疏水性和亲水性气相法二氧化硅的区别

疏水性和亲水性气相法二氧化硅的区别
疏水性和亲水性气相法二氧化硅的区别

气相二氧化硅有两个大类:非处理型和处理型,前者亲水,后者疏水

所谓非处理型气相二氧化硅是指:气相法生成的二氧化硅微粉,直接聚积、纯化、收集、压缩、包装,不经过其他化学试剂处理,在二氧化硅粒子表面保留有羟基,故而具有亲水性。所谓处理型气相二氧化硅是指:非处理型的气相二氧化硅经过化学试剂处理,表面羟基被相应基团所取代(一般是疏水基团),因而具有疏水性。该类产品又分为完全处理型和不完全处理型两个亚类。

疏水性二氧化硅不能被水所润湿,不能在水中分散。尽管疏水性二氧化硅的密度大于水的密度,但它们可以浮于水面之上

不同的功能

为了解决工业中一些特殊的技术问题,各种型号的疏水性气相二氧化硅被研发出来。如通过用硅烷或硅氧烷处理改性亲水级别的气相法二氧化硅生产疏水性的气相法二氧化硅,在最终的产品中,化学处理剂以化学键方式结合在原来的亲水性氧化物上。除了亲水性产品的上述优点外,疏水性气相二氧化硅产品的特点是:低吸湿性、很好的分散性、即使对于极性体系也只有流变调节能力。有些产品,在疏水处理的基础上再经过结构改性,可为客户研发新产品和提高产品的性能提供进一步的帮助。例如:在液体体系中,疏水性气相二氧化硅可以达到高添加量,而对体系的粘度影响很小。]

疏水性气相二氧化硅的功能:]

?加工使用中最适宜的流变性]

?极性液体的增稠,如环氧树脂]

?有机硅弹性体的补强]

?高添加量,如在模压制品中]

?良好的疏水性,提高防腐性]

?改善介电性能,如在电缆复合物中]

?粉末助流剂,如在灭火剂中]

?在涂料和塑料中提高耐划伤性]

亲水性气相二氧化硅

亲水性气相二氧化硅是通过挥发性氯硅烷在氢氧焰中水解而制得的。]从化学角度看,这些松散的白色粉末由高纯度的无定形二氧化硅构成。]亲水性二氧化硅可用水润湿,并能在水中分散。

除了在传统工业领域,如聚酯、有机硅、油漆和涂料中应用外,亲水性气相二氧化硅产品越来越多的成功应用于高科技领域中。气相法二氧化硅的纳米粒子特性和高纯度使其在电子和光纤工业中的应用起了主导作用。

亲水性气相二氧化硅产品经×射线分析具有无定形结构。根据市场和应用领域不

同,我们可以提供不同粒径的原生颗粒和不同比表面积的产品。一些气相二氧化硅产品可以压缩后供货,一些产品是医药级的。

亲水性气相二氧化硅的功能:]

?适于加工处理,调节到最佳的流变性]

?有机硅弹性体的补强]

?非极性液体的增稠]

?食品和工业粉末的助流剂]

?高化学纯度]

?即使在高温下仍具有优异的绝缘性能]

?液体转变成粉末,如医药、化妆品]

?造纸工业中在特种纸特殊应用

纳米二氧化硅和气相二氧化硅

一、纳米二氧化硅 纳米二氧化硅是极其重要的高科技超微细无机新材料之一,因其粒径很小,比表面积大,表面吸附 力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。纳米二氧化 硅俗称“超微细白炭黑”,广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂, 橡胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料 及喷涂材料、医药、环保等各种领域。 纳米二氧化硅XZ-G01:为相关工业领域的发展提供了新材料基础和技术保证。由于它在 磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的极大 重视。一、XZ-G01二氧化硅产品的主要技术指标,含量:99.99 % 水分≤0.01 二、XZ-G01二氧化硅用途1、涂料及饱和树脂的增稠剂和触变剂;2、平光剂:家具漆有向亚光方向发展的趋势,列 沦清漆或色漆均可使用超细二氧化硅凝胶产品作为平光剂,另外卷材涂层、PVC、塑料壁纸、雨衣 帐篷等平光剂亦可使用此类产品。3、聚乙烯、聚苯烯、无毒聚氯乙稀薄膜抗阻塞剂/开口剂。三.XZ-G01二氧化硅在高分子工业中的应用它广泛地应用于橡胶、塑料、电子、涂料、陶(搪)瓷、石膏、蓄电池、颜料、胶粘剂、化妆品、玻璃钢、化纤、有机玻璃、环保等诸多领域。 二、气相二氧化硅 气相二氧化硅,分子式:SiO2.白色蓬松粉沫,多孔性,无毒无味无污染,耐高温。同时它具备的化 学惰性以及特殊的触变性能明显改善橡胶制品的抗拉强度,抗撕裂性和耐磨性,橡胶改良后强度提 高数十倍。液体系统、粘合剂、聚合物等的流变性与触变性控制、用作防沉、增稠、防流挂的助剂、HCR与RTV-2K硅酮橡胶的补强、可用来调节自由流动和作为抗结块剂来改善粉末性质等等。 英文名:Silicon Dioxide 国外同类商品名:Airosilk 气相二氧化硅(气相白碳黑)是 极其重要的高科技超微细无机新材料之一,由于其粒径很小,因此比表面积大,表面吸附力强,表 面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。纳米二氧化硅俗称“超微细白炭黑”,广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补 强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料及喷涂 材料、医药、环保等各种领域。并为相关工业领域的发展提供了新材料基础和技术保证。

气相二氧化硅在其他工业中应用

硅橡胶具有较好的耐高低温、隔热、绝缘、防潮、防化学腐蚀、抗污染和生理惰性,在航空、航天、国防工业、机械制造、建筑装饰、生物医学等四十几个部门具有不可替代的作用,是公认的新型先进合成材料。 未经补强的硅橡胶,其强度不超过0.4Mpa,没有使用价值。气相二氧化硅由于其比表面积大,粒径小,结构性高,具有优异的补强性能,硅橡胶经气相二氧化硅补强之后,强度最高提高可达40倍,具有广泛的用途。二氧化硅表面上硅醇基(Si-OH)可以与硅橡胶分子形成物理或化学结合,在二氧化硅表面形成硅橡胶分子吸附层,构成二氧化硅粒子与橡胶分子联成一体的三维网络结构,从而达到补强作用。 2. 胶粘剂、密封剂 在胶粘剂和密封剂中,气相二氧化硅主要作为补强剂和添加剂,起到流变控制、防沉降、防止流挂和补强作用。 二氧化硅的粒径小、表面积大、表面硅醇基(Si-OH)多及其聚集体的立体分支结构,通过氢键或范德华力使得二氧化硅与聚合物分子之间、二氧化硅分子之间产生强力作用,达到补强效果。 气相二氧化硅在胶粘剂和密封剂体系中均匀分散后,可以形成一个二氧化硅聚集体网络,聚集体通过表面的硅醇基(Si-OH)与聚合物分子形成氢键,使体系的流动性受到限制,体系的粘度增加,从而起到增稠的作用,同时,在剪切力的作用下,氢键和二氧化硅网络受到破坏,导致体系粘度下降,即发生触变效应,便于施工,一旦剪切力消除,二氧化硅网络和氢键又重新形成。从而有效防止产品储存期间的沉降和使用过程中的流挂。 3. 涂料、油漆和油墨 气相二氧化硅广泛应用与油漆、油墨及涂料领域,主要作为流变助剂、防沉剂、助分散剂使用。在液态体系中,气相二氧化硅主要作为流变控制剂使用,它们在基质中分散形成一个二氧化硅网络,在储存过程中可以有效防止颜料的沉降分层现象。在施工过程中,由于涂层边缘的溶剂挥发较快,导致表面张力不均匀,容易使涂料向边缘移动,二氧化硅网络能够有效地阻止涂料的移动而形成厚边,同时二氧化硅网络还可以防止涂料在固化过程中的流挂现象,使涂层均匀,这对于一些厚浆型涂料来讲至关重要。气相二氧化硅还可提高涂料的耐侯性、抗划伤性,提高涂层与基材之间的结合强度以及涂层的硬度。 在粉末体系中,气相二氧化硅可以作为分散剂使用。由于气相二氧化硅的小粒径和高表面能,它们可以吸附在涂料粒子的表面,在表面形成一个表层,有利于提高涂料的流动性和喷涂性能。气相二氧化硅可以吸附涂料表面的水分,可防止涂料的结块。 在高性能无内部损耗的涂料中,如海洋涂料、工业修补漆等方面,气相二氧化硅可用作消光剂和触变剂。在环保的高固含量油漆中,气相二氧化硅还可作为触变剂和分散剂。在工业(印刷)油墨中,气相二氧化硅可以控制产品的流动性能。在复印或激光打印方面,气相二氧化硅可作为分散剂来控制调节墨粉的流动性能。 4. 橡胶 气相二氧化硅能大幅度提高胶料的物理机械性能、减少胶料滞后、降低轮胎的滚动阻力而又不损失抗湿滑性能。 在橡胶工业中,虽然炭黑是最有效的补强剂,然而其最大的缺点是不能用来制备彩色制品。气相二氧化硅的补强效果完全可以达到或超过炭黑的水平。在高档彩色橡胶制品中,气相二氧化硅是最好的补强剂。 在轮胎工业中,胎面胶中添加气相二氧化硅可以提高胎面抗切割、抗撕裂性能,减少蹦花掉块。用于帘布胶中,可以大大提高帘布与胶料的粘合性能。气相二氧化硅的小粒子效应还可以使橡胶在添加后提高耐磨性能。

二氧化硅的处理方法研究2

二氧化硅处理方法的研究 第一章前言 1、选题的目的、意义 由于二氧化硅内部的聚硅氧和外表面存在的活硅醇基及其吸附水,使其呈亲水性,在有机相中难湿润和分散,与有机基体之间结合力差,易造成界缺陷,使复合材料性能降低[1-3],而二氧化硅可用于橡胶制品、塑料制品、粘合剂、涂料等领域,要想改善这种缺陷,我们需要通过对二氧化硅进一步处理,使原来亲水疏油的表面变成亲油疏水的表面,这种表面功能的改变在实际应用中有重要价值。据此我们利用一些表面改性方法如沉淀法二氧化硅表面改性、十二醇二氧化硅表面改性、气相法二氧化硅表面改性、两亲性聚合物改性二氧化硅等来使亲水性的二氧化硅通过表面处理改性为疏水的二氧化硅,以提高产品的亲油性、分散性和相容性,并能使二氧化硅在某些乳液中既能长期稳定分散,又能保证它与基料在成膜后能有良好的界面结合。 第二章、二氧化硅处理方法的研究现状 目前我们对二氧化硅处理方法的研究主要分为:纳米级二氧化硅的改性处理和非纳米级的二氧化硅的改性处理。 2.1非纳米级二氧化硅的研究 2.1.1二氧化硅的概念:SiO2又称硅石。在自然界分布很广,如石英、石英砂等。白色或无色,含铁量较高的淡黄色。密度2.2 ~2.66。熔点1670℃(麟石英);1710℃(方石英)。沸点2230℃,相对介电常数为3.9。不溶于水微溶于酸,呈颗粒状态时能和熔融碱类起作用。用于制玻璃、水玻璃、陶器、搪瓷、耐火材料、硅铁、型砂、单质硅等。 2.1.2非纳米级二氧化硅表面改性 由于在二氧化硅表面存在有羟基,相邻羟基彼此以氢键结合,孤立羟基的氢原子正电性强,易与负电性原子吸附,与含羟基化合物发生脱水缩合反应,与亚硫酰氯或碳酰氯反应,与环氧化台物发生酯化反应。表面羟基的存在使表面具有化学吸附活性,遇水分子时形成氢键吸附。二氧化硅表面是亲水性的,无论气相法或沉淀法都是如此,差异仅是程度不同这导致了在与橡胶配合时相容性差,在配合胶料内对硫化促进剂吸附而迟延硫化。此外,白炭黑比表面积大、粒径小,在与

气相二氧化硅的用途

气相二氧化硅的用途 气相二氧化硅是极其重要的高科技超微细无机新材料之一,由于其粒径很小,因此比表面积大,表面吸附力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。纳米二氧化硅俗称“超微细白炭黑”,广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料及喷涂材料、医药、环保等各种领域。并为相关工业领域的发展提供了新材料基础和技术保证。由于它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的极大重视。 (一)电子封装材料有机物电致发光器材(OELD)是目前新开发研制的一种新型平面显示器件,具有开启和驱动电压低,且可直流电压驱动,可与规模集成电路相匹配,易实现全彩色化,发光亮度高(>105cd/m2)等优点,但OELD器件使用寿命还不能满足应用要求,其中需要解决的技术难点之一就是器件的封装材料和封装技术。目前,国外(日、美、欧洲等)广泛采用有机硅改性环氧树脂,即通过两者之间的共混、共聚或接枝反应而达到既能降低环氧树脂内应力又能形成分子内增韧,提高耐高温性能,同时也提高有机硅的防水、防油、抗氧性能,但其需要的固化时间较长(几个小时到几天),要加快固化反应,需要在较高温度(60℃至100℃以上)或增大固化剂的使用量,这不但增加成本,而且还难于满足大规模器件生产线对封装材料的要求(时间短、室温封装)。将经表面活性处理后的纳米二氧化硅充分分散在有机硅改性环氧树脂封装胶基质中,可以大幅度地缩短封装材料固化时间(为2.0-2.5h),且固化温度可降低到室温,使OELD器件密封性能得到显著提高,增加OELD器件的使用寿命。 (二)树脂复合材料树脂基复合材料具有轻质、高强、耐腐蚀等特点,但近年来材料界和国民经济支柱产业对树脂基材料使用性能的要求越来越高,如何合成高性能的树脂基复合材料,已成为当前材料界和企业界的重要课题。纳米二氧化硅的问世,为树脂基复合材料的合成提供了新的机遇,为传统树脂基材料的改性提供了一条新的途径,只要能将纳米二氧化硅颗粒充分、均匀地分

气相二氧化硅应用

CAB-O-SIL?气相二氧化硅M-5 一、产品概述 M-5非处理型气相二氧化硅是CAB-O-SIL?气相二氧化硅系列的通用品种,可应用在涂料油墨中发挥下述重要功能: 液体中:粉体中: 流变控制 防沉淀 自由流动 防止结块 流体化 二、物化指标 比表面积(平方米/克):200+/-25 堆积密度(克/升):40 成份分析(%SiO2):>99.8 X-射线结构分析:非晶体 折射率(折光指数): 1.46 325目筛筛余(最高%):0.02 加热损失(%@105℃):<1.5 燃烧损失(%@1000℃):<2 中值粒径平均长度粒子:0.2-0.3微米

三、应用及添加量 应用领域M-5功能用量标准(%) 粉末涂料自由流动、防止流垂0.25-1.0 溶剂型涂料防止沉淀0.25-0.5 防止流垂0.25-3.0 把持力0.25-0.75 相框或肿边0.25-0.5 锤印花式涂层花式控制0.3-0.6 多色表面涂层金属薄的定向15-20(相对薄片重量) 富锌打底涂料防止沉淀2.0-2.5 凹印墨触变、增稠0.5-1.0 筛网墨触变、增稠1.0-3.0 产地及包装规格美国,10公斤纸袋装 气相二氧化硅在涂料中的功能和作用 1、流变助剂 流变性是涂料的重要性能,它直接影响到涂料的外观,施工性能及储存稳定性等性能,而不同涂料体系对流变助剂的要求也有差异.对于油性体系而言,大部分流变助剂都是形成氢键而起作用的.表面未处理的气相二氧化硅聚集体含有多个,其中,一是孤立的,未受干扰的自由二是连生的,彼此形成氢键的键合氢键键合在油性体系中,极易形成三维的网状结构,这种结构受机械力影响时会破坏,使粘度下降,涂料恢复良好的流动性;当剪切力消除后,三维结构会自行恢复,粘度上升.在完全非极性液体中,粘度恢复时间只需几分之一秒;在极性液体中,回复

气相二氧化硅标准信息

气相二氧化硅新标准正式发布实施 历经一年多的努力,由广州吉必盛科技实业有限公司领衔起草修订的GB/T 20020-2013《气相二氧化硅》新国标于2013年9月发布,2014年1月起正式实施,标志着我国气相二氧化硅从标准的角度引导整个行业步入新起点、新规范。 气相二氧化硅作为一种超细高纯的无机粉体纳米材料,是新材料领域一种常用的高性能添加剂。但在2001年广州吉必盛成功建成500吨/年气相二氧化硅生产线之前,该项技术一直被国外化工巨头垄断,产品全部依赖进口。为了缩短与国外产品的差距,2004年由吉必盛牵头首次制定了GB/T 20020-2005《气相二氧化硅》国家标准,填补了国内空白。随着生产技术水平和分析技术的进步,GB/T 20020-2005《气相二氧化硅》由于技术指标较宽、技术要求较低,已不适应行业生产水平,难以满足客户要求,对原标准进行修订已变得迫在眉睫。 2010年,国家标准化管理委员会作出部署,由中橡集团炭黑工业研究设计院和广州吉必盛科技实业有限公司负责对GB/T 20020-2005《气相二氧化硅》进行修订。吉必盛公司作为国内气相二氧化硅最大的供应商,在技术、生产、质量控制、市场方面均具行业领先优势,在气相二氧化硅领域拥有多项知识产权和核心技术,能准确把握行业科技前沿,为国标修订提供强大的技术支持。因此,全国橡标委炭黑分技术委员会炭黑分技术委员会批准将起草GB/T 20020-2013《气相二氧化硅》的工作组设在广州吉必盛,组长由我公司常务副总经理吴春蕾博士担任,全面主持、统筹修订工作。

工作组邀请气相二氧化硅行业巨头如德国瓦克、日本德山公司和国内有代表性的生产厂家及下游应用企业参与修订工作,标准起草人员先后进行了标准查新和标准行业调研,了解国际国内现行的气相二氧化硅相关标准和历史版本,并与最新版本进行翻译、比对。2011 年3月完成修订初稿,并在全国橡标委炭黑分技术委员会上进行了第一轮讨论,国际和国内行业专家、应用关联企业代表详细讨论了技术指标对生产和应用的影响,征集了国际、国内气相二氧化硅行业生产厂家和应用客户的修订意见,为国标修订进一步明确了方向。 历经四个月的努力,项目组人员对数十家相关联生产单位进行了调研,充分了解了行业的生产和分析技术水平,最后选取了最具代表性的几家厂家产品试验、检测和验证,验证结果充分支持和保障了修订的合理性和适当性。 经过多次修改并充分征集各方意见后,送审稿于2011年12在全国橡标委炭黑分技术委员会审核通过,2012年1月上交国标委审批。该修订采用ISO 3262-20:2000标准并对相关测试方法进行重新起草,相对旧版国家标准,修订后的气相二氧化硅国家标准在技术要求上进行了范围缩减,更加符合当前行业技术水平的要求;对检验、包装、采样等进行了修改和细化,使标准更符合实际生产和应用的要求。 气相二氧化硅新标准的实施将产生了巨大的经济效益和社会效益。本次修订召集了具有国际先进制造水平的代表性跨国企业参与到国家标准修订中来,修订参与的单位代表了国际、国内最广泛的行业水平,修订后的气相二氧化硅国家标准相对于国际标准和现行国家标

最新浅析改性气相法二氧化硅的发展及应用

浅析改性气相法二氧化硅的发展及应用 摘要:主要介绍了气相法二氧化硅及表面改性的气相法二氧化硅的表面结构、改性剂的种类及改性方法,介绍了改性气相法二氧化硅的应用前景。 关键词:二氧化硅;改性;有机硅;纳米材料 气相法二氧化硅(俗称白炭黑)是由硅的卤化物在氢氧火焰中在1000℃或更高的温度下水解、燃烧过程中形成的二氧化硅原生粒子相互碰撞形成二次粒子并形成长链而生成的带有表面羟基和吸附水的超微细粉末。尽管气相法二氧化硅的粒径小、比表面积大,填充硫化胶的拉伸强度、撕裂强度和耐磨性均较高;但它与烃类橡胶的相容性较差,大量填充胶料的粘度较大,加工性能随贮存时间的延长而变差,贮存后胶料存在硬化、挤出困难以及成型粘性差等问题。这是由于气相法二氧化硅表面存在的活性硅羟基、吸附水及制备工艺导致其表面出现的酸性,使气相法二氧化硅呈亲水性,在有机相中难以浸润和分散,从面降低了硫化效率和补强性能,使其在某些有特殊要求的领域无法使用。比如,由于高补强气相法二氧化硅的比表面积超过100m2/g,且表面上含有大量Si-OH基,故粒子间的凝聚力相当强,在生胶中很难分散,对补强非常不利;而Si-OH基还易与生胶分子中的Si-O键或Si-OH作用,产生结构化现象,给胶料的存贮、加工及应用带来问题。改性后的气相法二氧化硅可有效减少Si-OH,并由亲水性表面转变成憎水性表面,从而达到兼提高气相法二氧化硅在生胶中的分散性(浸润性)及减少或避免胶料发生结构化的目的。改善了其在有机相中的分散性和相容性,从而大大拓宽了产 品的应用领域,提高了气相法二氧化硅的附加值。

红外光谱研究表明,气相法二氧化硅表面含有一定量的活性羟基,羟基的主要类型有:双羟基、隔离羟基和相邻羟基,不同的羟基具有不同的反应活性,羟基活性 中心的存在使其具有补强性能,同时为其表面改性提供了反应官能团。 X-射线衍射图证明,气相法二氧化硅整体结构为无定形态,分子密集和度较高、颗粒细小(纳米级)、比表面积大,在熔点以下的温度进行热处理时,虽长期受热内部结构也不会发生变化,加之之制备过程中四价硅原子小结构单元的氧化,主要 呈现三元体型结构。 所谓改性气相法二氧化硅,就是通过一定的工艺利用一定的化学物质与气相法二氧化硅的表面羟基发生反应,消除或减少表面硅羟基的量使二氧化硅由亲水性 变为疏水性,以提高它同聚合物胶料的亲和性。 二氧化硅表面改性既要求清除或减少其表面羟基的量,又不改变其根本性质。根 据改性剂的不同,常用的化学改性方法有以下几种。 二氧化硅表面羟基加热到750℃时脱水,在表面生成硅氧烷,再与活性聚苯乙烯接枝。 改性的工艺 气相法二氧化硅的比表面积很大,不能通过有机物简单地覆盖或吸附在其表面不改善润滑性和分散性。国外常用的改性工艺有:干燥的气相法二氧化硅与有机物的蒸汽接触并反应的蒸汽法(常称为干法);气相法二氧化硅与改性剂一起加热使改性剂沸腾回流的回流法(常称为湿法);在高压釜中进行高温高压反应的压热反应法等。 早期的改性研究多采用湿法,但随着超微细粒子流态化技术的发展,流化床反应器的操作控制已获得较多的成功经验,用干法同样可以达到湿法的物料接触状况,

气相二氧化硅产品说明书

气相二氧化硅产品说明书 气相二氧化硅(俗称气相白碳黑)产品为人工合成物X射线列定形白色流动性粉末,具有各种比表面积和容积严格的粒度分布。本产品是一种白色、松散、无定形、无毒、无味、无嗅,无污染的非金属氧化物。其原生粒径介于7~40rim之间,比表面积一般大于100m2/g。由于其纳米效应,在材料中表现出卓越的补强、增稠、触变、绝缘、消光、防流挂等性质,因而广泛的应用于橡胶、塑料、涂料、胶粘剂、密封胶等高分子工业领域。 一、Tamis产品的主要技术指标 二、用途 涂料及饱和树脂的增稠剂和触变剂 在大型桥梁和船舶底漆使用的原浆涂料中,超细二氧化硅依靠表面羟茎作用形成氢键,在涂刷和喷涂时具有较好的流动性,而候静止依靠表面羟茎的氢键作用,很快失去流动性,防止了原浆涂料的流褂现象,在不饱和树脂的作用,与之相似。 建议使用Tamis-10,Tamis-10PS 平光剂 家具漆有向亚光方向发展的趋势,列沦清漆或色漆均可使用超细二氧化硅凝胶产品作为平光剂,另外卷材涂层、PVC、塑料壁纸、雨衣帐篷等平光剂亦可使用此类产品。 建议使用Tamis-20,Tamis-30

聚乙烯、聚苯烯、无毒聚氯乙稀薄膜抗阻塞剂/开口剂 在拉制薄膜之前的料中加入超细二氧化硅凝胶粒子在薄膜表面形成微小的凹凸层、薄膜之间存在微小的几何空间、防止低分子物质渗透,从而使薄膜极易打开,制备聚乙烯薄膜抗粘母粒,聚苯烯薄膜和无毒聚氯乙稀膜分别使用 建议使用Tamins-10,Tamins-10PS 重氮盐晒图纸予涂料的重要组成成份 国外高质量的重氮盐晒图纸都经过一道予涂,予涂料的组成是聚醋酸乙烯和超细二氧化硅经过予涂的晒图纸图像清晰、明快、具有立体感。 建议使用Tamis-10 四.气相二氧化硅在高分子工业中的应用 1 在橡胶中的应用 未经补强的硅橡胶,其强度一般只有03MPa,几乎不能使用。要达到实际应用的水平,必须对其进行填充改性。在常见的无机粉体填料(碳酸钙、沉淀法二氧化硅等)中,效果最好的是气相二氧化硅。当添加气相二氧化硅之后其强度最高可提高40倍,屈服点模量可提高1O 倍左右,伸长率、蠕变性能也能得到十分显著的改善 l。经气相二氧化硅填充后,材料的内部微观相互作用发生了很大的变化,除存在分子链间弱的范德华力所致大分子链间的 缠结以及因机械力所致的机械缠结外,还存在气相二氧化硅聚集体间氢键的强的相互作用、二氧化硅与聚合物间强的吸附或键联作用、吸附在二氧化硅聚集体表面的聚合物大分于链间的强的相互缠结作用,使得界面粘结得到显著的改善,在硅橡胶内部形成了聚合物大分子链贯穿板碳黑网络的结构,从而赋予了材料优越的综合性能。 气相二氧化硅能大幅度提高胶料的物理机械性能、减少胶料滞后、降低轮胎的滚动阻力而又不损失抗湿滑性能而受到广泛关注,因此在硅橡胶外的其它有机橡胶中的应用也越来越广,其补强效果完全达到了炭黑的水平,且又克服了炭黑的黑色污染,可广泛用于彩色高档橡胶制品。 2 在密封胶和胶粘剂中的应用 在硅酮密封胶和胶粘剂领域,气相二氧化硅可用作增稠剂和触变剂,可以增加粘结强度,保证自由流动,具有防止结块及在固化期间的流挂、塌散、凹陷,保持透明度,补强,抗剪切等作用。气相二氧化硅的增稠以及触变作用机理是当其在密封胶和胶粘剂中分散后,不同颗粒间通过其表面的硅醇基产生氢键作用,形成一个二氧化硅聚集体网络,使体系的流动性受到限制,粘度增加.起到增稠的作用;在受到剪切力的作用下二氧化硅网络受到破坏,导致体系粘度下降.发生触变效应,便于施工。一旦剪切力消除,这种网络结构可重新形成,有效防止了胶料在固化过程中的流挂。 3 在塑料中的应用 利用气相二氧化硅高强度、高流动性和小尺寸效应,可提高塑料制品的致密性、光洁度和耐磨性能。若通过适当的表面改性,则可以达到对塑料同时增强增韧的目的。将气相法白炭黑

改性气相法二氧化硅的发展及应用

改性气相法二氧化硅的发展及应用 主要介绍了气相法二氧化硅及表面改性的气相法二氧化硅的表面结构、改性剂的种类及改性方法,介绍了改性气相法二氧化硅的应用前景。 标签:二氧化硅;改性;有机硅;纳米材料 气相法二氧化硅(俗称白炭黑)是由硅的卤化物在氢氧火焰中在1000℃或更高的温度下水解、燃烧过程中形成的二氧化硅原生粒子相互碰撞形成二次粒子 并形成长链而生成的带有表面羟基和吸附水的超微细粉末。 气相法二氧化硅是神奇的纳米材料。由于它具有不寻常的颗料特性,即极小的粒径(一次结构的粒径为7~40纳米),极大的比表面积(BET法检测为100~400m2/g),很高的纯度(二氧化硅含量不低于99.8%)的它的成链倾向,使其具有卓越的补强性、增稠性、触变性、消光性、分散性、绝缘性、防粘性等奇异性能,补称为“工业味精”。气相法二氧化硅及其改性制品广泛用于橡胶、涂料、医药、胶粘剂、油墨、化妆品、航天、建筑、食品卫生农药等领域。是极其重要 的超微细无机新材料之一。 尽管气相法二氧化硅的粒径小、比表面积大,填充硫化胶的拉伸强度、撕裂强度和耐磨性均較高;但它与烃类橡胶的相容性较差,大量填充胶料的粘度较大,加工性能随贮存时间的延长而变差,贮存后胶料存在硬化、挤出困难以及成型粘性差等问题。这是由于气相法二氧化硅表面存在的活性硅羟基、吸附水及制备工艺导致其表面出现的酸性,使气相法二氧化硅呈亲水性,在有机相中难以浸润和分散,从面降低了硫化效率和补强性能,使其在某些有特殊要求的领域无法使用。比如,由于高补强气相法二氧化硅的比表面积超过100m2/g,且表面上含有大量Si-OH基,故粒子间的凝聚力相当强,在生胶中很难分散,对补强非常不利;而Si-OH基还易与生胶分子中的Si-O键或Si-OH作用,产生结构化现象,给胶料的存贮、加工及应用带来问题。改性后的气相法二氧化硅可有效减少Si-OH,并由亲水性表面转变成憎水性表面,从而达到兼提高气相法二氧化硅在生胶中的分散性(浸润性)及减少或避免胶料发生结构化的目的。改善了其在有机相中的分散性和相容性,从而大大拓宽了产品的应用领域,提高了气相法二氧化硅的附加 值。 红外光谱研究表明,气相法二氧化硅表面含有一定量的活性羟基,羟基的主要类型有:双羟基、隔离羟基和相邻羟基,不同的羟基具有不同的反应活性,羟 基活性中心的存在使其具有补强性能,同时为其表面改性提供了反应官能团。

气相二氧化硅在环氧树脂包封料的应用

气相二氧化硅在环氧树脂包封料的应用 气相二氧化硅在环氧树脂包封料的应用及金属化薄膜电容器外表质量的分析 电容器的主要技术指标是电性能。然而其外表质量同样是不可忽视的,因为,金属化薄膜电容器其内浸渍绝缘和外包封绝缘都是采用环氧树脂结构,但内浸渍绝缘采用的配方是环氧树脂-酸酐体系,而外包封绝缘用的是触变性环氧树脂-改性芳香胺配方体系。因此,尽管电容器的电性能是好的,但环氧树脂外包封的工艺是否完整其外表质量不合要求也会造成废品。而且电容器的外表质量往往是生产厂造成废品损失的主要原因。就金属化薄膜电容器而言,造成电容器外表质量不合格的主要原因是:环氧树脂外包封层产生垂头、气泡、气孔、变色、不平、颜料分离、印迹不清等现象。对此,我们来分析原因。 一、环氧树脂外包封料下垂(垂头)造成体积超差 环氧树脂包封料垂头不但外观不好,而且易造成产品体积超差。其原因,环氧树脂触变包封涂料槽下降速度太快外,主要是包封料粘度太大造成的。因此,要保证包封粘度适中,一方面要用活性稀释剂来调节,另一方面气相二氧化硅(白炭黑)的添加量也要合适。而包封料下垂,主要是气相二氧化硅添加量不足引起的。然而,当气相二氧化硅过量,则包封料粘度过大。用这种粘度大的料包封的电容器料层厚,易造成体积超差。另外也使产品外表不光亮,因为,气相二氧化硅有消光的功能,同时也带来了材料的浪费。然而当气相二氧化硅添加量不足,则起不到包封料的触变性能,也就无法防止包封料下垂的作用。 气相白炭黑,也称气相二氧化硅,其原始粒子极微细、质轻,在空气中吸收水份后成为聚集的细粒子。其颗粒表面的硅原子并不是全部具有四个硅氧键,其中一部分硅原子是由三个硅氧键和一个羟基所组成,形成了硅醇基。由于白炭黑颗粒表面的硅醇基在液体树脂中彼此以氢键相缔合(由简单的分子结合成比较复杂的分子,而不引起物质的化学性质改变的现象,叫做分子的缔合。所谓氢键即和非金属性强的元素,特别是氟、氧、氮等,以共价键相结合的氢原子.还可以再和此类元素的另一原子相结合。这时所形成的第2个键,叫做氢键)。就是说,这些气相二氧化硅颗粒之间互相结合成“链”。并进而形成主体网状结构,它们均匀的分散在树脂分子之间,并形成一层包复层,紧贴在树脂长分子链上,从而也使树脂连接起来,形成网状链形结构。因此,环氧树脂包封料就产生了触变性,它可以有效的防止环氧树脂包封料的下垂问题。这种以氢键相缔合的气相二氧化硅颗粒之间作用力较弱,易受搅拌或振动而遭到破坏。但当外力移除后,则再形成氢键。同时其形成的主体网状结构对热不敏感,以致在90℃烘箱中固化时仍能保持原有的外形,不会使环氧树脂包封料的粘度下降。然而,气相二氧化硅的填加量有一定的限度,加的过量则粘度大,操作困难,包封层过厚。同时,产品表面粗糙。气相二氧化硅的填加量要根据气温、环氧树脂配方、填料和颜料的量具体工艺等由试验确定。但是,我们的经验是气相二氧化硅的添加量是环氧树脂外包封料的

我国气相法二氧化硅的生产状况及其应用

1气相法白炭黑的用途 1.1赋予材料的特性 气相法二氧化硅又称气相法白炭黑,是千种极其重要的高科技无机化工产品,也是目前唯一能够实现大规模工业化生产的纳米材料。它是一种无定形、半透明、流动性很强的絮状胶态物质,是由硅或硅的氯化物在氢氧焰的高温条件下水解而成,是表面带有羟基官能团的超微细粒子。其原生粒径为1-40nm,平均原生粒径为7~18 nm(接近于分子直径),聚集体粒径为1μm左右,具有较大的比表面积(通常为50-400m2/g)。它的分子间由Si-O共价键结合在一起,形成结构稳定的晶格场。当物质颗粒的粒径达到纳米级时,也就是接近分子状态时,粒子的量子效应使物质的物理化学性质发生显著的变化,粒子表面不再是传统意义上的物体表面,更多的表征是表面原子、化学键、内能、焓、熵及分子间的作用力等。 气相法二氧化硅的高比表面积和孔结构对许多物质的物理化学性能产生 显著的影响。它具有高触变性、高分散性、抗温变性、高耐磨性、高折光性,在材料中具有“分子桥”作用,可改善材料的性能,赋予材料与众不同的性能,因此在新型材料中占有特殊的地位,尤其是在国防与航天工业中占有极其重要的地位。 (1)高张力性。在纺织材料表面涂含气相法二氧化硅的涂料,可以极大地提高材料表面的张力,如现代防弹衣。 (2)热屏蔽性。橡胶在实际应用中,局部受热后会产生热聚积效应,使该部位的力学强度下降。气相法二氧化硅在橡胶中可以起到热屏蔽作用和热传导作用。在能量转换元件中,损失的能量会产生大量的热,而气相法二氧化硅可以起到良好的热屏蔽作用和表面热传导作用,使损失的能量减少,提高材料的安全性。

(3)憎水性。普通陶瓷绝缘子的表面能较高,容易形成水膜,降低绝缘性能,给电力安全生产带来隐患。由硅橡胶制成的复合绝缘子主要是由混有憎水性气相法二氧化硅的甲基乙烯基硅橡胶制成,每片耐10kV电。当硅橡胶材料表面有微小雾珠和雨滴时,绝大部分雾珠和雨滴都呈球状,不连续地散落在表面。当雾珠和雨滴不断积聚并增大到一定程度时,在重力作用下滚落下来。绝缘材料的良好憎水性可有效提高绝缘子的绝缘性能。 (4)增强性。橡胶由长分子链组成,力学强度较差。加入气相法二氧化硅后,其量子尺寸特性显示出特有的“分子桥效应”,大大强化了大分子链间的作用力。通过这种“分子桥”的连接,彼此之间五分子键或分子链连接作用比较微弱的大分子链的强度得到了极大的加强,外部剪切应力、挤压应力、拉伸应力、扭曲应力等可以均衡的分散,有效地解决了外部张力引起的化学键断裂的问题。例如,在橡胶中加入气相法二氧化硅,将提高轮胎的性能并延长其使用寿命。 (5)高触变性。涂料等流体物质在高压气流带动下喷出喷口的过程中,由连续态变为不连续的微小液滴,然后重新集聚成液体薄膜。例如,油漆雾化后在材料表面成膜,使材料表面光滑,减小与其他介质的摩擦力。高触变性是高性能材料的质量特性,普通流体物质达到高触变性是非常困难的,但使用气相法二氧化硅的涂料等流体物质可具有高触变性。 (6)增稠性。普通流体或半流体材料在成膜到一定厚度后,都要发生一定程度的层流现象。气相法二氧化硅可以显著地提高流体的成膜性,改善膜的不流淌性、均匀性和表面性,例如,提高油漆的成膜厚度及不流淌性,减轻材料腐蚀,延长使用寿命。这对重防腐材料是十分重要的技术指标。 (7)分散性。气相法二氧化硅使容易结块的物质减少黏合性,具有良好的流动性和分散性,使物质颗粒之间保持一定的距离,一种物质在另一种物质中保持良好的均匀分布性,例如,可用作易燃、易爆物质的分散剂,易结块化肥的松散剂等。

气相法二氧化硅生产过程及其应用特性

气相法二氧化硅生产过程及其应用特性 高士忠,李建强,赵耀,赵莉 (沈阳化工股份有限公司,辽宁,沈阳110026) 摘要:介绍了气相法二氧化硅的生产过程、作用机理及应用特性。 关键词:气相法二氧化硅;生产过程;应用特性 气相法二氧化硅学名二氧化硅,为工业上独特的超微细纳米级材料。具有粒度小,超高比表面积(100~400 m2/g),纯度高等特性,表现出优越的分散性、补强性、增稠性、触变性、消光性、电绝缘性及表面处理后的疏水性等。广泛应用于航空航天、橡胶、涂料、电子电力、汽车、建筑、农业、医药等领域中,发达国家称其为“工业味精”。 1气相法二氧化硅生产过程 二氧化硅有2种主要生产路线,一个是高温气相水解法,即气相法或称干法,一个是湿法,即沉淀法。由于二者的原料路线,生产过程不同,在应用过程中,气相法二氧化硅使用性能要明显优于沉淀法二氧化硅。 气相法二氧化硅是利用硅的氯化物在氢氧焰中燃烧进行高温气相水解,其火焰温度>1 000℃,经过凝聚、分离、脱酸、筛选等精制过程生产而成。 总反应式:SiCl4+2H2+O2→SiO2+4HCl 其生产工艺过程示意图如图1。 沉淀法二氧化硅是采用硅酸钠为原料与浓硫酸在液相中发生反应,经过液相分离、中和、脱水、干燥、机械研磨等过程生产而成。由于原料价格低廉,生产成本远远低于气相法二氧化硅。气相法二氧化硅比沉淀法二氧化硅具有无与伦比的优越性能,如分散性、触变性、增稠性及在橡胶行业的补强性和在电子工业方面的绝缘性等。 2气相法二氧化硅的作用机理

2.1在液态体系中的作用机理 由于气相法二氧化硅的表面带有大量的羟基,这些羟基会在气相法二氧化硅的聚集体之间形成氢键,当其充分分散于液态体系中时,便形成二氧化硅的网状结构。其排列如图2所示。 这种网格能增加液体的黏度,并产生触变现象。触变是液体的物理现象,当对液相体系施加剪切力后,使二氧化硅聚集体之间形成的氢键断裂,液相体系的黏度下降,当停止施加剪切力后,聚集体又依靠氢键重新建立起网络结构,当剪切力完全消失后,液相体系的黏度可恢复到初始值。 触变现象在很多应用领域中发挥优良作用,如涂料、胶粘剂、密封胶等。 由二氧化硅粒子的网状结构所造成的黏度升高可以提高液相体系的流变性能并防止其沉降。提高液相体系的流动速度,可以使黏度降低,而静止后,随着网状结构的恢复,流动性又明显下降。此种特性可以广泛应用于机械喷涂液相物料中,得到更好的喷涂效果。 为得到良好的流变效果,二氧化硅粒子在液相体系中的适度分散是一个决定性的因素,但过度分散会造成二氧化硅粒子之间的网状结构遭到彻底破坏,即使长时间停止施加剪切力,其网状结构也很难恢复。 2.2在干燥体系中的作用机理 气相法二氧化硅在干燥体系中可以通过不同机理起到不同的作用。例如,将其加入颗粒体系中能促进自由流动,将其加入涂膜中能增加磨擦和抗粘连。 2.2.1自由流动 在粉末状、颗粒状等物质中加入少量的气相法二氧化硅,就能起到促进自由流动、防结块和防阻塞等作用。二氧化硅聚集体的微观结构使它很容易在干燥体系的大颗粒之间移动,并且在多数情况下,它可在粉末状物质的颗粒表面形成一层包膜,使得颗粒像可滑移的滚球轴承一样,使大颗粒很容易滑动。这种特性有助于物料通过像阀门、喷头等带有小孔的设备。 非处理型二氧化硅能够吸附存在于产品颗粒表面上少量水分,防止粉末产品由于相互接触而结块。同时由于有特异的分散性,可以增强粉末产品的流动性。 2.2.2增加摩擦

气相二氧化硅的性质及其在化妆品中的应用

气相法二氧化硅的性质及其在化妆品中的应用 气相二氧化硅的性质 气相法二氧化硅是由卤硅烷在氢氧焰中高温水解而得到的一种极其微细的纳米级无定形气相法二氧化硅,粒径小、粒度分布均匀、比表面积大.因此具有很高的表面活性。气相法二氧化硅可分为亲水性和疏水性两类。亲水性气相法二氧化硅表面的硅烷醇基团(SiOH)密度约为2OH/nm2,可以被水润湿并在水中均匀分散。疏水性气相二氧化硅表面的部分SiOH被SiO(CH3)3取代,因此硅烷醇基团(SiOH)密度有所降低,约为10H/nm2,不能在水中分散。无论是亲水性还是疏水性的气相法二氧化硅,其表面均有硅烷醇基团存在,因此可形成一个个活性中心。当把气相法二氧化硅加到液体体系中,邻近颗粒上的硅羟基之间形成氢键,并进一步发展成为三维网络结构,限制液体粒子的活动性,从而提高液体的粘度及稳定性。与此相反,当给上述稳定体系施加一定的剪切力,已经形成网络结构的氢键又被破坏,液体粒子的活动性增大,体系粘度降低。因此,在配方中加入气相法二氧化硅不但能够有效增稠、提高产品稳定性,而且可以改善产品的触变性能和使用时的肤感。 作为世界上最早的硅类化妆品原料气相二氧化硅,人类1942年就开始生产气相法二氧化硅,气相法二氧化硅产品性能优越,应用极其广泛。 在彩妆品中的应用 指甲油:增加粘度、提高悬浮稳定性和整体稳定性、保证色素分布均匀。(建议添加量0.25%-4.0%之间)唇膏:增加粘度、提高整体稳定性、色素分布均匀、提高耐温性、防脱色。(建议添加量0.25%-4.0%之间、如粉底或润唇膏中可使用高达10%)彩妆和眼部护理:包括密粉、粉底、胭脂、眼影、眉线和眼线等。气相二氧化硅是高效的抗结块剂和自由流动剂、能提高贮存稳定性和粉状产品分散性。 在护肤品中的应用 在油膏、凝胶、乳霜类产品中加入亲水性气相法二氧化硅可以显著增稠、增加产品的稳定性和触变性,涂抹时非常顺畅,没有涩感。在W/O乳液型产品中.可以用疏水性气相法二氧化硅来增加产品粘度、降低油腻感、提高产品的清爽性。 在防晒品中的应用 目前防晒产品主要使用物理防晒剂和化学防晒剂达到防晒目的,如纳米级二氧化钛P25、氧化锌等物理防晒剂和甲氧基肉桂酸异辛酯等化学防晒剂。化学防晒剂的优点是可以溶解在油相中,制成的产品质地细腻、肤感轻透;缺点是在紫外线的作用下会慢慢分解,防晒效果变差。因此为了保证产品使用时具有足够高的SPF值,势必在配方中增加化学防晒剂的用量。化学防晒剂本身极容易渗入皮肤,降解后的小分子更容易被皮肤吸收,因此大剂量的化学防晒剂会增加产品的刺激性,容易引起皮肤过敏。而物理防晒剂最大的优点是本身惰性、不会光降解,也不存在皮肤吸收的问题,这也是大家认为物理防晒剂比化学防晒剂安全的理由。但是其缺点也非常明显:防晒颗粒容易团聚、沉积,使用时肤感和手感不好,特别是高SPF的产品,在皮肤上均匀铺展是个大问题。 如果在配方中加入少量的气相法二氧化硅。产品即可轻松解决这一问题。加入的气相二氧化硅可以在纳米级二氧化和氧化锌的颗粒表面形成保护层,填补其不均匀的表面,减弱颗粒之间的吸引力,降低团聚的可能性,使体系更均匀、更稳定;同时额外获得的触变性能可以帮助产品在皮肤表面均匀铺展,改善涂抹时的肤感和手感,全面提高产品性能。 一直以来,气相法二氧化硅始终是个人护理品领域不为人们所熟知的一种原料。由

气相二氧化硅分析检测

气相二氧化硅分析检测 ——脱酸工艺的比较 气相二氧化硅 气相法原理 主要为化学气相沉积法,又称热解法、干法或燃烧法。其原料一般为四氯化硅、氧气(或空气)和氢气,高温下反应而成。反应式为: SiC14+ 2H2+ 02一Si02+ 4HC1 空气和氢气分别经过加压、分离、冷却脱水、硅胶干燥、除尘过滤后送入合成水解炉。将四氯化硅原料送至精馏塔精馏后,在蒸发器中加热蒸发,并以干燥、过滤后的空气为载体,送至合成水解炉。四氯化硅在高温下气化(火焰温度范围1000~1800℃)后,与一定量的氢和氧(或空气)在1800℃左右的高温下进行气相水解;此时生成的气相二氧化硅颗粒极细,与气体形成气溶胶,不易捕集,故使其先在聚集器中聚集成较大颗粒,然后经旋风分离器收集,再送入脱酸炉,用含氮空气吹洗气相二氧化硅,至PH值为4~6即为成品。 技术要求

脱酸的目的 气相法白炭黑是在1000~1800℃的氢氧火焰中高温水解SiCl4所得的轻而松软的白色粉末。与传统沉淀法制备的白炭黑相比,气相法白炭黑具有极大的比表面积、高化学纯度、高分散、粒径小等特点。并且气相法生产白炭黑的利润很大,价格是沉淀法白炭黑的10~30倍。但是,生产过程中氢氧燃烧产生的水蒸气及卤化物水解产生的HCl气体极易被比表面积大的白炭黑吸附,使产品呈酸性,在作填料时会降低其交联、增强效应,促进氧化物分解,所以必须经脱酸处理。目前中国在这方面的研究工作主要集中在脱酸工艺上,且国外相关文献报道很少。气相法白炭黑脱酸是整个气相法白炭黑生产过程中十分重要的环节之一,直接关系到产品最后的品质及表面性能。在脱酸的过程中,由于气相法白炭黑初级粒子粒径小,比表面积大,表面能大,处于能量不稳定状态,所以粒子很容易变大、凝并、二次团聚,影响纳米粒子的特性。 脱酸的方法 目前,气相法白炭黑脱酸方法有:热空气加醇法;热空气加氨法;干热空气脱酸法;湿热空气脱酸法;减压振动流化脱酸法等。这几种方法都能达到脱酸效果,但前两种方法会引入其他的杂质;热空气脱酸法的脱酸效果不稳定;湿热空

气相二氧化硅在各个领域的运用

气相二氧化硅在各个领域的运用 气相二氧化硅在各行业的应用气相法二氧化硅是极其重要的高科技超微细无机新材料之一,由于其粒径很小,因此比表面积大,表面吸附力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。纳米二氧化硅俗称"超微细白炭黑",广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料及喷涂材料、医药、环保等各种领域。并为相关工业领域的发展提供了新材料基础和技术保证。由于它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的极大重视。一、电子封装材料有机物电致发光器材(OELD)是目前新开发研制的一种新型平面显示器件,具有开启和驱动电压低,且可直流电压驱动,可与规模集成电路相匹配,易实现全彩色化,发光亮度高(105cd/m2)等优点,但OELD器件使用寿命还不能满足应用要求,其中需要解决的技术难点之一就是器件的封装材料和封装技术。目前,国外(日、美、欧洲等)广泛采用有机硅改性环氧树脂,即通过两者之间的共混、共聚或接枝反应而达到既能降低环氧树脂内应力又能形成分子内增韧,提高耐高温性能,同时也提高有机硅的防水、防油、抗氧性能,但其需要的固化时间较长(几个小时到几天),要加快固化反应,需要在较高温度(60?至100?以上)或增大固化剂的使用量,这不但增加成本,而且还难于满足大规模器件生产线对封装材料的要求(时间短、室温封装)。将经表面活性处理后的纳米二氧化硅充分分散在有机硅改性环氧树脂封装胶基质中,可以大幅度地缩短封装材料固化时间(为2.0-2.5h),且固化温度可降低到室温,使OELD器件密封性能得到显著提高,增加OELD器件的使用寿命。二、树脂复合材料树脂基复合材料具有轻质、高强、耐腐蚀等特

气相二氧化硅在涂料中的作用

气相二氧化硅在涂料中的作用 1,流变助剂 流变性是涂料的重要性能,它直接影响到涂料的外观,施工性能及储存稳定性等性能,而不同涂料体系对流变助剂的要求也有差异.对于油性体系而言,大部分流变助剂都是形成氢键而起作用的.表面未处理的气相二氧化硅聚集体含有多个 ,其中,一是孤立的,未受干扰的自由二是连生的,彼此形成氢键的键合氢键键合在油性体系中,极易形成三维的网状结构,这种结构受机械力影响时会破坏,使粘度下降,涂料恢复良好的流动性;当剪切力消除后,三维结构会自行恢复,粘度上升.在完全非极性液体中,粘度恢复时间只需几分之一秒;在极性液体中,回复时间较长,这取决于气相二氧化硅的浓度及其分散程度,这一特性赋予油性涂料非常好的储存和施工性能,特别是厚浆形涂料,既能保证涂料在一定的施工剪切力下有良好的流动性,又能保证涂膜的一次施工厚度,通常,在施工过程中,由于涂层边缘的溶剂挥发较快,导致表面张力不均匀,容易使涂料向边缘移动,而二氧化硅网络能够有效的阻止涂料的移动而形成厚边,同时还防止涂料在固化过程中的流挂现象,使涂层均匀.同时,气相二氧化硅由于能形成氢键而提高体系中的中低剪切粘度,从而起到增稠作用.因此,气相二氧化硅在油性体系中的应用非常广泛. 2,防沉剂 气相二氧化硅是一种理想的防沉剂,对于防止涂料体系中颜料的沉淀非常有效,特别是对于色浆的体系,适当的添加量将大大提高色浆的

稳定性,而且能够减少润湿分散剂的量,以提高色浆的适用性,并减少色浆对涂料体系的影响,气相二氧化硅的防沉作用对涂料存放非常有利,特别是某些颜料,如金属粉和薄片,都极易沉淀且不能完全悬浮,使用气相二氧化硅可保证其分散不沉淀.以配方总量计,二氧化硅用量在0.4%-0.8%的范围内,但特殊情况下,比如富锌漆,需增加到2%. 3,助剂分散 在粉末涂料体系中,由于气相二氧化硅的小粒径和高表面能,它们可以吸附在涂料粉体的表面,并在粉体表面形成一个表层,提高粉料得分散性,故可作为分散剂使用.在同一涂料系统中,加入气相二氧化硅可明显缩短分散时间,提高生产效率.单值得注意的是,先将气相二氧化硅分散完全效果更好,其添加量不宜太多,一般不超过1%.因为添加量过多会导致体系触变性能较强,导致分散时边缘分散剪切力不够,而呈冻状,影响分散效率,特殊情况如富锌漆需要添加2%时可以同时搭配其他流变主机助剂一起使用,并利用醇类溶剂调整气相二氧化硅的流变性能. 4,消光剂 气相二氧化硅折光指数1.46,与成膜树脂的折光指数接近,对漆膜颜色没有影响.成膜过程中其迁移到漆膜表面,能使表面产生预期粗糙度,明显的降低表面光泽,是一种良好的消光剂,使用气相二氧化硅是要注意与漆膜厚度的匹配.在厚膜漆里,采用颗粒非常细的气相二氧化硅,涂膜表面不能产生适当的粗糙度;反之,如在薄膜漆里采用颗粒粗大的气相二氧化硅,虽然其消光效果非常好,但是漆膜表面的粗糙

相关文档
最新文档