基于云计算任务调度的遗传粒子群优化算法

基于云计算任务调度的遗传粒子群优化算法
基于云计算任务调度的遗传粒子群优化算法

基于粒子群优化算法的图像分割

安康学院 学年论文(设计) 题目_____________________________________________ 学生姓名_______________ 学号_____________________________ 所在院(系)_______________________________________ 专业班级__________________________________________________ 指导教师_____________________________________________ 年月曰

基于粒子群优化算法的图像分割 (作者:) () 指导教师: 【摘要】本文通过对粒子群优化算法的研究,采用Java编程,设计出一套用于图像分割的系统。 基于粒子群优化算法的图像分割系统,可以将一幅给定的图像进行分割,然后将分割结果保存。图像分割的目的是将感兴趣的区域从图像中分割出来,从而为计算机视觉的后续处理提供依据。图像分割的方法有多种,阈值法因其实现简单而成为一种有效的图像分割方法。而粒子群优化(PSO)算法是一类随机全局优化技术,它通过粒子间的相互作用发现复杂搜索空间中的最优区域缩短寻找阈值的时间。因此,基于粒子群优化算法的图像分割以粒子群优化算法为寻优工具,建立具有自适应和鲁棒性的分割方法。从而可以在最短的时间内,准确地确定分割阈值。 关键词:粒子群优化(PSO,图像分割,阈值法,鲁棒性 Abstract T his paper based on the particle swarm optimizati on algorithm, desig ns a set of system for image segme ntati on using Java program min g. Image segme ntati on system based on particle swarm optimizati on algorithm, the image can be a given segmentation, and then the segmentation results would be saved. Image segmentation is the purpose of the interested area from the image, thus providing the basis for the subsequent processing of computer vision. There are many methods of image segmentation, threshold method since its simple realization, becomes a kind of effective method in image segmentation. Particle swarm optimization (PSO) algorithm is a stochastic global optimization technique; it finds optimal regions of complex search spaces for threshold time shorte ned through the in teractio n betwee n particles. Therefore, particle swarm optimization algorithm of image segmentation based on particle swarm optimization algorithm based on optimizati on tools; establish segme ntati on method with adaptive and robust. Therefore, it is possible for us in the shortest possible time to accurately determ ine the segme ntati on threshold. Key word s: PSO, image segmentation, threshold method, robust. 1引言 1.1研究的背景和意义 技术的不断向前发展,人们越来越多地利用计算机来获取和处理视觉图像信息。据统计,人类

粒子群算法综述

粒子群算法综述 【摘要】:粒子群算法(pso)是一种新兴的基于群体智能的启发式全局搜索算法,具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已得到广泛研究和应用。为了进一步推广应用粒子群算法并为深入研究该算法提供相关资料,本文对目前国内外研究现状进行了全面分析,在论述粒子群算法基本思想的基础上,围绕pso的运算过程、特点、改进方式与应用等方面进行了全面综述,并给出了未来的研究方向展望。 【关键词】:粒子群算法优化综述 优化理论的研究一直是一个非常活跃的研究领域。它所研究的问题是在多方案中寻求最优方案。人们关于优化问题的研究工作,随着历史的发展不断深入,对人类的发展起到了重要的推动作用。但是,任何科学的进步都受到历史条件的限制,直到二十世纪中期,由于高速数字计算机日益广泛应用,使优化技术不仅成为迫切需要,而且有了求解的有力工具。因此,优化理论和算法迅速发展起来,形成一门新的学科。至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分支。这些优化技术在诸多工程领域得到了迅速推广和应用,如系统控制、人工智能、生产调度等。随着人类生存空间的扩大,以及认识世界和改造世界范围的拓宽,常规优化法如牛顿法、车辆梯度法、模式搜索法、单纯形法等已经无法处理人们所面的复杂问题,因此高效的

优化算法成为科学工作者的研究目标之一。 1.粒子群算法的背景 粒子群算法(particle swarm optimization,pso)是一种新兴的演化算法。该算法是由j.kennedy和r.c.eberhart于1995年提出的一种基于群智能的随机优化算法。这类算法的仿生基点是:群集动物(如蚂蚁、鸟、鱼等)通过群聚而有效的觅食和逃避追捕。在这类群体的动物中,每个个体的行为是建立在群体行为的基础之上的,即在整个群体中信息是共享的,而且在个体之间存在着信息的交换与协作。如在蚁群中,当每个个体发现食物之后,它将通过接触或化学信号来招募同伴,使整个群落找到食源;在鸟群的飞行中,每只鸟在初始状态下处于随机位置,且朝各个方向随机飞行,但随着时间推移,这些初始处于随机状态的鸟通过相互学习(相互跟踪)组织的聚集成一个个小的群落,并以相同的速度朝着相同的方向飞行,最终整个群落聚集在同一位置──食源。这些群集动物所表现的智能常称为“群体智能”,它可表述为:一组相互之间可以进行直接通讯或间接通讯(通过改变局部环境)的主体,能够通过合作对问题进行分布求解。换言之,一组无智能的主体通过合作表现出智能行为特征。粒子群算法就是以模拟鸟的群集智能为特征,以求解连续变量优化问题为背景的一种优化算法。因其概念简单、参数较少、易于实现等特点,自提出以来已经受到国内外研究者的高度重视并被广泛应用于许多领域。

粒子群优化算法及其应用研究

摘要 在智能领域,大部分问题都可以归结为优化问题。常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。 本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。根据分析结果,研究了一种基于量子的粒子群优化算法。在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。最后,对本文进行了简单的总结和展望。 关键词:粒子群优化算法最小二乘支持向量机参数优化适应度

目录 摘要...................................................................... I 目录....................................................................... II 1.概述. (1) 1.1引言 (1) 1.2研究背景 (1) 1.2.1人工生命计算 (1) 1.2.2 群集智能理论 (2) 1.3算法比较 (2) 1.3.1粒子群算法与遗传算法(GA)比较 (2) 1.3.2粒子群算法与蚁群算法(ACO)比较 (3) 1.4粒子群优化算法的研究现状 (4) 1.4.1理论研究现状 (4) 1.4.2应用研究现状 (5) 1.5粒子群优化算法的应用 (5) 1.5.1神经网络训练 (6) 1.5.2函数优化 (6) 1.5.3其他应用 (6) 1.5.4粒子群优化算法的工程应用概述 (6) 2.粒子群优化算法 (8) 2.1基本粒子群优化算法 (8) 2.1.1基本理论 (8) 2.1.2算法流程 (9) 2.2标准粒子群优化算法 (10) 2.2.1惯性权重 (10) 2.2.2压缩因子 (11) 2.3算法分析 (12) 2.3.1参数分析 (12) 2.3.2粒子群优化算法的特点 (14) 3.粒子群优化算法的改进 (15) 3.1粒子群优化算法存在的问题 (15) 3.2粒子群优化算法的改进分析 (15) 3.3基于量子粒子群优化(QPSO)算法 (17) 3.3.1 QPSO算法的优点 (17) 3.3.2 基于MATLAB的仿真 (18) 3.4 PSO仿真 (19) 3.4.1 标准测试函数 (19) 3.4.2 试验参数设置 (20) 3.5试验结果与分析 (21) 4.粒子群优化算法在支持向量机的参数优化中的应用 (22) 4.1支持向量机 (22) 4.2最小二乘支持向量机原理 (22)

用粒子群算法求解多目标优化问题的Pareto解

粒子群算法程序 tic D=10;%粒子群中粒子的个数 %w=0.729;%w为惯性因子 wmin=1.2; wmax=1.4; c1=1.49445;%正常数,成为加速因子 c2=1.49445;%正常数,成为加速因子 Loop_max=50;%最大迭代次数 %初始化粒子群 for i=1:D X(i)=rand(1)*(-5-7)+7; V(i)=1; f1(i)=X(i)^2; f2(i)=(X(i)-2)^2; end Loop=1;%迭代计数器 while Loop<=Loop_max%循环终止条件 %对粒子群中的每个粒子进行评价 for i=1:D k1=find(1==Xv(i,:));%找出第一辆车配送的城市编号 nb1=size(k1,2);%计算第一辆车配送城市的个数 if nb1>0%判断第一辆车配送城市个数是否大于0,如果大于0则 a1=[Xr(i,k1(:))];%找出第一辆车配送城市顺序号 b1=sort(a1);%对找出第一辆车的顺序号进行排序 G1(i)=0;%初始化第一辆车的配送量 k51=[]; am=[]; for j1=1:nb1 am=find(b1(j1)==Xr(i,:)); k51(j1)=intersect(k1,am);%计算第一辆车配送城市的顺序号 G1(i)=G1(i)+g(k51(j1)+1);%计算第一辆车的配送量 end k61=[]; k61=[0,k51,0];%定义第一辆车的配送路径 L1(i)=0;%初始化第一辆车的配送路径长度 for k11=1:nb1+1 L1(i)=L1(i)+Distance(k61(k11)+1,k61(k11+1)+1);%计算第一辆车的配送路径长度end else%如果第一辆车配送的城市个数不大于0则 G1(i)=0;%第一辆车的配送量设为0 L1(i)=0;%第一辆车的配送路径长度设为0 end

基于MATLAB的粒子群优化算法的应用示例

对于函数f=x*sin(x)*cos(2*x)-2*x*sin(3*x),求其在区间[0,20]上该函数的最大值。 ?初始化种群 已知位置限制[0,20],由于一维问题较为简单,因此可以取初始种群N 为50,迭代次数为100,当然空间维数d 也就是1。 位置和速度的初始化即在位置和速度限制内随机生成一个N×d 的矩阵,对于此题,位置初始化也就是在0~20内随机生成一个50×1的数据矩阵,而对于速度则不用考虑约束,一般直接在0~1内随机生成一个50×1的数据矩阵。 此处的位置约束也可以理解为位置限制,而速度限制是保证粒子步长不超限制的,一般设置速度限制为[-1,1]。 粒子群的另一个特点就是记录每个个体的历史最优和种群的历史最优,因此而二者对应的最优位置和最优值也需要初始化。其中每个个体的历史最优位置可以先初始化为当前位置,而种群的历史最优位置则可初始化为原点。对于最优值,如果求最大值则初始化为负无穷,相反地初始化为正无穷。 每次搜寻都需要将当前的适应度和最优解同历史的记录值进行对比,如果超过历史最优值,则更新个体和种群的历史最优位置和最优解。 ?速度与位置的更新

速度和位置更新是粒子群算法的核心,其原理表达式和更新方式如下: 每次更新完速度和位置都需要考虑速度和位置的限制,需要将其限制在规定范围内,此处仅举出一个常规方法,即将超约束的数据约束到边界(当位置或者速度超出初始化限制时,将其拉回靠近的边界处)。当然,你不用担心他会停住不动,因为每个粒子还有惯性和其他两个参数的影响。 代码如下: clc;clear;close all; %% 初始化种群 f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式figure(1);ezplot(f,[0,0.01,20]); N = 50; % 初始种群个数 d = 1; % 空间维数 ger = 100; % 最大迭代次数 limit = [0, 20]; % 设置位置参数限制 vlimit = [-1, 1]; % 设置速度限制 w = 0.8; % 惯性权重 c1 = 0.5; % 自我学习因子 c2 = 0.5; % 群体学习因子 for i = 1:d

粒子群算法和遗传算法比较

粒子群算法和遗传算法比较 优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO) 算法. 这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。 粒子群算法 1. 引言 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究,PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域 2. 背景: 人工生命 "人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的内容 1. 研究如何利用计算技术研究生物现象 2. 研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的. 现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信

粒子群算法基本原理

4.1粒子群算法基本原理 粒子群优化算法[45]最原始的工作可以追溯到1987年Reynolds 对鸟群社会系统Boids (Reynolds 对其仿真鸟群系统的命名)的仿真研究 。通常,群体的行为可以由几条简单的规则进行建模,虽然每个个体具有简单的行为规则,但是却群体的行为却是非常的复杂,所以他们在鸟类仿真中,即Boids 系统中采取了下面的三条简单的规则: (1)飞离最近的个体(鸟),避免与其发生碰撞冲突; (2)尽量使自己与周围的鸟保持速度一致; (3)尽量试图向自己认为的群体中心靠近。 虽然只有三条规则,但Boids 系统已经表现出非常逼真的群体聚集行为。但Reynolds 仅仅实现了该仿真,并无实用价值。 1995年Kennedy [46-48]和Eberhart 在Reynolds 等人的研究基础上创造性地提出了粒子群优化算法,应用于连续空间的优化计算中 。Kennedy 和Eberhart 在boids 中加入了一个特定点,定义为食物,每只鸟根据周围鸟的觅食行为来搜寻食物。Kennedy 和Eberhart 的初衷是希望模拟研究鸟群觅食行为,但试验结果却显示这个仿真模型蕴含着很强的优化能力,尤其是在多维空间中的寻优。最初仿真的时候,每只鸟在计算机屏幕上显示为一个点,而“点”在数学领域具有多种意义,于是作者用“粒子(particle )”来称呼每个个体,这样就产生了基本的粒子群优化算法[49]。 假设在一个D 维搜索空间中,有m 个粒子组成一粒子群,其中第i 个粒子的空间位置为123(,,,...,)1,2,...,i i i i iD X x x x x i m ==,它是优化问题的一个潜在

粒子群算法和遗传算法比较

粒子群算法(PSO)和遗传算法(GA)都是优化算法,都力图在自然特性的基础上模拟个体种群的适应性,它们都采用一定的变换规则通过搜索空间求解。PSO和GA的相同点: (1)都属于仿生算法。PSO主要模拟鸟类觅食、人类认知等社会行为而提出;GA主要借用生物进化中“适者生存”的规律。 (2)都属于全局优化方法。两种算法都是在解空间随机产生初始种群,因而算法在全局的解空间进行搜索,且将搜索重点集中在性能高的部分。 (3)都属于随机搜索算法。都是通过随机优化方法更新种群和搜索最优点。PSO 中认知项和社会项前都加有随机数;而GA的遗传操作均属随机操作。 (4)都隐含并行性。搜索过程是从问题解的一个集合开始的,而不是从单个个体开始,具有隐含并行搜索特性,从而减小了陷入局部极小的可能性。并且由于这种并行性,易在并行计算机上实现,以提高算法性能和效率。 (5)根据个体的适配信息进行搜索,因此不受函数约束条件的限制,如连续性、可导性等。 (6)对高维复杂问题,往往会遇到早熟收敛和收敛性能差的缺点,都无法保证收敛到最优点。 PSO和GA不同点 (1)PSO有记忆,好的解的知识所有粒子都保存,而GA没有记忆,以前的知识随着种群的改变被破坏。 (2)在GA算法中,染色体之间相互共享信息,所以整个种群的移动是比较均匀地向最优区域移动。PSO中的粒子仅仅通过当前搜索到最优点进行共享信息,所以很大程度上这是一种单项信息共享机制,整个搜索更新过程是跟随当前最优解的过程。在大多数情况下,所有粒子可能比遗传算法中的进化个体以更快速度收敛于最优解。 (3)GA的编码技术和遗传操作比较简单,而PSO相对于GA,不需要编码,没有交叉和变异操作,粒子只是通过内部速度进行更新,因此原理更简单、参数更少、实现更容易。 (4)在收敛性方面,GA己经有了较成熟的收敛性分析方法,并且可对收敛速度进行估计;而PSO这方面的研究还比较薄弱。尽管已经有简化确定性版本的收敛性分析,但将确定性向随机性的转化尚需进一步研究。 (5)在应用方面,PSO算法主要应用于连续问题,包括神经网络训练和函数优化等,而GA除了连续问题之外,还可应用于离散问题,比如TSP问题、货郎担问题、工作车间调度等。

粒子群优化算法

1. 引言 粒子群优化算法(PSO)是一种进化计算技术 (evoluti on ary compu tatio n),有Eberhart 博士 和 kennedy 博士发明。源于对鸟群捕食的行为研究。 PSO 同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠 代搜寻最优 值。但是并没有遗传算法用的交叉 (crossover)以及变异(mutation),而是粒子在解 空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较, PSO 的优势在于简单容易实现并且没有许多参数需要调整。目前已广 泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域。 2. 背景 : 人工生命 "人工生命 "是来研究具有某些生命基本特征的人工系统 . 人工生命包括两方面的内容 1. 研究如何利用计算技术研究生物现象 2. 研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容 . 现在已经有很多源于生物现象的计算技巧 . 例如 , 人工神经网络是简化的大脑模型 . 遗传算法是模拟基因进化过程的 . 现在我们讨论另一种生物系统 - 社会系统 . 更确切的是 , 在由简单个体组成的群落与环 境以及个体之间的互动行为 . 也可称做 "群智能 "(swarm intelligence). 这些模拟系统利用局 部信息从而可能产生不可预测的群体行为 例如 floys 和 boids, 他们都用来模拟鱼群和鸟群的运动规律 , 主要用于计算机视觉和计算 机辅助设计 . 在计算智能 (computational intelligence) 领域有两种基于群智能的算法 . 蚁群算法 (ant colony optimization) 和粒子群算法 (particle swarm optimization). 前者是对蚂蚁群落食物采集 过程的模 拟 . 已经成功运用在很多离散优化问题上 . 粒子群优化算法 (PSO) 也是起源对简单社会系统的模拟 程. 但后来发现 PSO 是一种很好的优化工具 . 3. 算法介绍 如前所述, PSO 模拟鸟群的捕食行为。设想这样 一个场景: 这个区域里只有一块食物。 所有的鸟都不知道食物在那里。 还有多远。 那么找到食物的最优策略是什么呢。 的周围区域。 PSO 从这种模型中得到启示并用于解决优化问题。 PSO 中,每个优化问题的解都是搜索 空间中的一只鸟。我们称之为 “粒子 ”。所有的例子都有一个由被优化的函数决定的适应值 (fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前 的最优粒子在解空 间中搜索 PSO 算 法 . 最初设想是模拟鸟群觅食的过 一群鸟在随机搜索食物。在 但 是他们知道当前的位置离食物 最简单有效的就是搜寻目前离食物最近的鸟

基于粒子群优化算法的神经网络在

基于粒子群优化算法的神经网络在农药定量构效关系建模中的应用 张丽平 俞欢军3 陈德钊 胡上序 (浙江大学化工系,杭州310027) 摘 要 神经网络模型能有效模拟非线性输入输出关系,但其常规训练算法为BP 或其它梯度算法,导致训练时间较长且易陷入局部极小点。本实验探讨用粒子群优化算法训练神经网络,并应用到苯乙酰胺类农药的定量构效关系建模中,对未知化合物的活性进行预测来指导新药的设计和合成。仿真结果表明,粒子群优化算法训练的神经网络不仅收敛速度明显加快,而且其预报精度也得到了较大的提高。关键词 粒子群优化算法,神经网络,定量构效关系  2004201204收稿;2004207225接受 本文系国家自然科学基金资助项目(N o.20276063) 1 引 言 药物定量构效关系(QS AR )是研究药物生理活性和药物分子结构参数间的量变规律并建立相应的 数学模型,进而研究药物的作用机理,从而用于预测未知化合物的生物活性,探讨药物的作用机理,指导新药的设计和合成,在药物和农药的研究与设计中已经显示出广阔的应用前景1。以往QS AR 的建模方法大多基于统计原理,局限于线性模型,只进行简单的非线性处理,由此所建立的模型很难契合实际构效关系,并且其处理过程都比较繁琐2。神经网络通过学习将构效关系知识隐式分布在网络之中,适用于高度非线性体系。 在药物QS AR 中采用神经网络(NN )始于20世纪80年代末3,此后得到迅速的发展,目前已发展为除多重线性回归和多元数据分析之外的第3种方法4。通常多层前传网络采用BP 算法,通过误差反传,按梯度下降的方向调整权值。其缺点是可能陷入局部极小点,且对高维输入收敛速度非常缓慢。 粒子群优化算法(particle swarm optimization ,PS O )是K ennedy 等5源于对鸟群、鱼群和人类社会行为的研究而发展的一种新的进化型寻优技术。PS O 已成为进化寻优算法研究的热点,其最主要特点是简单、收敛速度快,且所需领域知识少。本实验拟将该方法初始化前传神经网络为苯乙酰胺类农药建立良好适用的QS AR 模型。 2 苯乙酰胺类农药的Q SAR 问题 苯乙酰胺类化合物是除草农药,其除草活性与其分子结构密切相关。所有的N 2(12甲基212苯乙基)苯乙酰胺都可用相应的羧酸酰胺通过霍夫曼反应生成。N 2(12甲基212苯乙基)苯乙酰胺的基本结构式为 : 其中X 为Me 、F 、Cl 、OMe 、CF 3和Br 等,Y 为Me 、Cl 、F 和Br 等,由不同的X 和Y 取代基可构成不同的化合物。常用以下7个理化参数描述化合物的分子组成和结构:log P 、log 2P (疏水性参数及其平方项)、 σ(电性效应参数)、E s (T aft 立体参数)、MR (摩尔折射度),1χ、2 χ(分子连接性指数)。于是这类化合物的QS AR 就转化为上述理化参数与除草活性间的关系。为研究这种关系,选用具有代表性的50个化合物, 他们的活性值取自文献1,见表1。 第32卷2004年12月分析化学(FE NXI H UAX UE ) 研究报告Chinese Journal of Analytical Chemistry 第12期1590~1594

粒子群算法与遗传算法的比较

粒子群算法介绍 优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重 影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart博士和kennedy博士提出了一种新的算法;粒子群优化(Particle Swarm Optimization -PSO) 算法. 这种算法以 其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。 粒子群优化(Particle Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolutionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随 当前搜索到的最优值来寻找全局最优。 1. 引言 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),由Eberhart博士和kennedy博士提出。源于对鸟群捕食的行为研究。 PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。但是它没有遗传算法用的交叉(crossover)以及变异(mutation),而是粒子在解空间追随最优的粒子进行搜索。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域 2. 背景: 人工生命 "人工生命"是来研究具有某些生命基本特征的人工系统。人工生命包括两方面的内容: 1. 研究如何利用计算技术研究生物现象 2. 研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的. 现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局 部信息从而可能产生不可预测的群体行为 例如floys和boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计. 在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上. 粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的 过程. 但后来发现PSO是一种很好的优化工具.

梯度粒子群算法及应用

1 绪论 最优化问题是在满足一定约束条件下,寻找一组参数值,以使某些最优性度量得到满足,即使系统的某些性能指标达到最大或者最小。它广泛存在于农业、国防、工程、交通、金融、化工、能源、通信、材料等许多领域。最优化技术在上述领域的应用已经产生了巨大的经济效益和社会效益。国内外的实践表明,在同样条件下,经过优化技术的处理,对系统效率的提高、能耗的降低、资源的合理利用及经济效益提高均有显著的效果,而且随着处理对象规模的增大,这种效果也更加显著。传统的优化方法根据问题的性质不同,通常将问题划分为线性规划问题、非线性规划问题、整数规划问题和多目标规划问题。相应的有一些成熟的常规算法,如应用于线性规划问题的单纯形法,应用于非线性规划的牛顿法、共轭梯度法等,应用于整数规划的分枝定界法、动态规划法等。 目前,基于严格机理模型的开放式方程建模与优化已成为国际上公认的主流技术方向。许多工程公司和各大科研机构纷纷投入大量的人力物力对系统的建模与优化进行深入细致的研究,希望取得突破性的进展。然而,基于严格机理模型所得到的优化命题往往具有方程数多、变量维数高、非线性强等特点,这使得相关变量的存储、计算及求解都相当困难。在国民经济的各个领域中都存在着相当多的涉及因素多、规模大、难度高和影响广的优化命题,如流程工业系统优化、运输中的最优调度、生产流程的最优排产、资源的最优分配、农作物的合理布局、工程的最优设计以及国土的最优开发等等,所有这些问题的解决也必须有一个强有力的优化工具来进行求解。而前述传统的优化算法面对这样的大型问题已无能为力,无论是在计算速度、收敛性、初值敏感性等方面都远不能满足要求。 人们从生命现象中得到启示,发明了许多智能的优化方法来解决上述复杂优化问题。例如遗传算法(Genetic Algorithm)参考了生物种群通过遗传和自然选择不断进化的功能、人工免疫系统(Artificail Immune Systems)模拟了生物免疫系统的学习和认知功能、蚁群优化(Ant colony Optimization)算法模仿了蚂蚁群体在路径选择和信息传递方面的行为,粒子群优化(Particle swarm optimization)算法模拟了鸟群和鱼群觅食迁徙中个体与群体协调一致的机理,群落选址算法(colony Location Algorithm)模拟了植物群落的形成机制等,这类借鉴模拟了生命系统的行为、功能和特性的科学计算

粒子群优化算法

什么是粒子群优化算法
粒子群优化算法(Particle Swarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或 粒子群优化算法 微粒群优化算法。是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。通 常认为它是群集智能 (Swarm intelligence, SI) 的一种。它可以被纳入多主体优化系统 (Multiagent Optimization System, MAOS). 是由 Eberhart 博士和 kennedy 博士发明。 PSO 模拟鸟群的捕食行为。一群鸟在随机搜索食物,在这个区域里只有一块食物。所有的 鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是 什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。 PSO 从这种模型中得到启示并用于解决优化问题。PSO 中,每个优化问题的解都是搜索空 间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值 (fitnessvalue),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最 优粒子在解空间中搜索。 PSO 初始化为一群随机粒子(随机解),然后通过叠代找到最优解,在每一次叠代中,粒子通 过跟踪两个“极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值 pBest,另一个极值是整个种群目前找到的最优解,这个极值是全局极值 gBest。另外也可以不 用整个种群而只是用其中一部分最优粒子的邻居,那么在所有邻居中的极值就是局部极值。 [编辑]
PSO 算法介绍[1]
如前所述,PSO 模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。在这 个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多 远 那么找到食物的最优策略是什么呢 最简单有效的就是搜寻目前离食物最近的鸟的周围区域 。 。 。 PSO 从这种模型中得到启示并用于解决优化问题。PSO 中,每个优化问题的解都是搜索空 间中的一只鸟。我们称之为“粒子”。所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子 在解空间中搜索 PSO 初始化为一群随机粒子(随机解)。然后通过叠代找到最优解。在每一次叠代中,粒子通 过跟踪两个"极值"来更新自己 第一个就是粒子本身所找到的最优解 这个解叫做个体极值 pBest. 。 。 另一个极值是整个种群目前找到的最优解。这个极值是全局极值 gBest。另外也可以不用整个种 群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。 在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置

粒子群算法(C++版)

//#pragma warning (disable: 4786) //#pragma comment (linker, "/STACK:16777216") //HEAD #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; typedef long long LL; const double MAX_VAL = (double)1e18; const int MAX_GEN = 30;///最大迭代次数 const int MAX_SCALE = 3000;///最大种群规模const int MAX_CITY = 20 + 2;///最大城市数

const double W_VAL = 0.729;/// struct SO{ int x, y; SO(){} SO(int x, int y): x(x), y(y){} }; struct Point{ double x, y; Point(){} Point(int x, int y):x(x), y(y){}; void read() { scanf("%lf%lf", &x, &y); } }; inline int randomI(int x){ return rand()%x; } inline double randomD(){ return (double)rand()/RAND_MAX; } inline double getDist(Point a, Point b) { return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)); } struct PSO{ double w; int scale; int cityNum;

粒子群优化算法介绍及matlab程序【精品文档】(完整版)

粒子群优化算法(1)—粒子群优化算法简介 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下: 当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下: 这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物。 计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。 更新自己位置的公式就是粒子群算法中的位置速度更新公式。 下面演示一下这个算法运行一次的大概过程: 第一次初始化 第一次更新位置

第二次更新位置 第21次更新 最后的结果(30次迭代) 最后所有的点都集中在最大值的地方。

粒子群优化算法(2)—标准粒子群优化算法 在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。这个公式就是粒子群算法中的位置速度更新公式。下面就介绍这个公式是什么。在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0, 4]最大值。并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况—x 为一个矢量的情况,比如二维z=2*x1+3*x22的情况。这个时候我们的每个粒子均为二维,记粒子 P1= (x11,x12),P2=(x21,x22),P3=(x31,x32),......Pn=(xn1,xn2)。这里n 为粒子群群体的规模,也就是这个群中粒子的个数,每个粒子的维数为2。更一般的是粒子的维数为q ,这样在这个种群中有n 个粒子,每个粒子为q 维。 由n 个粒子组成的群体对Q 维(就是每个粒子的维数)空间进行搜索。每个粒子表示为:x i =(x i1,x i2,x i3,...,x iQ ),每个粒子对应的速度可以表示为v i =(v i1,v i2,v i3,....,v iQ ),每个粒子在搜索时要考虑两个因素: 1. 自己搜索到的历史最优值 p i ,p i =(p i1,p i2,....,p iQ ),i=1,2,3,....,n ; 2. 全部粒子搜索到的最优值p g ,p g =(p g1,p g2,....,p gQ ),注意这里的p g 只有一个。 下面给出粒子群算法的位置速度更新公式: 112()()()()k k k k i i i i v v c rand pbest x c rand gbest x ω+=+??-+??-, 11k k k i i i x x av ++=+. 这里有几个重要的参数需要大家记忆,因为在以后的讲解中将会经常用到,它们是: ω是保持原来速度的系数,所以叫做惯性权重。1c 是粒子跟踪自己历史最优值的权重系 数,它表示粒子自身的认识,所以叫“认知”。通常设置为2。2c 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。()rand 是[0,1]区间内均匀分布的随机数。a 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设置为1。这样一个标准的粒子群算法就介绍结束了。下图是对整个基本的粒子群的过程给一个简单的图形表示。 判断终止条件可是设置适应值到达一定的数值或者循环一定的次数。 注意:这里的粒子是同时跟踪自己的历史最优值与全局(群体)最优值来改变自己的位置预速度的,所以又叫做全局版本的标准粒子群优化算法。

粒子群算法原理及在函数优化中的应用(附程序)

粒子群算法原理及其在函数优化中的应用 1 粒子群优化(PSO )算法基本原理 1.1 标准粒子群算法 假设在一个D 维的目标搜索空间中,有m 个代表问题潜在解的粒子组成一个种群12[,,...,]m =x x x x ,第i 个粒子的信息可用D 维向量表示为 12[,,...,]T i i i iD x x x =x ,其速度为12[,,...,]T i i i iD v v v =v 。算法首先初始化m 个随机粒子,然后通过迭代找到最优解。每一次迭代中,粒子通过跟踪2个极值进行信息交流,一个是第i 个粒子本身找到的最优解,称之为个体极值,即 12[,,...,]T i i i iD p p p =p ;另一个是所有粒子目前找到的最优解,称之为群体极值,即12[,,...,]T g g g gD p p p =p 。粒子在更新上述2个极值后,根据式(1)和式(2)更新自己的速度和位置。 11122()()t t t t t t i i i i g i w c r c r +=+-+-v v p x p x (1) 11t t t i i i ++=+x x v (2) 式中,t 代表当前迭代次数,12,r r 是在[0,1]之间服从均匀分布的随机数,12 ,c c 称为学习因子,分别调节粒子向个体极值和群体极值方向飞行的步长,w 为惯性权重,一般在0.1~0.9之间取值。在标准的PSO 算法中,惯性权重w 被设为常数,通常取0.5w =。在实际应用中,x 需保证在一定的范围内,即x 的每一维的变化范围均为min max [,]X X ,这在函数优化问题中相当于自变量的定义域。 1.2 算法实现步骤 步骤1:表示出PSO 算法中的适应度函数()fitness x ;(编程时最好以函数的形式保存,便于多次调用。) 步骤2:初始化PSO 算法中各个参数(如粒子个数,惯性权重,学习因子,最大迭代次数等),在自变量x 定义域内随机初始化x ,代入()fitness x 求得适应度值,通过比较确定起始个体极值i p 和全局极值g p 。 步骤3:通过循环迭代更新x 、i p 和g p : ①确定惯性权重w 的取值(当w 不是常数时)。 ②根据式(1)更新粒子的速度1k i +v ,若速度中的某一维超过了max V ,则取为 max V 。 ③根据式(2)更新自变量x ,若x 的取值超过其定义域,则在其定义域内重新

相关文档
最新文档