各种材料实测反射率

各种材料实测反射率
各种材料实测反射率

1#材料为飞利浦mini300样灯反射器混合反射(漫反射+镜面反射)反射率平均高于95%

2# 材料为ABS电镀铝膜镜面反射反射率平均94% 反射波长的范围较宽

3#材料为镜面铝板镜面反射反射率平均92%左右

4#材料为A级铝板镜面反射反射率平均值为92%

常用材料热辐射系数

热分析材料导热系数汇总 材料导热系数 Metal Material Conductivity Density W/m-C kg/m 3 Aluminum, 2024, Temper-T3 121 2.80E+03 Aluminum, 2024, Temper-T351 143 2.80E+03 Aluminum, 2024, Temper-T4 121 2.80E+03 Aluminum, 5052, Temper-H32 138 2.68E+03 Aluminum, 5052, Temper-O 144 2.69E+03 Aluminum, 6061, Temper-O 180 2.71E+03 Aluminum, 6061, Temper-T4 154 2.71E+03 Aluminum, 6061, Temper-T6 167 2.71E+03 Aluminum, 7075, Temper-O 130 2.80E+03 Aluminum, 7075, Temper-T6 130 2.80E+03 Aluminum, A356, Temper-T6 128 2.76E+03 Aluminum, Al-Cu, Duralumin, 95%Al-5%Cu 164 2.79E+03 Aluminum, Al-Mg-Si, 97%Al-1%Mg-1%Si-1%Mn 177 2.71E+03 Aluminum, Al-Si, Alusil, 80%Al-20%Si 161 2.63E+03 Aluminum, Al-Si, Silumim, 86.5%Al-1%Cu 137 2.66E+03 Aluminum, Pure 220 2.71E+03 Beryllium, Pure 175 1.85E+03 Brass, Red, 85%Cu-15%Zn 151 8.80E+03 Brass, Yellow, 65%Cu-35%Zn 119 8.80E+03 Copper, Alloy, 11000 388 8.93E+03 Copper, Aluminum bronze, 95%Cu-5%Al 83 8.67E+03 Copper, Brass, 70%Cu-30%Zn 111 8.52E+03 Copper, Bronze, 75%Cu-25%Sn 26 8.67E+03 Copper, Constantan, 60%Cu-40%Ni 22.7 8.92E+03 Copper, Drawn Wire 287 8.80E+03 Copper, German silver, 62%Cu-15%Ni-22%Zn 24.9 8.62E+03 Copper, Pure 386 8.95E+03 Copper, Red brass, 85%Cu-9%Sn-6%Zn 61 8.71E+03

常用材料导热系数-中文

材料的导热系数 日期:2007-2-17 22:28:48 来源:来自网络查看:[大中小] 作者:不详热度: 1889 附录A 材料的导热系数(l) A.0.1 表A.0.1中给出材料的导热系数。 表 A.0.1 常用材料的导热系数

聚硫胶1700 0.40 纯硅胶1200 0.35 聚异丁烯930 0.20 聚脂树脂1400 0.19 硅胶(干燥剂)720 0.13 分子筛650 to 750 0.10 低密度硅胶泡末750 0.12 中密度硅胶泡末820 0.17 附录B 气体热物理性能 B.0.1下列表的线性公式系数,计算填充空气、氩气、氮气、氙气四种气体空腔的导热系数、粘度和常压比热容。传热计算时,假设所充气体是不辐射/吸收的气体。 表B.1气体的导热系数 气体系数a W/(m·k) 系数b W/(m·k2) λ(0℃时) W/(m·k) λ(10℃时) W/(m·k) 空气 2.873×10-3 7.760×10-5 0.0241 0.0249 氩气 2.285×10-3 5.149×10-5 0.0163 0.0168 氪气9.443×10-4 2.826×10-5 0.0087 0.0090 氙气 4.538×10-4 1.723×10-5 0.0052 0.0053 其中:[W/m.K] 表B.2气体的粘度 气体系数a N·S/m2 系数b N·S/(m2·k2) μ(0℃时)μ(10℃时) 空气 3.723×10-6 4.940×10-8 1.722×10-5 1.771×10-5 氩气 3.379×10-6 6.451×10-8 2.100×10-5 2.165×10-5 氪气 2.213×10-6 7.777×10-8 2.346×10-5 2.423×10-5 氙气 1.069×10-6 7.414×10-8 2.132×10-5 2.206×10-5 其中:[kg/m.s]

各种吸波材料的比较

Christopher L Holloway 沙斐翻译 一前言 最早暗室(全电波)建于50年代,用于天线测量。吸波材料由动物毛发编制而成,外涂一层碳,厚2英寸()。在~10GHz正入射时,反射系数为-20dB。60年代,以上的吸波材料被新一代、由一定形状的吸波材料所取代,正入射时反射系数为 -40dB。 目前普遍使用的聚氨酯锥体40年代就开始研究,60年代才有产品。正入射时的反射系数为 -60dB。然而可使用的频率范围较高,要求锥体的厚度(尖顶到基座)至少是几个波长。 电-厚锥体的良好性能主要来源于锥体直接的良好多重反射。由于锥体的厚度大于波长,锥体的周边反射入射波。波在相邻的锥体间不断的反射,再反射很多次。每次反射时总有一部分波被锥体吸收。因此,仅有小部分抵达锥体基座。基座吸收后到达金属板,金属板反射后又进入锥体,再通过多重反射和吸收。最后从锥体的尖返回的波已是非常小了。 电-厚锥体的最佳性能的获得,依靠锥体内渗碳加载的调节,要求碳负载足够小,以便每次波反射时进入锥体的波尽可能多,但渗碳加载又要足够大,以便充分吸收进入锥体的波的能量。 半电波暗室最早用于70年代,作为开阔场地的替代场地,测量辐射发射。频率范围为30-1000MHz。但最早暗室中粘贴的典型的吸波材料厚度为3-6英尺(-)。显然在30MHz 的频率上,厚度不可能是几个波长。因此暗室的频率范围被限制在90-1000MHz。 30-90MHz频段的吸波材料开发缓慢,因为无法预测和测量电-薄吸波材料(即厚度 <1 4 λ)的性能,只能安装上以后,测量暗室特性来判定。直到80年代中期,计算和测量技 术发展以后,对小型宽带吸波材料的评估才成为可能。【4】-【6】中叙述了在理论模型中使用“均质化方法”可以精确地计算吸波材料的反射特性。【7】-【10】中叙述了使用大测试装置直接测小型宽带吸波材料的反射特性。 在整个30-1000MHz的频段都要获得小的反射率,则小型宽带吸波材料必须使用锥形模型,它们在高频段是电-厚模型,但在低频段则是电-薄形材料。电波入射到电-薄型吸波材料上时,它们并不在乎吸波材料的实际几何形状是锥型还是楔型。相反,它们的行为就象照射到一固体媒质上,该媒质的有效ε和μ随进入媒质的距离而变化。注意这是有效ε和有效μ和构成吸波材料的实际ε和μ是不同的。 最佳的吸波材料提供了从空气阻抗到吸波材料基座的波阻抗的逐渐过渡。正确的渗碳加载可使大部分入射波穿透锥或楔,并在通过基座时被吸收。更进一步调节渗碳可以使入射波被锥或楔反射的那一部分和从金属板反射后从吸波材料中透出来的那一部分那互相抵消,这种抵消可以获得非常小的反射率。显然只能发生在较窄的频率范围。一般说来渗碳加载对电-厚和电-薄材料的要求是不同的,【6】因此对于工作频率在30-1000MHz的小型宽带吸波材料(锥或楔型),渗碳加载既要考虑高频时的电-厚,又要考虑低频时的电-薄情况。这是极富于挑战性的。 60年代初期日本开发了电-薄型铁氧体瓦作为聚氨酯锥型和楔型的替代物。由于瓦的吸波性能和空气比较接近,在空气-瓦片界面反射很小,入射波直接渗入瓦片。又因为瓦片对磁场损耗大,所以渗入波被吸收。如有穿过瓦片的,则被金属板反射,重又回到瓦片,被再次吸收。如还有穿出瓦片回到空气中的,则可以象锥型和楔型吸波材料那样,调节瓦片厚度,在一定的较窄的频率范围内使其与瓦片直接反射到空气中的那一部分相抵消。 近年来,薄锥和楔(200-1000MHz)+铁氧体瓦+介质层(30-600MHz)构成了超小型

各种吸波材料的比较

各种吸波材料的比较 Christopher L Holloway 沙斐翻译 一前言 最早暗室(全电波)建于50年代,用于天线测量。吸波材料由动物毛发编制而成,外涂一层碳,厚2英寸(5.08cm)。在2.4~10GHz正入射时,反射系数为-20dB。60年代,以上的吸波材料被新一代、由一定形状的吸波材料所取代,正入射时反射系数为-40dB。 目前普遍使用的聚氨酯锥体40年代就开始研究,60年代才有产品。正入射时的反射系数为-60dB。然而可使用的频率围较高,要求锥体的厚度(尖顶到基座)至少是几个波长。 电-厚锥体的良好性能主要来源于锥体直接的良好多重反射。由于锥体的厚度大于波长,锥体的周边反射入射波。波在相邻的锥体间不断的反射,再反射很多次。每次反射时总有一部分波被锥体吸收。因此,仅有小部分抵达锥体基座。基座吸收后到达金属板,金属板反射后又进入锥体,再通过多重反射和吸收。最后从锥体的尖返回的波已是非常小了。 电-厚锥体的最佳性能的获得,依靠锥体渗碳加载的调节,要求碳负载足够小,以便每次波反射时进入锥体的波尽可能多,但渗碳加载又要足够大,以便充分吸收进入锥体的波的能量。 半电波暗室最早用于70年代,作为开阔场地的替代场地,测量辐射发射。频率围为30-1000MHz。但最早暗室中粘贴的典型的吸波材料厚度为3-6英尺(0.91-1.83m)。显然在30MHz的频率上,厚度不可能是几个波长。因此暗室的频率围被限制在90-1000MHz。 30-90MHz频段的吸波材料开发缓慢,因为无法预测和测量电-薄吸波材料(即厚度 <1 4 λ)的性能,只能安装上以后,测量暗室特性来判定。直到80年代中期,计算和测量技 术发展以后,对小型宽带吸波材料的评估才成为可能。【4】-【6】中叙述了在理论模型中使用“均质化方法”可以精确地计算吸波材料的反射特性。【7】-【10】中叙述了使用大测试装置直接测小型宽带吸波材料的反射特性。 在整个30-1000MHz的频段都要获得小的反射率,则小型宽带吸波材料必须使用锥形模型,它们在高频段是电-厚模型,但在低频段则是电-薄形材料。电波入射到电-薄型吸波材料上时,它们并不在乎吸波材料的实际几何形状是锥型还是楔型。相反,它们的行为就象照射到一固体媒质上,该媒质的有效ε和μ随进入媒质的距离而变化。注意这是有效ε和有效μ和构成吸波材料的实际ε和μ是不同的。 最佳的吸波材料提供了从空气阻抗到吸波材料基座的波阻抗的逐渐过渡。正确的渗碳加载可使大部分入射波穿透锥或楔,并在通过基座时被吸收。更进一步调节渗碳可以使入射波被锥或楔反射的那一部分和从金属板反射后从吸波材料中透出来的那一部分那互相抵消,这种抵消可以获得非常小的反射率。显然只能发生在较窄的频率围。一般说来渗碳加载对电-厚和电-薄材料的要不同的,【6】因此对于工作频率在30-1000MHz的小型宽带吸波材料(锥或楔型),渗碳加载既要考虑高频时的电-厚,又要考虑低频时的电-薄情况。这是极富于挑战性的。 60年代初期日本开发了电-薄型铁氧体瓦作为聚氨酯锥型和楔型的替代物。由于瓦的吸

常用装饰材料种类()

常用装饰材料种类.txt看一个人的的心术,要看他的眼神;看一个人的身价,要看他的对手;看一个人的底牌,要看他的朋友。明天是世上增值最快的一块土地,因它充满了希望。常用装饰材料种类 重要提示:市场上常见的室内装修材料大致都是木质、金属材料、石质材料、石膏涂料 市场上常见的木质装饰材料种类 现在市场上常可见到的木质装饰材料主要是各种人造饰面板,木质人造板,木线条和拼装木地板等。 (1)人造饰面板 人造饰面板包括装饰微薄木贴面板和大漆建筑装饰板等。 装饰微薄木贴面板:是一种新型高级装饰材料,它是利用珍贵树种,如抽木、水曲柳、柳按本等通过精密刨切成厚度为0.2~0.5mm的微薄木片,以胶合板为基材,采用先进的胶粘剂及胶粘工艺制做而成的。 大漆建筑装饰板:是我国特有的装饰板材之一,它是以我国独特的大漆技术,将中国大漆漆于各种木材基层上制成。 印刷木纹人造板:又名表面装饰人造板。是一种新型的饰面板。它是在人造板表面用凹板花纹胶辊转印套色印刷机,印以各种花纹(如木纹)制成的。种类有:印刷木纹胶合板、印刷木纹纤维板、印刷木纹刨花板等。 (2)木质人造板 木质人造板是利用木材,木质纤维、木质碎料或其他植物纤维为原料,加胶粘剂和其他添加剂制成的板材。木质人造板的主要品种有单极、胶合板、细木工板、纤维板和刨花板。

胶合板:胶合板是由三层以上单极胶合而成。共分阔叶树村胶一合板和针叶树村胶合板两种。 纤维板:纤维板是以木材、竹材或其他农作物茎杆等植物纤维加工而成的人造板。纤维板按性能不同分为硬质纤维板、半硬质纤维板和软质纤维板三种。 刨花板:刨花板又称碎料板,是用木质碎料为主要原料,施加胶合材料,添加剂经压制而成的薄型板材的统称。按压制方法可将刨花板分为挤压刨花板、平压刨花板二类。 细木工板:芯板用木板拼接而成,两个表面为胶贴本质单板的实心板材,俗称大芯板。 碎木板:是用木材加工的边角余料,经切碎,干燥、拌胶、热压而成。 木丝板:又名万利板,是利用木材的下脚料,用机器刨成木丝,经过化学溶液的浸透,然后拌合水泥,入模成型加压、热蒸、凝固、干燥而成。 (3)拼装本地板 拼装本地板是用水曲柳、柞木、核桃木、抽木等优良木材,经干燥处理后,加工出的条状小木板,它们经拼装后可组成美观大方的图案。 (4)木线条 木线条是选用质硬、木质较细、耐磨、耐腐蚀、不劈裂、切面光滑、加工性质良好、油漆性上色性好、粘结性好、钉着力强的木材,经过干燥处理后,用机械加工或手工加工而成的。木线条包括。 天花线:天花上不同层次面的交接处的封边,天花上各不同料面的对接处封口,天花平面上的造型线,天花上设备的封边。 天花角线:天花与墙面,天花与柱面的交接处封口。

常见光学材料简介

常见光学材料简介 透镜是光学实验中的主要元件之一,可采用多种不同的光学材料制成,用于光束的准直、聚焦、成像。Newport提供的各种球面和非球面透镜,主要制作材料有BK7玻璃、紫外级熔融石英(UVFS)、红外级氟化钙(CaF2)、氟化镁(MgF2),以及硒化锌(ZnSe)。在从可见光到近红外小于2.1μm的光谱范围内,BK7玻璃具有良好的性能,且价格适中。在紫外区域一直到195nm,紫外级熔融石英是一种非常好的选择。在可见光到近红外2.1μm范围内,熔融石英具有比BK7玻璃更高的透射率,更好的均匀度以及更低的热膨胀系数。氟化钙和氟化镁则适用于深紫外或红外应用。 本文将对这些常见光学材料的性质和应用进行介绍,并列出了一些基本的材料参数,如折射率、透射率、反射率、Abbe数、热膨胀系数、传导率、热容量、密度、Knoop硬度,及杨氏模量。 BK7玻璃 BK7是一种常见的硼硅酸盐冕玻璃,广泛用作可见光和近红外区域的光学材料。它的高均匀度,低气泡和杂质含量,以及简单的生产和加工工艺,使它成为制作透射性光学元件的良好选择。BK7的硬度也比较高,可以防止划伤。透射光谱范围380-2100nm。但是它具有较高的热膨胀系数,不适合用在环境温度多变的应用中。 UV Grade Fused Silica(UVFS) 紫外级熔融石英 紫外级熔融石英是一种合成的无定型熔融石英材料,具有极高的纯度。这种非晶的石英玻璃具有很低的热膨胀系数,良好的光学性能,以及高紫外透过率,可以透射直到195nm的紫外光。它的透射性和均匀度均优于晶体形态的石英,且没有石英晶体的那些取向性和热不稳定性等问题。由于它的高激光损伤阈值,熔融石英常用于高功率激光的应用中。它的光谱透射范围可以达到2.1μm,且具有良好的折射率均匀性和极低的杂质含量。常见应用包括透射性和折射性的光学元件,尤其是对激光损伤阈值要求较高的应用。 CaF2 氟化钙 氟化钙是一种具有简单立方晶格结构的晶体材料,采用真空Stockbarger技术生长制备。它在真空紫外波段到红外波段都具有良好的透射性。这种宽光谱透射特性,加上它没有双折射性质,使它成为紫外到红外宽光谱应用理想选择。氟化钙在0.25-7μm内的透射率在90%以上,并具有较高的激光损伤阈值,常用于制作准分子激光的光学元件。红外级氟化钙通常采用自然界中可见的萤石生长而成,成本低廉。但氟化钙具有较大的热膨胀系数,热稳定性很差,要避免使用在高温环境中。氟化钙的折射率比较低,因此通常不需要在表面镀增透膜。 MgF2 氟化镁 氟化镁是一种具有正双折射性质的晶体,可采用Stockbarger技术生长,同样在真空紫外波段到红外波段具有良好的透射。通常在切割时使它的c轴与光轴方向平行,以降低双折射性质。氟化镁是另一种深紫外到红外的光学材料选择,透射范围0.15-6.5μm。另外,它可用

常用晶体材料

氧化铝晶体(白宝石,蓝宝石,Al2O3)是一种很重要的光学晶体。它具有高硬度、高熔点、高强度、高透过率、耐高温和抗腐蚀的特性,广泛地用于航空航天仪器的红外和紫外的窗口、激光工作窗口、高炉测温窗口以及太阳能电池保护罩和永不磨损手表镜面等。在窗口应用方面,它具有如下优良的特性: (1)光透过范围从300nm到5.5μm (2)3-5μm波段红外透过率大于85% (3)具有高硬度,高透过率,抗挠曲强度和抗风蚀、雨蚀的能力 (4)优良的热传导性能 (5)低散射率0.02在λ=26到31μm,880℃ CaF2晶体 氟化钙晶体是一种很重要的光学晶体,它具有如下优良的特性: 折射率:

氟化镁晶体被应用在环境要求很苛刻的光学系统中,它的透过波段为0.11μm--8.5μm。辐照不会导致色心的产生,它有良好的机械性能,可以承受热和机械震动,很大的外力才能使氟化镁解理。氟化镁单晶由于有微弱的双折射性能,通常的切向为光轴垂直于晶片表面。 氟化镁是一种应用很广泛的晶体,具有如下特性: (1)、在真空紫外到红外(0.11~8.5μm)波段有很高的透过率. (2)、抗撞击和热波动以及辐照 (3)、良好的化学稳定性. (4)、可用于光学棱透镜、锲角片、窗口和相关光学系统中 (5)、四方双折射晶体性能,可用于光通讯. (6)、UV 窗口材料 BaF2

LiF 氟化锂晶体是一种很重要的光学晶体,它具有如下优良的特性: 1、在真空紫外到红外(0.12-6μm)的波段有很高的透过率,特别是在真空紫外有优良的透过率。 材料性能: YVO4晶体 钒酸钇晶体是一种具有优良的物理和光学特性的双折射单晶。由于它具有较大的透过范围、透光度高、大的双折射、易于加工等特点,所以广泛应用于光学组件如光纤光隔离器、环形器、分光

各种反射率

遥感反射率的定义:地物表面反射能量与到达地物表面的入射能量的比值。 遥感表观反射率的定义:地物表面反射能量与近地表太阳入射能量的比值。 大气校正就是将辐射亮度或者表观反射率转换为地表实际反射率,目的是消除大气散射、吸收、反射引起的误差。 1、反射率:是指任何物体表面反射阳光的能力。这种反射能力通常用百分数来表示。比如说某物体的反射率是45%,这意思是说,此物体表面所接受到的太阳辐射中,有45%被反射了出去.英文表示:Reflectance 2、地表反射率:地面反射辐射量与入射辐射量之比,表征地面对太阳辐射的吸收和反射能力。反射率越大,地面吸收太阳辐射越少;反射率越小,地面吸收太阳辐射越多,表示:surface albedo 3、表观反射率:表观反射率就是指大气层顶的反射率,辐射定标的结果之一,大气层顶表观反射率,简称表观反射率,又称视反射率。英文表示为:apparent reflectance (=地表反射率+大气反射率。所以需要大气校正为地表反射率)。“5S”和“6S”模型输入的是表观反射率而MODTRAN模型要求输入的是辐射亮度。 4、行星反射率:从文献“一种实用大气校正方法及其在TM影像中的应用”中看到“卫星所观测的行星反射率(未经大气校正的反射率)”;在“基于地面耦合的TM影像的大气校正-以珠江口为例”一文有“该文应用1998年的LANDSAT5 TM影像,对原始数据进行定标、辐射校正,求得地物的行星反射率”。因此行星反射率就是表观反射率。英文表示:planetary albedo 5、反照率:反照率是指地表在太阳辐射的影响下,反射辐射通量与入射辐射通量的比值。它是反演很多地表参数的重要变量,反映了地表对太阳辐射的吸收能力。英文表示:albedo 它与反射率的概念是有区别的:反射率(reflectance)是指某一波段向一定方向的反射,因而反照率是反射率在所有方向上的积分;反射率是波长的函数,不同波长反射率不一样,反照率是对全波长而言的。反照率的定义是地物全波段的反射比,反射率为各个波段的反射系数。因此,反照率为地物波长从0 到∞的反射比。 6. 地表比辐射率(Surface Emissivity),又称发射率,指在同一温度下地表发射的辐射量与一黑体发射的辐射量的比值,与地表组成成分,地表粗糙度,波长等因素有关。比辐射率的直接测量。理论上,比辐射率的测定有两种途径,一种是比色法,这种方法目前只能使用在被测物的温度大于50o C的场合。因为信噪比太小,不适合常温地球表面的测量。然而,随着传感器技术的发展,如果能测量零度以下物体的话,这种比色法似可取得突破性的发展; 另一种是亮度法。也是目前人们所采用的办法。在实验室里,利用封闭式黑体筒可以成功地测量地物的比辐射率。也可以利用主动和被动相结合的方法测量比辐射率,这种方法已在实验室里取得成功。利用二氧化碳激光,可以远距离测量地物的比辐射率,目前,已经开始把这一技术向航空和航天遥感扩展,它的可行性已经得到证实,其目标是对区域范围的地物比辐射率进行直接测定。我们深信这种高技术的实现已为期不远了。这种比辐射率的直接测定,不仅可以直接获得比辐射率区域分布,而且可以获得比辐射率的多角度以及地物性质的有关信息。这种研究思路的实现,对定量热红外遥感的推动作用是巨大的.

常用饰面材料的反射系数

常用饰面材料的反射系数 石膏:0.91 大白粉刷:0.75 水泥砂浆抹面:0.32 白水泥:0.75 白色乳胶漆:0.84 红砖:0.33 灰砖:0.23 胶合板:0.58 油漆地板:0.10 菱苦土地面:0.15 浅色织品窗帷:0.30-0.50 铸铁、钢板地面:0.15 混凝土地面:0.20 粗白色纸:0.30-0.50 沥青地面:0.10 一般白灰抹面0.55-0.75 瓷釉面砖: 白色:0.80 黄绿色:0.62 粉红色:0.65 天蓝色:0.55 黑色:0.08 水磨石: 白色:0.70 白色间灰黑色:0.52 白色间绿色:0.66 黑灰色:0.10 塑料墙纸: 黄白色:0.72 兰白色:0.61 马赛克地砖: 白色:0.59 浅蓝色:0.42 浅咖啡色:0.31 深咖啡色:0.20 绿色:0.25 大理石: 白色:0.60

乳白色间绿色:0.19 红色:0.32 黑色:0.08 调和漆: 白色及米黄色:0.70 中黄色:0.57 无釉陶土地砖: 土黄色:0.53 朱砂色:0.19 塑料贴面板: 浅黄色木纹:0.36 中黄色木纹:0.30 深棕色木纹:0.12 玻璃: 普通玻璃:0.08 压花玻璃:0.15-0.25 磨砂玻璃:0.15-0.25 乳白色玻璃:0.60-0.70 镜面玻璃:0.88-0.99 常见透光材料的透光系数: 普通玻璃:0.78-0.82 刚化玻璃:0.78 磨砂玻璃:0.55-0.60 乳白玻璃:0.60 压花玻璃:0.57-0.71 无色有机玻璃:0.85 乳白有机玻璃:0.20 玻璃砖:0.45-0.50 糊窗纸:0.35-0.50 天鹅绒黑色:0.001-0.10 半透明塑料:白色:0.30-0.50 深色:0.01-0.10 刚纱窗绿色:0.70 聚苯乙烯板:0.78 聚氯乙烯板:0.60 常用照明光源的主要光特性指标 光源种类光效(lm/W) 显色指数色温(K)

饰面材料的反射系数

饰面材料的反射系数 石膏:0.91 大白粉刷:0.75 水泥砂浆抹面:0.32 白水泥:0.75 白色乳胶漆:0.84 红砖:0.33 灰砖:0.23 胶合板:0.58 油漆地板:0.10 菱苦土地面:0.15 浅色织品窗帷:0.30-0.50 铸铁、钢板地面:0.15 混凝土地面:0.20 粗白色纸:0.30-0.50 沥青地面:0.10 一般白灰抹面0.55-0.75 瓷釉面砖: 白色:0.80 黄绿色:0.62 粉红色:0.65 天蓝色:0.55 黑色:0.08 水磨石: 白色:0.70 白色间灰黑色:0.52 白色间绿色:0.66 黑灰色:0.10

塑料墙纸: 黄白色:0.72 兰白色:0.61 马赛克地砖: 白色:0.59 浅蓝色:0.42 浅咖啡色:0.31 深咖啡色:0.20 绿色:0.25 大理石: 白色:0.60 乳白色间绿色:0.19 红色:0.32 黑色:0.08 调和漆: 白色及米黄色:0.70 中黄色:0.57 无釉陶土地砖: 土黄色:0.53 朱砂色:0.19 塑料贴面板: 浅黄色木纹:0.36 中黄色木纹:0.30

深棕色木纹:0.12 玻璃: 普通玻璃:0.08 压花玻璃:0.15-0.25 磨砂玻璃:0.15-0.25 乳白色玻璃:0.60-0.70 镜面玻璃:0.88-0.99 常见透光材料的透光系数: 普通玻璃:0.78-0.82 刚化玻璃:0.78 磨砂玻璃:0.55-0.60 乳白玻璃:0.60 压花玻璃:0.57-0.71 无色有机玻璃:0.85 乳白有机玻璃:0.20 玻璃砖:0.45-0.50 糊窗纸:0.35-0.50 天鹅绒黑色:0.001-0.10 半透明塑料:白色:0.30-0.50 深色:0.01-0.10 刚纱窗绿色:0.70 聚苯乙烯板:0.78 聚氯乙烯板:0.60

相关文档
最新文档