟练运用椭圆的几何性质和第二定义解决有关问题; 2. 通过对椭圆的第二定义的应用,体会和感悟“方程思想”和“数形结合”,“分类讨论”的数学思想方法。 【学习重点】灵活运用椭圆的第二定义及性质解决有关问题。 【学习过程】 一、学习准备(知识准备) 请独立完成下列填空: 1.椭圆的第一定义为:;其中的两点为椭圆的 ;常数等于椭圆的; 2.椭圆第二定义:若平面内的动点M(x,y)到定点F(c,0)的距离和它到定直线 的距离的比是常数,则点M 的轨迹为;定直线叫做,准线与长轴所在直线____,椭圆的准线有条. 常数,()是的离心率。e1时,椭圆趋于;e0时,椭圆趋向于。 3.由椭圆第二定义我们得到了焦半径公式。设为椭圆上任意一点,对于标准方程 的焦半径;;对于标准方程的焦半径; .

椭圆第二定义及其性质在解题中有何价值和作用?你知道吗?通过本节课的学习你就会知道了! ●基础练习:试一试,你能根据已知很快独立完成下列问题吗?有困难的题可与小组同学讨论。 1、椭圆的准线方程是()A.; B.; C.; D. 2 椭圆的一个焦点到相应准线的距离为,离心率为,则短轴长为()A B C. D. 3 设点P为椭圆上一点,P到左准线的距离为10,则P到右准线的距离为() A . 6 ; B .8 ; C.10 ; D.15 4 已知点A(2,y)是椭圆上的点,F是其右焦点,则∣AF∣=; 5.椭圆与椭圆〉0)的形状怎样?它们的离心率有何关系?你 能否快速求出与椭圆有相同的离心率且经过点(,)的椭圆的方程?其方程为 你是用什么方法求解的?。 二、典型例析 【探究一】利用椭圆第二定义解题

椭圆定义及应用

一、椭圆第一个定义的应用 1.1 椭圆的第一个定义平面内有两个定点F1、F2,和一个定长2a。若动点P到两个定点距离之和等于定长2a,且两个定点距离|F1F2|<2a.则动点轨迹是椭圆。两个定点F1、F2称为椭圆的焦点。 由此定义得出非常重要的等式,其中P为椭圆上一个点。此等式既表明作为椭圆这个点的轨迹的来源,也说明椭圆上每一个具有的共同性质。即椭圆上每一个点到两个焦点距离之和等于定长2a .在有关椭圆的问题中,若题设中含有有关椭圆上一点到两个焦点距离的信息,首先考虑的就是能否用上这个关系式。 1.2 应用举例 例1.已知点 1(3,0) F-,2(3,0) F,有 126 PF PF +=,则P点的轨迹是 . 例2.求证以椭圆 (a>b>0) 上任意一点P的 焦半径为直径画圆,这个圆必与圆相切. 解评:此题若用一般方法解或用椭圆参数方程解答,计算量都很大,解题过程冗长,属于中档题。我们若抓住PF2为一个圆直径,PF1为另一个圆半径的2倍,用公式,很容易得出正确解答。

例3. F 1、F 2是椭圆的两个焦点,P 是椭圆上一点, 求的面积.24 解评:题设中有椭圆上一点到两个焦点间距离的信息,即可试探是否能用 解决 例4.P 是椭圆2 2 145 20 x y + =上位于第一象限内的点, F 1、F 2是椭圆的左、右焦点, 若 则12PF PF -的值为( ) A. D. 3 例5. 在圆C:22(1)25x y ++=内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线线段CQ 的交点为M,求M 点的轨迹方程. 练:一动圆与圆⊙o 1:x 2+y 2+6x+5=0外切,同时与⊙o 2 : x 2+y 2_ 6x _ 91=0 内切, 求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。

破解椭圆中最值问题的常见策略(新)

破解椭圆中最值问题的常见策略 第一类:求离心率的最值问题 破解策略之一:建立c b a ,,的不等式或方程 例1:若B A ,为椭圆)0(12 222>>=+b a b y a x 的长轴两端点,Q 为椭圆上一点,使0 120=∠AQB ,求此椭圆 离心率的最小值。 分析:建立c b a ,,之间的关系是解决离心率最值问题常规思路。此题也就要将角转化为边的思想,但条件又不是与焦点有关,很难使用椭圆的定义。故考虑使用到角公式转化为坐标形式运用椭圆中y x ,的取值进行求解离心率的最值。 :b y 故点评:对于此法求最值问题关键是掌握边角的关系,并利用三角函数的有界性解题,真是柳暗花明又一村。 第二类:求点点(点线)的最值问题 破解策略之三:建立相关函数并求函数的最值(下面第三类、第四类最值也常用此法) 例3:(05年上海)点A 、B 分别是椭圆 120 362 2=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值。

分析:解决两点距离的最值问题是给它们建立一种函数关系,因此本题两点距离可转化成二次函数的最值问题进行求解。解:(1)略(2)直线AP 的方程是x -3y +6=0。 设点M(m ,0),则M 到直线AP 的距离是 2 6+m 。 于是 2 6+m =6+m ,又-6≤m ≤6,解得m =2。 设椭圆上的点(x ,y )到点M 的距离d 222222549(2)4420()15992d x y x x x x =-+=-++-=-+,由于-6≤m ≤6, ∴当x =2 9 时,d 取得最小值15 破解策略之四:利用椭圆定义合理转化 例4:定长为d d b a ≥?? ???22 的线段AB 的两个端点分别在椭圆 )0(122 22>>=+b a b y a x 上移动,求AB 的中点M 到椭圆右准线l 的最短距离。 解:设F 为椭圆的右焦点,如图作AA l '⊥于A',BB'⊥l 于B',MM'⊥l 于M',则 ()e d e AB BF AF e e BF e AF BB AA MM 2221 212 ||/// = ≥ +=???? ??+= += 当且仅当AB 过焦点F 时等号成立。故M 到椭圆右准线的最短距离为 d e 2。 点评:22b a 是椭圆的通径长,是椭圆焦点弦长的最小值,d b a ≥22 是AB 过焦点的充要条件。通过定义转化避免各种 烦琐的运算过程。 第五类:求线段之和(或积)的最值问题 破解策略之五:利用垂线段小于等于折线段之和。 例7:若椭圆 13 4 22=+ y x 内有一点()1,1P ,F 为右焦点,椭圆上的点M 使得||2||MF MP +的值最小,则点M 的 坐标为 A .26(,1)3 ± B .26( ,1)3 C .3(1,)± D .3(1,) 提示:联系到1 2 e = 将||2MF 用第一定义转化成点到相应准线的距离问题,利用垂线段最短的思想容易得到正确答案。选B 。思考:将题中的2去掉会怎样呢? 破解策略之六:利用三角形两边之和大于第三边或三角形两边之差小于第三边 例8:如图,在直线09:=+-y x l 上任意取一点M ,经过M 点且以椭圆13 122 2=+y x 的焦点作椭圆,问当M 在何

椭圆经典解题思路

椭圆标准方程典型例题 例1 已知椭圆0632 2 =-+m y mx 的一个焦点为(0,2)求m 的值. 分析:把椭圆的方程化为标准方程,由2=c ,根据关系2 2 2 c b a +=可求出m 的值. 解:方程变形为 1262 2=+m y x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2 262=-m ,5=m 适合.故5=m . 例2 已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法, 求出参数a 和b (或2 a 和2 b )的值,即可求得椭圆的标准方程. 解:当焦点在x 轴上时,设其方程为()0122 22>>=+b a b y a x . 由椭圆过点()03, P ,知10922=+b a .又b a 3=,代入得12=b ,92 =a ,故椭圆的方程为1922=+y x . 当焦点在y 轴上时,设其方程为()0122 22>>=+b a b x a y . 由椭圆过点()03, P ,知10922=+b a .又 b a 3=,联立解得812=a ,92 =b ,故椭圆的方程为198122=+x y . 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 分析:(1)由已知可得20=+GB GC ,再利用椭圆定义求解. (2)由G 的轨迹方程G 、A 坐标的关系,利用代入法求A 的轨迹方程. 解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b , 故其方程为 ()0136 1002 2≠=+y y x . (2)设()y x A ,,()y x G '',,则 ()0136 1002 2≠'='+'y y x . ① 由题意有??? ????='='33 y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).

破解椭圆中最值问题的常见策略

破解椭圆中最值问题的常见策略

————————————————————————————————作者:————————————————————————————————日期: ?

破解椭圆中最值问题的常见策略 有关圆锥曲线的最值问题,在近几年的高考试卷中频频出现,在各种题型中均有考查,其中以解答题为重,在平时的高考复习需有所重视。圆锥曲线最值问题具有综合性强、涉及知识面广而且常含有变量的一类难题,也是教学中的一个难点。要解决这类问题往往利用函数与方程思想、数形结合思想、转化与化归等数学思想方法,将它转化为解不等式或求函数值域,以及利用函数单调性、各种平面几何中最值的思想来解决。本文通过具体例子,对椭圆中的常见最值问题进行分类破解。 第一类:求离心率的最值问题 破解策略之一:建立c b a ,,的不等式或方程 例1:若B A ,为椭圆)0(12222>>=+b a b y a x 的长轴两端点,Q 为椭圆上一点,使0120=∠AQB , 求此椭圆离心率的最小值。 分析:建立c b a ,,之间的关系是解决离心率最值问题常规思路。此题也就要将角转化为边的思想,但条件又不是与焦点有关,很难使用椭圆的定义。故考虑使用到角公式转化为坐标形式运用椭圆中y x ,的取值进行求解离心率的最值。 解:不妨设),(),0,(),0,(y x Q a B a A -,则a x y k a x y k BQ AQ -= += ,, 利用到角公式及0 120=∠AQB 得:0120tan 1=-++ -- +a x y a x y a x y a x y (a x ±≠), 又点A 在椭圆上,故2222 2y b a a x -=-,消去x , 化简得2232c ab y =又b y ≤即b c ab ≤2 232 则4 2 2 2 3)(4c c a a ≤-,从而转化为关于e 的高次不等式 04432 4≥-+e e 解得 13 6 <≤e 。 故椭圆离心率的最小值为3 6 。(或222233()ab c a b ≤=-,得:303b a <≤,由21()b e a =-, 故 13 6 <≤e )(注:本题若是选择或填空可利用数形结合求最值) 点评:对于此类最值问题关键是如何建立c b a ,,之间的关系。常用椭圆上的点),(y x 表示成 c b a ,,,并利用椭圆中y x ,的取值来求解范围问题或用数形结合进行求解。 破解策略之二:利用三角函数的有界性求范围 例2:已知椭圆C:22 221(0)x y a b a b +=>>两个焦点为12,F F ,如果曲线C 上存在一点Q ,使 12F Q F Q ⊥,求椭圆离心率的最小值。

与椭圆有关的最值问题

与椭圆有关的最值问题 圆锥曲线在高考中占很重要的地位,每年必考。对椭圆、双曲线、抛物线的研究方法基本相同,椭圆为三曲线之首,对椭圆的学习就更为重要了。而椭圆中的最值问题是比较重要的课题,它主要体现了转化思想及数形结合的应用,涉及到的知识有椭圆定义、标准方程、参数方程、三角函数、二次函数、不等式等内容。能够考查学生的分析能力、理解能力、知识迁移能力、解决问题的能力等等。下面介绍几种常见的与椭圆有关的最值问题的解决方法。 1.定义法 例1。P(-2,3),F 2为椭圆116 252 2=+y x 的右焦点,点M 在椭圆上移动,求︱MP ︱+︱MF 2 ︱的最大值 和最小值。 分析:欲求︱MP ︱+︱MF 2︱的最大值和最小值 可转化为距离差再求。由此想到椭圆第一定义 ︱MF 2︱=2a-︱MF 1︱, F 1为椭圆的左焦点。 解:︱MP ︱+︱MF 2︱=︱MP ︱+2a-︱MF 1︱连接PF 1延长PF 1 交椭圆于点M 1,延长F 1P 交椭圆于点M 2由三角形三边关系知 –︱PF 1︱≤︱MP ︱-︱MF 1︱≤︱PF 1︱当且仅当M 与M 1 22a=10, ︱PF 1︱=2所以(︱MP ︱+︱MF 2︱)max =12, (︱MP ︱+︱MF 2︱)min =8 结论1:设椭圆122 22=+b y a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆内一点,M(x,y)为椭圆上任意 一点,则︱MP ︱+︱MF 2︱的最大值为2a+︱PF 1︱,最小值为2a –︱PF 1︱。 例2:P(-2,6),F 2为椭圆 116 252 2=+y x 的右焦点,点M 在椭圆上移动,求︱MP ︱+︱MF 2 ︱的最大值和最小值。 分析:点P 在椭圆外,PF 2交椭圆于M ,此点使︱MP ︱+︱MF 2︱值最小,求最大值方法同例1。 解:︱MP ︱+︱MF 2︱=︱MP ︱+2a-︱MF 1︱连接PF 1并延长交椭圆于点M 1,则M 在M 1处时︱MP ︱-︱MF 1︱取最大值︱PF 1︱。∴︱MP ︱+︱MF 2︱最大值是10+ 37 ,最小值是 41。 结论2:设椭圆122 22=+b y a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆外一点,M(x,y)为椭圆上任意一点, 则︱MP ︱+︱MF 2︱的最大值为2a+︱PF 1︱,最小值为PF 2。 2.二次函数法 例3.求定点A(a,0)到椭圆122 22=+b y a x 上的点之间的最短距离。 分析:在椭圆上任取一点,由两点间距离公式表示︱P A ︱,转化为x,y 的函数,求最小值。 解:设P(x,y)为椭圆上任意一点,︱P A ︱2 =(x-a)2 +y 2 =(x-a)2 +1-x 212 =2)2(2 1 a x -+1-a 2 由椭圆方

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习 2018高三专题复习-解析几何专题(2) 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越

椭圆中四边形面积最值问题一例刘向阳

椭圆中四边形面积最值问题一例 -------教学设计 扬中市第二高级中学刘向阳 一、引入问题背景: 生活中我们经常要研究最优解的问题。在解析几何中,运动是曲线的灵魂,在形的运动中必然伴随着量的变化,而在变化中,往往重点变量的变化趋势,由此产生圆锥曲线中的中的最值问题等.本课重点是借助对常见的面积问题的研究提炼出解决此类问题的思想方法和基本策略,并能进行简单的应用. 二、教学内容分析: 解决椭圆最值问题,不仅要用到椭圆定义、方程、几何性质,还常用到函数、方程、不等式及三角函数等重要知识,综合性强,联系性广,策略性要求高.其基本的思想是函数方程思想、化归思想和数形结合思想,基本策略主要是代数和几何两个角度分析. 由于圆锥曲线是几何图形,研究的量也往往是几何量,因此借助几何性质,利用几何直观来分析是优先选择;但几何直观往往严谨性不强,难以细致入微,在解析几何中需要借助代数的工具来实现突破. 几何方法主要结合图形的几何特征,借助椭圆的定义以及平面几何知识寻找存在“最值”的位置;代数方法主要是将几何量及几何关系用代数形式表示,建立目标函数,从而转化为函数的最值问题,再借助函数、方程、不等式等知识解决问题. 三、学生学习情况分析: 椭圆的最值问题的解决,涉及的知识面广,需要综合运用平面几何、代数、不等式等相关知识,还需要较强的运算技能和分析问题解决问题的能力. 在本课的学习中,学生可能存在的问题有:知识的联系性和系统性较弱,难以调动众多的知识合理地解决问题;运算能力不强,算得慢,易算错,影响问题解决的执行力;问题解决的策略性不强,就题论题,对问题的数学本质认识模糊等现象.再加上学生对复习课的认识比较片面,对复习课缺乏新鲜感。 由于椭圆的最值问题涉及到图形运动和数量变化,学生往往缺乏对问题的直觉把握和深切的感受,教学中可通过几何画板直观的呈现数、式、形的联动变化,使学生逐步形成多元联系的观点。

(完整版)微专题-圆锥曲线中的最值问题(解析版)

专题30 圆锥曲线中的最值问题 【考情分析】 与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。 江苏高考试题结构平稳,题量均匀.每份试卷解析几何基本上是1道小题和1道大题,平均分值19分,实际情况与理论权重基本吻合;涉及知识点广.虽然解析几何的题量不多,分值仅占总分的13%,但涉及到的知识点分布较广,覆盖面较大;注重与其他内容的交汇。圆锥曲线中的最值问题,范围问题都是考查学生综合能力的载体.俗话说:他山之石可以攻玉.在研究这几年外省新课程卷解析几何试题时,就很有启发性.比如2010年安徽卷理科19题,该题入题口宽,既可用传统的联立直线与曲线,从方程的角度解决,也可利用点在曲线上的本质,用整体运算、对称运算的方法求解.再比如2011年上海卷理科23题,主要涉及到中学最常见的几个轨迹,通过定义点到线段的距离这一新概念设置了三个问题,特别是第三问,呈现给学生三个选择,学生可根据自已的实际情况选择答题,当然不同层次的问题,评分也不一样,体现让不同的学生在数学上得到不同的发展 【备考策略】 与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围; (3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;【激活思维】 1.已知双曲线122 22=-b y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲 线的右支有且只有一个交点,则此双曲线离心率的取值范围是[2,)+∞ 2. P 是双曲线 22 1916 x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为7 3.抛物线y=-x 2 上的点到直线4x +3y -8=0距离的最小值是 43 4.已知抛物线y 2 =4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12 +y 2 2 的最小值是 32 . 5.已知点M (-2,0),N (2,0),动点P 满足条件||||2PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程; (Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ?u u u r u u u r 的最小值. 解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支, 所求方程为:22 x y 122 -= (x >0) (Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0, 此时A (x 02 x 2-),B (x 020 x 2-,OA OB ?u u u r u u u r =2

椭圆大题定值定点、取值范围、最值问题总结

椭圆大题定值定点、取值范围、最值问题等总结 一、直线与椭圆问题的常规解题方法: 1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y kx b =+与x my n =+的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组; 4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型: ①“以弦AB 为直径的圆过点0”(提醒:需讨论k 是否存在) 121212100OA OB k k OA OB x x y y ?⊥?=??-?=?+=u u u r u u u r ②“点在圆内、圆上、圆外问题” ?“直角、锐角、钝角问题” ? “向量的数量积大于、等于、小于0问题”12120x x y y ?+>; ③“等角、角平分、角互补问题”令斜率关系(120k k +=或12k k =); ④“共线问题” (如:AQ QB λ=?u u u r u u u r 数的角度:坐标表示法;形的角度:距离转化法); (如:A O B ,,三点共线?直线OA 与OB 斜率相等); ⑤“点、线对称问题”?坐标与斜率关系; ⑥“弦长、面积问题”?转化为坐标与玄长公式问题(提醒:注意两个面积公式的合理选择); 6.化简与计算; 7.细节问题不忽略; ①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想: 1.“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3.证明定值问题的方法: (1)常把变动的元素用参数表示出来,然后证明计算结果与参数无关; (2)也可先在特殊条件下求出定值,再给出一般的证明. 4.处理定点问题的方法: (1)常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点; (2)也可先取参数的特殊值探求定点,然后给出证明, 5.求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6.转化思想:有些题思路易成,但难以实施.这就要优化方法,才能使计算具有可行性,关键是积累“转

椭圆中的最值问题

椭圆中的最值问题 邢志平 本文提供了解决椭圆中最值问题的三个方向:几何化、代数化、三角化,这三个方向在解决其它圆锥曲线中最值问题时也可用。 1. 几何化方向 画出图形,利用几何图形的性质按几何思路借助解析方法求解。 例1. 已知点、B(2,0),在椭圆上求一点P,使|AP|+2|BP|最小,则P点坐标为___________。 解根据题意,知B为椭圆的右焦点,A为椭圆内一点。 因为, 所以。 由椭圆第二定义,知, 即, 所以, 这样,问题就转化为求一点P到A点及L的距离和的最小值。 过A作AN⊥L于N,交椭圆于P点,P即为所求。所以 P点坐标为。

例2. 已知椭圆上一动点P,与圆上一动点Q,及圆 上一动点R,求|PQ|+|PR|的最大值。 解如图1,连结PF 1、PF 2 及F 1 R、F 2 Q,所以得到△PRF 1 及△PQF 2 ,根据题意可知, 圆心恰好为椭圆的两个焦点。 在三角形中 |PR|<|PF 1|+|F 1 R|, |RQ|<|PF 2|+|F 2 Q|, 所以, 即。 当P、F 1、R与P、F 2 、Q都共线时, , 所以 |PQ|+|PR|的最大值是6。 在问题转化过程中常利用椭圆的两个定义。 2. 代数化方向 先求出变量的函数表达式(或目标函数)然后用适当的代数方法(如:配方、均值不等式、函数单调性等)加以解决。

例3. 若以椭圆上一点和两个焦点为顶点的三角形的最大面积为1,则此椭圆的长轴长的最小值为___________。 解在椭圆上取一点P(x,y),。 当P点在短轴顶点时,|y|最大为b, 所以。 又, 所以。 先利用面积与高的函数关系式,确定面积的最大值,再找出长轴长与已知等式函数关系式利用不等式求最值。 例4. 设椭圆的中心是坐标原点,长轴在x轴上,离心率,已知点P(0, )到这个椭圆上的点最远距离为,求这个椭圆的方程,并求椭圆上到点P 的距离等于的点的坐标。 分析本题是一道“动中求静”的综合问题,必须用函数观点分析。 解从可推出a=2b,于是可设椭圆方程为

巧用椭圆的第二定义解题

巧用椭圆的第二定义解题 《普通数学课程标准》在圆锥曲线这一章较过去增加一种要求:即学生要根据方程的形式和图形特征等进行类比猜想,培养直觉思维与合情推理能力。增加这一要求是很科学的,因为很多圆锥曲线问题用代数法运算非常繁杂,而一旦抓住图形特征后,运用数形结合,则可以简化运算,大幅度提高解题效率,下面以椭圆为例说明。 例:已知椭圆的中心在原点,其左焦点为F (-2,0),左准线l 的方程为x=-22 3 ,PQ 是过F 且与x 轴不垂直的弦,PQ 的中点M 到左准线l 1:求椭圆的方程2:求证: d PQ 为定值 3:在l 上是否存在点R ,使?PQR 为正三角形 若存在,求出点R 的坐标,若不存在,说明理由 1:解析:易得椭圆的方程11 32 2=+y x 2:证明:如图,作PP / ⊥l 与P ,QQ / ⊥l 与Q ,则由椭圆的第二定义,易得 e PP PF =/ ,e QQ QF =/;于是PQ=PF+QF=ePP /+eQQ / =2ed=362=定值 3:解析:此题若从代数角度入手,设直线的方程,联立的方程再用韦达定理,则运算繁杂,很多同学会丧失信心;若能抓住图形特征,运用椭圆的第二定义和正三角形的性质,则可化难为易。假设存在点R ,使?PQR 分线RM 也确定,所以RM 的斜率确定,可以考虑先求RM 即求倾斜角π-/ /MM Q ∠的大小, 而COS / / MM Q ∠=M Q MM //,由第2问的结论可得: COS / / MM Q ∠=M Q MM // = PQ PQ e 2 321= 2 231= e ,//MM Q ∠ 为45○ ,根据对称性,RM 的斜率应为1±,进而可得PQ 的方程及中点M 的坐标,再由点斜式求得RM 的方程,再联立左准线l 的方程x=- 223

椭圆最值问题常考题型分析

椭圆最值问题常考题型分析 在遇到椭圆中线段或三角形周长最值问题时用函数思想有时很复杂,解题时常利用椭圆上点的性质(122MF MF a +=)及三角形三边关系. ◆典例剖析 例1、已知点)3,2(-P ,2F 为椭圆116 252 2=+y x 的右焦点,点M 在椭圆上移动,求2MF MP +的最大值和最小 值。 解:设椭圆左焦点为1F ,∴︱MP ︱+︱MF 2︱=︱MP ︱+ a 2-︱MF 1︱, 连接PF 1,延长PF 1交椭圆于点M 1,延长F 1P 交椭圆于点M 2由三角形三边关系知–︱PF 1︱≤︱MP ︱-︱MF 1︱≤︱PF 1︱当且仅当M 与M 1重合时取右等号、M 与M 2重合时取左等号。 ∵a 2=10, ︱PF 1︱=2所以(︱MP ︱+︱MF 2︱)max =12, (︱MP ︱+︱MF 2︱)min =8 结论:设椭圆122 22=+b y a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆内一点,M(x ,y)为椭圆上任意一点,则 ︱MP ︱+︱MF 2︱的最大值为a 2+︱PF 1︱,最小值为a 2–︱PF 1︱。 例2、已知点P(-2,6),F 2为椭圆116 252 2=+y x 的右焦点,点M 在椭圆上移动,求︱MP ︱+︱MF 2︱的最大值和最小值。 解:由题可知点P 在椭圆外,PF 2交椭圆于M ,此点使︱MP ︱+︱MF 2︱值最小(求最大值方法同例1)。 ︱MP ︱+︱MF 2︱=︱MP ︱+a 2-︱MF 1︱连接PF 1并延长交椭圆于点M 1, 则M 在M 1处时︱MP ︱-︱MF 1︱取最大值︱PF 1︱。 ∴︱MP ︱+︱MF 2︱最大值是10+37,最小值是41。 结论:设椭圆122 22=+b y a x 的左右焦点分别为F 1、F 2, P(x 0,y 0)为椭圆外一点,M(x,y)为椭圆上任意一点,则 ︱MP ︱+︱MF 2︱的最大值为a 2+︱PF 1︱,最小值为PF 2。 ◆针对训练 练1、已知1F 是椭圆15 92 2=+y x 的左焦点,P 是椭圆上的动点,点)1,1(A ,则1PF PA +的最小值是 练2、椭圆 13 422=+y x 的左焦点为F ,直线m x =与椭圆交于A ,B 两点,求FAB ?周长的最大值.

2014年高考椭圆综合题做题技巧与方法总结

2014年高考椭圆综合题做题技巧与方法总结 知识点梳理: 1. 椭圆定义: (1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在; 当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<>=+b a b y a x )0(12 22 2>>=+b a b x a y 性 质 参数关系 222c b a += 焦点 )0,(),0,(c c - ),0(),,0(c c - 焦距 c 2 范围 b y a x ≤≤||,|| b x a y ≤≤||,|| 顶点 ),0(),,0(),0,(),0,(b b a a -- )0,(),0,(),,0(),,0(b b a a -- 对称性 关于x 轴、y 轴和原点对称 离心率 )1,0(∈=a c e

准线 c a x 2 ±= c a y 2 ±= 考点1 椭圆定义及标准方程 题型1:椭圆定义的运用 [例1 ] 椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4a B .2(a -c) C .2(a+c) D .以上答案均有可能 [解析]按小球的运行路径分三种情况: (1)A C A --,此时小球经过的路程为2(a -c); (2)A B D B A ----, 此时小球经过的路程为2(a+c); (3)A Q B P A ----此时小球经过的路程为4a,故选D 总结:考虑小球的运行路径要全面 练习 1.短轴长为5,离心率3 2 = e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A.3 B.6 C.12 D.24 [解析]C. 长半轴a=3,△ABF 2的周长为4a=12 2.已知P 为椭圆22 12516 x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆 22(3)4x y -+=上的点,则PM PN +的最小值为( ) A . 5 B . 7 C .13 D . 15 [解析]B. 两圆心C 、D 恰为椭圆的焦点,10||||=+∴ PD PC ,PM PN +的最小值为10-1-2=7 题型2 求椭圆的标准方程 [例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程. 【解题思路】将题中所给条件用关于参数c b a ,,的式子“描述”出来 [解析]设椭圆的方程为122 22=+b y a x 或)0(12222>>=+b a a y b x , O x y D P A B C Q

好用的高中数学椭圆解题方法

一些好用的高中数学椭圆解题方法 一、设点或直线 做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。其中点可以设为 , 等,如果是在椭圆 上的点,还可以设为 。一般来说,如果题目中只涉及到唯一一个椭圆上的的动点,这个点可以设为 。还要注意的是,很多点的坐标都是设而不求的。对于一条直线,如果过定点 并且不与y轴平行,可以设点斜式 ,如果不与x轴平行,可以设 ,如果只是过定点,可以设参数方程 ,其中α是直线的倾斜角。一般题目中涉及到唯一动直线时可以设直线的参数方程。二、转化条件 有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极降低运算量。比如点在圆上可以转化为向量点乘得零,三点共线可以转化成两个向量平行,某个角的角平分线是一条水平或竖直直线则这个角的两条边斜率和是零。 有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单。 三、代数运算 转化完条件就剩算数了。很多题目都要将直线与椭圆联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都是这样。有的题目可能需要算弦长,可以用弦长公式 ,设参数方程时,弦长公式可以简化为 解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为 和 ,AB与x轴交于D,则

(d是点O到AB的距离;第三个公式是我自己推的,教材上没有,解答题慎用)。 解析几何中很多题都有动点或动直线。如果题目只涉及到一个动点时,可以考虑用参数设点。若是只涉及一个过定点的动直线,题目中又涉及到求长度面积之类的东西,这时设直线的参数方程会简单一些。 在解析几何中还有一种方法叫点差法,设椭圆上两个点的坐标,将两点在椭圆上的方程相减,整理即可得到这两点的中点的横纵坐标与这两点连线的斜率的关系式。 四、能力要求 做解析几何题,首先对人的耐心与信心是一种考验。在做题过程中可能遇到会一大长串的式子要化简,这时候,只要你方向没错,坚持算下去肯定能看到最终的结果。另外运算速度和准确率也是很重要的,在真正考试的时候肯定不像平时做题的时候能容你慢慢做题,因此需要有一定的做题速度,在做题的时候运算准确也是必须要保证的,因为一旦算错数,就很可能功亏一篑。 五、理论拓展 这一部分主要说一些对做题有帮助的公式、定理、推论等容 关于直线: 1、将直线的两点式整理后,可以得到这个方程: 。据此可以直接写出过 和 两点的直线,至于这两点连线是否与x轴垂直,是否与y轴垂直都没有关系。对于一些坐标很复杂的点,可以直接代入这个方程便捷的得到过两点的直线。 2、直线一般式Ax+By+C=0表示的这条直线和向量(A,B)垂直;过定点 的直线的一般式可以写为 。根据这两条推论可以快速地写出两点的垂直平分线的方程。 关于椭圆: 3、椭圆 的焦点弦弦长为 (其中α是直线的倾斜角,k是l的斜率)。右焦点的焦点弦中点坐标为 ,将横纵坐标都取相反数可得左焦点弦的中点坐标。 4、根据椭圆的第二定义,椭圆上的点到焦点的距离与到同一侧的准线的距离之商等于椭圆的离心率。椭圆 的准线是

相关文档
最新文档