置换加密算法2

置换加密算法2
置换加密算法2

置换密码算法的原理是不改变明文字符,而是按照某一规则重新排列消息中的比特或字符顺序,才而实现明文信息的加密。置换密码有时又称为换位密码。

矩阵换位法是实现置换密码的一种常用方法。它将明文中的字母按照给定的顺序安排在一个矩阵中,然后用根据密钥提供的顺序重新组合矩阵中的字母,从而形成密文。例如,明文为attack begins at five,密钥为cipher,将明文按照每行6个字母的形式排在矩阵中,形成如下形式:

根据密钥cipher中各个字母在字母表中出现的先后顺序,给定一个置换:

由密钥cipher通过getTheMatrix方法得到f矩阵。

根据上面的置换,将原有居住中的字母按照第1列、第4裂、第5裂、第3裂、第2列、第6列的顺序排列,则有下面的形式:

这里经过了一点处理就是当输入的字母数不是密钥长度的整数倍时,在输入的备加密字符串加上几个“#”来完成补全,然后参加到加密的过程中去,从而得到如下的密文:

a siteaet

b vci #agt#knf#

其解密过程是根据密钥的字母数作为列数,将密文按照列、行的顺序写出,再根据由密钥给出的矩阵置换产生新的矩阵,从而恢复明文。

本实验中也使用了上述的测试用例,主要经过两次依据矩阵的变换,都是使用矩阵f中的下面一行中的数值所在列来替换上面一行数值表示的列的值,从而来改变起序列、完成加密。

解密中用到

groupedSource[i][j]=temp[i][secretMatrix[secretMatrix[j]]];

来完成将原来经过矩阵转变来的字符序列逆转,从而得到起加密前的矩阵。

【代码部分】

package Practice1;

import java.util.Arrays;

import java.util.Scanner;

public class ReplaceDemo {

private String sourceString = "attack begins at five";

private String keyString = "cipher";

private int[] secretMatrix;

private char groupedSource[][];

private void getSource(){//Get the source String

Scanner scan = new Scanner(System.in);

System.out.print("Please input the string what you want to encrypt:\t"); sourceString = scan.nextLine();

System.out.print("Please input the key string for you:\t");

keyString = scan.next();

}

public ReplaceDemo(){//constructor for this class

getSource();

}

private void groupSourceString(){//make groups for sourceString according by the keyString

int sourceLen = sourceString.length();

int keyLen = keyString.length();

groupedSource = new char[sourceLen/keyLen+1][keyLen];

if (sourceLen%keyLen!=0){

for (int i = 0;i < (keyLen - sourceLen%keyLen);i++){

sourceString += "#";

}

}

sourceLen = sourceString.length();

for(int i = 6,j=0;i <= sourceLen;i+=keyLen,j++){

groupedSource[j] = sourceString.substring(i-keyLen, i).toCharArray(); }

}

private void getTheMatrix(){//get the Matrix for the encrypt

char[] temp01 = keyString.toCharArray();

secretMatrix = new int[keyString.length()];

Arrays.sort(temp01);

for (int i = 0;i < keyString.length();i++){

for (int j = 0;j

if (keyString.toCharArray()[i]==temp01[j]){

secretMatrix[i] = j;

}

}

}

}

private void changeSourceMatix(){

groupSourceString();

char temp[][] = new char[groupedSource.length][keyString.length()]; for (int i = 0;i < groupedSource.length;i++){

for (int j = 0;j < keyString.length();j++){

temp[i][j] = groupedSource[i][j];

}

}//请教Java老师

for (int i = 0;i < groupedSource.length - 1;i++){

for (int j = 0;j < keyString.length();j++){

groupedSource[i][j] = temp[i][secretMatrix[j]];

}

}

}

private void getEncryptedString(){//get the matrix which will be printed. groupSourceString();

changeSourceMatix();

char temp[][] = new char[groupedSource.length][keyString.length()]; for (int i = 0;i < groupedSource.length;i++){

for (int j = 0;j < keyString.length();j++){

temp[i][j] = groupedSource[i][j];

}

}

for (int i = 0;i < groupedSource.length - 1;i++){

for (int j = 0;j < keyString.length();j++){

groupedSource[i][j] = temp[i][secretMatrix[j]];

}

}

}

public void print1(){//print the code have Encrypted

getEncryptedString();

for(int i = 0;i < keyString.length();i++){

for(int j = 0;j < groupedSource.length-1;j++){

System.out.print(groupedSource[j][i]);

}

}

System.out.println();

}

//decryption process

private void groupEncryptedString(){

int sourceLen = sourceString.length();

int keyLen = keyString.length();

char[][] temp = new char[keyLen][sourceLen/keyLen+1];

for (int i = 0;i < keyLen;i++){

temp[i] = sourceString.substring(i*sourceLen/keyLen,

(i+1)*sourceLen/keyLen).toCharArray();

}

groupedSource = new char[sourceLen/keyLen+1][keyLen];

for(int j = 0; j < sourceLen/keyLen;j++){

for (int i = 0;i < keyLen;i++){

groupedSource[j][i] = temp[i][j];

}

}

}

private void getDecryptString(){//get the matrix which will be printed. groupEncryptedString();

char temp[][] = new char[groupedSource.length][keyString.length()]; for (int i = 0;i < groupedSource.length;i++){

for (int j = 0;j < keyString.length();j++){

temp[i][j] = groupedSource[i][j];

}

}

for (int i = 0;i < groupedSource.length - 1;i++){

for (int j = 0;j < keyString.length();j++){

groupedSource[i][j] = temp[i][secretMatrix[secretMatrix[j]]];

}

}

}

public void print2(){//print the code have Encrypted

getDecryptString();

for(int j = 0;j < groupedSource.length-1;j++){

for(int i = 0;i < keyString.length();i++){

System.out.print(groupedSource[j][i]);

}

}

System.out.println();

}

public static void main(String args[]){

ReplaceDemo RD = null;

Scanner scanin = null;

System.out.println("please select the method that you want to operate:\t(select “0” for encrypte and select “1” for decrypt.)"); scanin = new Scanner(System.in);

int selected = scanin.nextInt();

while(selected==0 || selected==1){

RD = new ReplaceDemo();

RD.getTheMatrix();

if (selected == 0){

RD.print1();

}

else{

RD.print2();

}

System.out.println("please select the method that you want to operate:\t(select “0” for encrypte and select “1” for decrypt.)"); scanin = new Scanner(System.in);

selected = scanin.nextInt();

}

System.out.println("Your operate is over!Thank you!");

}

}

【测试用例】如下图:

摩斯密码以及十种常用加密方法

摩斯密码以及十种常用加密方法 ——阿尔萨斯大官人整理,来源互联网摩斯密码的历史我就不再讲了,各位可以自行百度,下面从最简单的开始:时间控制和表示方法 有两种“符号”用来表示字元:划(—)和点(·),或分别叫嗒(Dah)和滴(Dit)或长和短。 用摩斯密码表示字母,这个也算作是一层密码的: 用摩斯密码表示数字:

用摩斯密码表示标点符号: 目前最常用的就是这些摩斯密码表示,其余的可以暂时忽略 最容易讲的栅栏密码: 手机键盘加密方式,是每个数字键上有3-4个字母,用两位数字来表示字母,例如:ru用手机键盘表示就是:7382, 那么这里就可以知道了,手机键盘加密方式不可能用1开头,第二位数字不可能超过4,解密的时候参考此

关于手机键盘加密还有另一种方式,就是拼音的方式,具体参照手机键盘来打,例如:“数字”表示出来就是:748 94。在手机键盘上面按下这几个数,就会出现:“数字”的拼音 手机键盘加密补充说明:利用重复的数字代表字母也是可以的,例如a可以用21代表,也可以用2代表,如果是数字9键上面的第四个字母Z也可以用9999来代表,就是94,这里也说明,重复的数字最小为1位,最大为4位。 电脑键盘棋盘加密,利用了电脑的棋盘方阵,但是个人不喜这种加密方式,因需要一个一个对照加密

当铺密码比较简单,用来表示只是数字的密码,利用汉字来表示数字: 电脑键盘坐标加密,如图,只是利用键盘上面的字母行和数字行来加密,下面有注释: 例:bye用电脑键盘XY表示就是: 351613

电脑键盘中也可参照手机键盘的补充加密法:Q用1代替,X可以用222来代替,详情见6楼手机键盘补充加密法。 ADFGX加密法,这种加密法事实上也是坐标加密法,只是是用字母来表示的坐标: 例如:bye用此加密法表示就是:aa xx xf 值得注意的是:其中I与J是同一坐标都是gd,类似于下面一层楼的方法:

密码学实验报告模板总结模板计划模板.doc

密码学应用与实践课程实验报告 实验 1:实现 DES密码体制 一、实验目的 1.编写程序实现 DES的加、解 密:1)编程构造 DES的密钥; 2)应用上述获得的密钥将一段英文或文件进行加、解密。 2.用 DES算法实现口令的安全 二、实验内容 1.DES原理 DES综合运用了置换,代换,移位多种密码技术,是一种乘积密码。在算法结构上采用迭代 结构,从而使其结构清晰,调理清楚,算法为对合运算,便于实现,运行速度快。DES使用了初始置换IP 和 IP-1 各一次(相应的置换看算法描述图表)置换P16 次,安排使用这 3 个置换的目的是把数据彻底打乱重排。选择置换 E 一方面把数据打乱重排,另一方面把32 位输入扩展为48 位,算法中除了S- 盒是非线性变换外,其余变换均为显示变换,所以保密 的关键是选择S- 盒。符合以下 3 条准则: (1)对任何一个 S- 盒而言,没有任何线性方程式等价于此S-盒的输出输入关系,即是S- 盒是非线性函数。 (2)改变 s- 盒的任何一位输入,都会导致两位以上的输出改变,即满足" 雪崩效应 " 。(3)当固定某一个位的输入时,S- 盒的 4 个出位之间,其中0 和 1 的个数之差小。这个准 则的本质是数据压缩,把四位输入压缩为 4 位输出。选择 S-盒函数的输入中任意改变数位, 其输出至少变化两位。因为算法中使用了16 次迭代,大大提高了保密性。 2.DES算法由加密、解密和子密钥的生成三部分组成 1)加密 DES算法处理的数据对象是一组64 比特的明文串。设该明文串为m=m1m2m64 (mi=0 或 1) 。明文串经过64 比特的密钥K 来加密,最后生成长度为64 比特的密文E。其加密过程图示如下:

DES加密算法的实现

常州工学院 计算机信息工程学院 《数据结构》课程设计报告 题目 DES加密算法的实现 班级 14软一 学号姓名王磊(组长) 学号姓名王凯旋 学号姓名陶伟 2016年01月06日

一,实验名称: DES加密算法的实现 二,实验内容: a)熟悉DES算法的基本原理; b)依据所算则的算法,编程实现该该算法; c)执行程序并分析结果; 三,实验原理 1,概述 DES是一种分组加密算法,他以64位为分组对数据加密。64位一组的明文从算法的一端输入,64位的密文从另一端输出。DES是一个对称算法:加密和解密用的是同一个算法(除密钥编排不同以外)。密钥的长度为56位(密钥通常表示为64位的数,但每个第8位都用作奇偶检验,可以忽略)。密钥可以是任意的56位数,且可以在任意的时候改变。 DES算法的入口参数有3个:Key,Data,Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或解密的数据:Mode为DES的工作方式,有两种:加密或解密。 DES算法的工作过程:若Mode为加密,则用Key对数据Data进行加密,生成Data的密码形式(64位)作为DES的输出结果;若Mode 为解密,则用Key对密码形式的数据Data解密,还原为Data的明码形式(64位)作为DES的输出结果。

2,DES算法详述 DES算法把64位的明文输入块变为64位的密文输出块,他所使用的密钥也是64位,DES对64 位的明文分组进行操作。通过一个初始置换,将明文分组分成左半部分和右半部分,各32位长。然后进行16轮相同的运算,这些相同的运算被称为函数f,在运算过程中数据和密钥相结合。经过16轮运算后左、右部分在一起经过一个置换(初始置换的逆置换),这样算法就完成了。 (1)初始置换 其功能是把输入的64位数据块按位重新组合,并把输出分为L0,R0两部分,每部分各长32位, 即将输入的第58位换到第1位,第50位换到第2位,…,依次类推,最后一位是原来的第7位,L0,R0则是换位输出后的两部分,L0是输出的左32位,R0是右32位。。 (2)逆置换 经过16次迭代运算后,得到L16,R16,将此作为输入进行逆置换,即得到密文输出。逆置换正好是初始置换的逆运算。例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位。 (3)函数f(Ri,Ki)的计算 “扩展置换”是将32位放大成48位,“P盒置换”是32位到32位换位, 在(Ri,Ki)算法描述图中,选择函数功能是把6 b数据变为4 b数

密码学实验指导

密码学实验指导

目录 实验一凯撒密码算法实验 1 实验二维吉利亚密码算法实验 5 实验三普莱费尔密码算法实验 9 实验四 IDEA密码算法实验 17 实验五 BCH纠错编码算法任务书 27

实验一凯撒密码算法实验 1 实验目的 通过实验熟练掌握凯撒密码算法,学会凯撒密码算法程序设计,提高C++程序设计能力。 2 实验学时:2 实验类别:验证实验■综合性实验□设计性实验□ 3 实验环境 软件环境Windows Xp/Windows 2000 Visual c++/Turbo c++ 3.0 硬件系统Pentium 4 3.0G 512MRAM 计算机等 4 算法原理 按照a~z依次对应0~25编码,变量K存放密钥-正整数。变量M存放一明文字符ASCII码,变量C存放M中的数据经加密后得到的一密文字符的ASCII码。 加密算法:C≡(M+K)mod 26,如此继续下去,实现逐个字符进行加密。 5 实验步骤与内容 1)编写程序 2)编辑录入 3)记录调试及进行情况 4)程序结构说明文档 5)程序使用说明文档 6 思考密钥K的有效的最小取值范围 7 实验总结与体会 8 要求提交完整的实验报告 9 参考程序代码 #include #include using namespace std; //获取密钥函数getKey()

int getKey() { int key; cout<<"请输入密钥:"; cin>>key; return key; } //将明文中的字符全部转化为大写的函数change() void change(char s[]) { int i; for(i=0;i96&&s[i]<122) s[i] = s[i]-32; } } //判断输入的明文格式是否有误的函数getError() //有误则返回0,否则就返回1 int getError(char s[]) { int i,error; for(i=0;i65&&s[i]<=82)||(s[i]>96&&s[i]<=122)) { error = 1;

DES加密算法的JAVA实现

目录 摘要 (3) 一、目的与意义 (4) 二、DES概述 (5) 三、DES加解密算法原理 (7) 1.加密 (6) 2.子密钥生成 (11) 3.解密 (13) 四、加解密算法的实现 (14) 1.软件版本 (14) 2.平台 (14) 3.源代码 (14) 4.运行结果 (24) 五、总结 (25)

【摘要】1973年5月15 日,美国国家标准局(现在的美国国家标准就是研究所,即NIST)在联邦记录中公开征集密码体制,这一举措最终导致了数据加密标准(DES)的出现,它曾经成为世界上最广泛使用的密码体制。DES由IBM开发,它是早期被称为Lucifer体制的改进。DES在1975年3月17日首次在联邦记录中公布,在经过大量的公开讨论后,1977年2月15日DES被采纳为“非密级”应用的一个标准。最初预期DES作为标准只能使用10~15年;然而,事实证明DES要长寿得多。被采纳后,大约每隔5年就被评审一次。DES的最后一次评审是在1999年1月。 本文阐述了DES发展现状及对网络安全的重要意义,并在此基础上对DES算法原理进行详细的介绍和分析。通过应用DES算法加解密的具体实现,进一步加深对DES算法的理解,论证了DES算法具有加密快速且强壮的优点,适合对含有大量信息的文件进行加密,同时分析了DES算法密钥过短(56位)所带来的安全隐患。 【关键词】DES 加密解密明文密文

一、目的与意义 随着计算机和通信网络的广泛应用,信息的安全性已经受到人们的普遍重视。信息安全已不仅仅局限于政治,军事以及外交领域,而且现在也与人们的日常生活息息相关。现在,密码学理论和技术已得到了迅速的发展,它是信息科学和技术中的一个重要研究领域。在近代密码学上值得一提的大事有两件:一是1977年美国国家标准局正式公布实施了美国的数据加密标准(DES),公开它的加密算法,并批准用于非机密单位及商业上的保密通信。密码学的神秘面纱从此被揭开。二是Diffie和Hellman联合写的一篇文章“密码学的新方向”,提出了适应网络上保密通信的公钥密码思想,拉开了公钥密码研究的序幕。 DES(Data Encryption Standard)是IBM公司于上世纪1977年提出的一种数据加密算法。在过去近三十年的应用中,还无法将这种加密算法完全、彻底地破解掉。而且这种算法的加解密过程非常快,至今仍被广泛应用,被公认为安全的。虽然近年来由于硬件技术的飞速发展,破解DES已经不是一件难事,但学者们似乎不甘心让这样一个优秀的加密算法从此废弃不用,于是在DES的基础上有开发了双重DES(DoubleDES,DDES)和三重DES(Triple DES,TDES)。 在国内,随着三金工程尤其是金卡工程的启动,DES 算法在POS、ATM、磁卡及智能卡(IC 卡)、加油站、高速公路收费站等领域被广泛应用,以此来实现关键数据的保密,如信用卡持卡人的PIN 码加密传输,IC 卡与POS 间的双向认证、金融交易数据包的MAC 校验等,均用到DES 算法。DES加密体制是ISO颁布的数据加密标准。 因此研究DES还是有非常重要的意义。

RSA加密算法加密与解密过程解析

RSA加密算法加密与解密过程解析 1.加密算法概述 加密算法根据内容是否可以还原分为可逆加密和非可逆加密。 可逆加密根据其加密解密是否使用的同一个密钥而可以分为对称加密和非对称加密。 所谓对称加密即是指在加密和解密时使用的是同一个密钥:举个简单的例子,对一个字符串C做简单的加密处理,对于每个字符都和A做异或,形成密文S。 解密的时候再用密文S和密钥A做异或,还原为原来的字符串C。这种加密方式有一个很大的缺点就是不安全,因为一旦加密用的密钥泄露了之后,就可以用这个密钥破解其他所有的密文。 非对称加密在加密和解密过程中使用不同的密钥,即公钥和私钥。公钥用于加密,所有人都可见,私钥用于解密,只有解密者持有。就算在一次加密过程中原文和密文发生泄漏,破解者在知道原文、密文和公钥的情况下无法推理出私钥,很大程度上保证了数据的安全性。 此处,我们介绍一种非常具有代表性的非对称加密算法,RSA加密算法。RSA 算法是1977年发明的,全称是RSA Public Key System,这个Public Key 就是指的公共密钥。 2.密钥的计算获取过程 密钥的计算过程为:首先选择两个质数p和q,令n=p*q。 令k=?(n)=(p?1)(q?1),原理见4的分析 选择任意整数d,保证其与k互质 取整数e,使得[de]k=[1]k。也就是说de=kt+1,t为某一整数。

3.RSA加密算法的使用过程 同样以一个字符串来进行举例,例如要对字符串the art of programming 进行加密,RSA算法会提供两个公钥e和n,其值为两个正整数,解密方持有一个私钥d,然后开始加密解密过程过程。 1. 首先根据一定的规整将字符串转换为正整数z,例如对应为0到36,转化后形成了一个整数序列。 2. 对于每个字符对应的正整数映射值z,计算其加密值M=(N^e)%n. 其中N^e表示N的e次方。 3. 解密方收到密文后开始解密,计算解密后的值为(M^d)%n,可在此得到正整数z。 4. 根据开始设定的公共转化规则,即可将z转化为对应的字符,获得明文。 4.RSA加密算法原理解析 下面分析其内在的数学原理,说到RSA加密算法就不得不说到欧拉定理。 欧拉定理(Euler’s theorem)是欧拉在证明费马小定理的过程中,发现的一个适用性更广的定理。 首先定义一个函数,叫做欧拉Phi函数,即?(n),其中,n是一个正整数。?(n)=总数(从1到n?1,与n互质整数) 比如5,那么1,2,3,4,都与5互质。与5互质的数有4个。?(5)=4再比如6,与1,5互质,与2,3,4并不互质。因此,?(6)=2

置换密码

实验3 置换密码 一、实验目的 学习常见的古典密码学算法,通过编程实现置换密码算法,加深对古典密码体制的了解,为深入学习密码学奠定基础。 二、实验原理 古典密码算法曾被广泛应用,大都比较简单,使用手工和机械操作来实现加密和解密。它的主要应用对象是文字信息,利用密码算法实现文字信息的加密和解密。下面介绍另一种常见的具有代表性的古典密码算法----置换密码。 置换密码算法的原理是不改变明文字符,而是按照某一规则重新排列消息中的比特或字符顺序,才而实现明文信息的加密。置换密码有时又称为换位密码。 矩阵换位法是实现置换密码的一种常用方法。它将明文中的字母按照给定的顺序安排在一个矩阵中,然后用根据密钥提供的顺序重新组合矩阵中的字母,从而形成密文。例如,明文为attack begins at five ,密钥为cipher ,将明文按照每行6个字母的形式排在矩阵中,形成如下形式: a t t a c k b e g i n s a t f i v e 根据密钥cipher 中各个字母在字母表中出现的先后顺序,给定一个置换: 123456145326f ?? =?? ?? 根据上面的置换,将原有居住中的字母按照第1列、第4列、第5列、第3列、第2列、第6列的顺序排列,则有下面的形式: a a c t t k b i n g e s a i v f t e 从而得到密文:abatgftetcnvaiikse 其解密过程是根据密钥的字母数作为列数,将密文按照列、行的顺序写出,再根据由密钥给出的矩阵置换产生新的矩阵,从而恢复明文。 三、实验所需仪器、设备 运行Windows 操作系统的PC 机,具VC++(Windows )等C 语言编译环境。 四、实验内容和要求 1. 根据实验原理部分对置换密码算法的介绍,自己创建明文信息,并选择一个密钥, 编写置换密码算法的实现程序,实现加密和解密操作。

实验一_经典密码学实验_

实验一经典密码学实验 【实验原理】 古典密码算法历史上曾被广泛应用,大都比较简单,使用手工和机械操作来实现加密和解密。它的主要应用对象是文字信息,利用密码算法实现文字信息的加密和解密。下面介绍两种常见的具有代表性的古典密码算法,以帮助读者对密码算法建立一个初步的印象。 1.替代密码 替代密码算法的原理是使用替代法进行加密,就是将明文中的字符用其它字符替代后形成密文。例如:明文字母a、b、c、d ,用D、E、F、G做对应替换后形成密文。 替代密码包括多种类型,如单表替代密码、多明码替代密码、多字母替代密码、多表替代密码等。下面我们介绍一种典型的单表替代密码,恺撒(caesar)密码,又叫循环移位密码。它的加密方法,就是将明文中的每个字母用此字符在字母表中后面第k个字母替代。它的加密过程可以表示为下面的函数: E(m)=(m+k) mod n 其中:m为明文字母在字母表中的位置数;n为字母表中的字母个数;k为密钥;E(m)为密文字母在字母表中对应的位置数。 例如,对于明文字母H,其在字母表中的位置数为8,设k=4,则按照上式计算出来的密文为L: E(8) = (m+k) mod n = (8+4) mod 26 = 12 = L 2.置换密码 置换密码算法的原理是不改变明文字符,只将字符在明文中的排列顺序改变,从而实现明文信息的加密。置换密码有时又称为换位密码。 矩阵换位法是实现置换密码的一种常用方法。它将明文中的字母按照给的顺序安排在一个矩阵中,然后用根据密钥提供的顺序重新组合矩阵中字母,从而形成密文。例如,明文为attack begins at five,密钥为cipher,将明文按照每行6列的形式排在矩阵中,形成如下形式: a t t a c k b e g i n s

DES加密算法设计(含程序)

DES加密算法分析 [摘要]DES数据加密算法是使用最广的分组加密算法,它作为最著名的保密密钥或对称密钥加密算法,在计算机密码学及计算机数据通信的发展过程中起了重要作用。本次学年论文是主要是学习介绍DES对 称密钥数据加密算法,并用c++实现。DES算法具有较高的安全性,为我们进行一般的计算机数据传输活 动提供了安全保障。 [关键词] 加密与解密,DES算法,S-盒 引言 密码学是伴随着战争发展起来的一门科学,其历史可以追溯到古代,并且还有过辉煌的经历。但成为一门学科则是近20年来受计算机科学蓬勃发展的刺激结果。今天在计算机被广泛应用的信息时代,信息本身就是时间,就是财富。如何保护信息的安全(即密码学的应用)已不再局限于军事、政治和外交,而是扩大到商务、金融和社会的各个领域。特别是在网络化的今天,大量敏感信息(如考试成绩、个人简历、体检结果、实验数据等)常常要通过互联网进行交换。(现代电子商务也是以互联网为基础的。)由于互联网的开放性,任何人都可以自由地接入互联网,使得有些不诚实者就有可能采用各种非法手段进行破坏。因此人们十分关心在网络上交换信息的安全性。普遍认为密码学方法是解决信息安全保护的一个最有效和可行的方法。有效是指密码能做到使信息不被非法窃取,不被篡改或破坏,可行是说它需要付出的代价是可以接受的。 密码是形成一门新的学科是在20世纪70年代。它的理论基础之一应该首推1949年Shannon的一篇文章“保密系统的通信理论”,该文章用信息论的观点对信息保密问题作了全面的阐述。这篇文章过了30年后才显示出它的价值。1976年,Diffie和Hellman发表了论文《密码学的新方向》,提出了公钥密码体制的新思想,这一思想引发了科技界对研究密码学的极大兴趣,大量密码学论文开始公开发表,改变了过去只是少数人关起门来研究密码学的状况。同时为了适应计算机通信和电子商务迅速发展的需要,密码学的研究领域逐渐从消息加密扩大到数字签名、消息认证、身份识别、抗欺骗协议等新课题[1]。 美国国家标准局(NBS)1973年开始研究除国防部外的其它部门的计算机系统的数据加密标准,并批准用于非机密单位及商业上的保密通信。于1973年5月15日和1974年8月27日先后两次向公众发出了征求加密算法的公告。1977年1月,美国政府颁布:采用IBM公司1971年设计出的一个加密算法作为非机密数据的正式数据加密标准(DES : Data Encryption Standard)。DES广泛应用于商用数据加密,算法完全公开,这在密码学史上是一个创举[2]。 在密码学的发展过程中,DES算法起了非常重要的作用。本次学年论文介绍的就是分组加密技术中最典型的加密算法——DES算法。 1概述 1.1加密与解密 加密技术是基于密码学原理来实现计算机、网络乃至一切信息系统安全的理论与技术基础。简单的说,加密的基本意思是改变信息的排列形式,使得只有合法的接受才能读懂,任何他人即使截取了该加密信息也无法使用现有的手段来解读。解密是我们将密文转换成能够直接阅读的文字(即明文)的过程称为解密,它是加密的反向处理,但解密者必须利用相同类型的加密设备和密钥对密

五种常用的数据加密方法

五种常用的数据加密方法.txt22真诚是美酒,年份越久越醇香浓型;真诚是焰火,在高处绽放才愈是美丽;真诚是鲜花,送之于人手有余香。一颗孤独的心需要爱的滋润;一颗冰冷的心需要友谊的温暖;一颗绝望的心需要力量的托慰;一颗苍白的心需要真诚的帮助;一颗充满戒备关闭的门是多么需要真诚这一把钥匙打开呀!每台电脑的硬盘中都会有一些不适合公开的隐私或机密文件,如个人照片或客户资料之类的东西。在上网的时候,这些信息很容易被黑客窃取并非法利用。解决这个问题的根本办法就是对重要文件加密,下面介绍五种常见的加密办法。加密方法一: 利用组策略工具,把存放隐私资料的硬盘分区设置为不可访问。具体方法:首先在开始菜单中选择“运行”,输入 gpedit.msc,回车,打开组策略配置窗口。选择“用户配置”->“管理模板”->“Windows 资源管理器”,双击右边的“防止从“我的电脑”访问驱动器”,选择“已启用”,然后在“选择下列组合中的一个”的下拉组合框中选择你希望限制的驱动器,点击确定就可以了。 这时,如果你双击试图打开被限制的驱动器,将会出现错误对话框,提示“本次操作由于这台计算机的限制而被取消。请与您的系统管理员联系。”。这样就可以防止大部分黑客程序和病毒侵犯你的隐私了。绝大多数磁盘加密软件的功能都是利用这个小技巧实现的。这种加密方法比较实用,但是其缺点在于安全系数很低。厉害一点的电脑高手或者病毒程序通常都知道怎么修改组策略,他们也可以把用户设置的组策略限制取消掉。因此这种加密方法不太适合对保密强度要求较高的用户。对于一般的用户,这种加密方法还是有用的。 加密方法二:

利用注册表中的设置,把某些驱动器设置为隐藏。隐藏驱动器方法如下: 在注册表HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Policies\E xplorer中新建一个DWORD值,命名为NoDrives,并为它赋上相应的值。例如想隐藏驱动器C,就赋上十进制的4(注意一定要在赋值对话框中设置为十进制的4)。如果我们新建的NoDrives想隐藏A、B、C三个驱动器,那么只需要将A、B、C 驱动器所对应的DWORD值加起来就可以了。同样的,如果我们需要隐藏D、F、G三个驱动器,那么NoDrives就应该赋值为8+32+64=104。怎么样,应该明白了如何隐藏对应的驱动器吧。目前大部分磁盘隐藏软件的功能都是利用这个小技巧实现的。隐藏之后,WIndows下面就看不见这个驱动器了,就不用担心别人偷窥你的隐私了。 但这仅仅是一种只能防君子,不能防小人的加密方法。因为一个电脑高手很可能知道这个技巧,病毒就更不用说了,病毒编写者肯定也知道这个技巧。只要把注册表改回来,隐藏的驱动器就又回来了。虽然加密强度低,但如果只是对付一下自己的小孩和其他的菜鸟,这种方法也足够了。 加密方法三: 网络上介绍加密方法一和加密方法二的知识性文章已经很多,已经为大家所熟悉了。但是加密方法三却较少有人知道。专家就在这里告诉大家一个秘密:利用Windows自带的“磁盘管理”组件也可以实现硬盘隐藏! 具体操作步骤如下:右键“我的电脑”->“管理”,打开“计算机管理”配置窗口。选择“存储”->“磁盘管理”,选定你希望隐藏的驱动器,右键选择“更改驱动器名和路径”,然后在出现的对话框中选择“删除”即可。很多用户在这里不

置换密码与凯撒密码加解密程序实现

昆明理工大学城市学院学生实验报告 (2012 —2013 学年第 2 学期) 课程名称:信息安全开课实验室:德信楼308 2013 年5月 8日、5月15日

一、实验目的及内容 学会置换密码、凯撒密码加解密算法的编程实现 二、实验原理及基本技术路线 欲加密的数据称为明文,明文经过某种加密算法后转换成密文,加密算法中使用的参数称之为加密密钥;密文经解密算法作用后形成明文,解密算法也有一个密钥,这两个密钥可以相同也可以不相同。密文在网络传输中可能会被窃听,特别是在无线通信中,所有传输信息是外露的,但是由于窃听者不知道解密的方法,安全可得到相对保护。 密码通信的一条基本原则是,必须假定破译知道通用的加密方法,也就是说加密算法E 是公开的。这种假设是合理的也是必要的,因为事实上任何一种加密算法都不可能做到完全的保密,其次一个加密算法在被公开之后仍要能经得起攻击才能称得上是一个合格的、强壮加密算法。另外只有在对加密算法进行不断的研究、攻击和改进中,密码学才能得到发展。既然加密算法是可能公开的,那么真正的秘密就在于密钥了,也就是说,密钥是必须保密的,它通常是一个字符串,并且可以按需要进行频繁的更换,因此以下将讨论是模型是加密算法是公开的且相对稳定,而作为参数的密钥是保密的,并且是易于更换的。在这里密钥的长度很重要,因为找到了解密密钥也就破译了密码,而密钥长度越长,密钥空间就越大,破译密钥所花的时间就越长,破译的可能性就越小。 从破译者的角度来看,密码分析所面对的问题有三种主要的变型:当仅有密文而无明文时,我们称之为“只有密文”问题;当已有了一批相匹配的明文与密文时,称之为“已知明文”问题;当能够加密自已所选的明文时,称为“选择明文”。从这三种角度来看,如密码系统仅能经得起“只有密文”的攻击还不能算是真正的安全,因为破译者完全可能从统计学的角度与一般的通信规律中猜测出一部分的明文,从而就会拥有一些相匹配的明文与密文,从而全部解密。因此,真安全的密码通信系统应是,即使破译者拥有了一些匹配的明文与密文,也无从破译其它密文。 通常情况下,加密公式C=EK(P)表示明文经加密算法E和加密钥K作用后转换成密文C,并有关系: P=DK(EK(P))。

密码学实验报告总结

密码学实验报告(本文档为Word版本,下载后可自由编辑) 项目名称:××××××××× 项目负责人:××× 联系电话:××××× 编制日期:×××××

密码学实验报告 实验目的:掌握Caesar密码加密解密原理,并利用VC++编程实现。 实验内容:Caesar密码的加密原理是对明文加上一个密钥(偏移值)而得到密文。假设密钥为3,那么字母“a”对应的ASCII码为97,加上3得100正好是字母“d”的ASCII码值, 实验说明:加密实现的两种方式,只限定英文字母(区分大小写),加密时,根据明文字符是小(大)写字母,采用加密运算: 密文字符=“a”或“A”+(明文字符-“a”或“A”+password%26+26)%26 如果输入其他字符,则直接原样输出,不作处理 可以是任意字符 加密时,我们不做任何区分,直接利用Caesar密码算法 密文字符=明文字符+password 解密反之。 实验结果: void CCaesarDlg::OnButton1() //加密按钮 { UpdateData(TRUE); //从界面上的输入的值传入成员变量 m_crypt=m_plaintxt; //密文进行初始化,它与明文的长度是相同的 for(int i=0;i=48&&m_plaintxt.GetAt(i)<=57) //如果输入的字符是数字 { m_crypt.SetAt(i,'0'+(m_plaintxt.GetAt(i)-'0'+m_password%10 +10)%10);

des加密算法的实现及应用

DES加密算法的实现及应用 学生姓名:梁帅指导老师:熊兵 摘要随着信息与通信技术的迅猛发展和广泛应用,人们通过互联网进行信息交流,难免涉及到密码保护问题,这就需要使用DES加密技术来对数据进行加密保护。本课程设计介绍了DES加密的基本原理以及简单的实现方法。本课程设计基于C语言,采用DES算法技术,设计了DES加密程序,实现了DES加密解密功能。经测试,程序能正常运行,实现了设计目标。 关键词DES加密,C语言,信息交流

1 引言 1.1本文主要内容 DES是一个分组密码算法,使用64位密钥(除去8位奇偶校验,实际密钥长度为56位)对64比特的数据分组(二进制数据)加密,产生64位密文数据。DES是一个对称密码体制,加密和解密使用同意密钥,解密和加密使用同一算法(这样,在硬件与软件设计时有利于加密单元的重用)。DES的所有的保密性均依赖于密钥。 DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。 DES算法是这样工作的:如Mode为加密,则用Key 去把数据Data进行加密,生成Data的密码形式(64位)作为DES的输出结果;如Mode为解密,则用Key去把密码形式的数据Data解密,还原为Data的明码形式(64位)作为DES的输出结果。在通信网络的两端,双方约定一致的Key,在通信的源点用Key对核心数据进行DES加密,然后以密码形式在公共通信网(如电话网)中传输到通信网络的终点,数据到达目的地后,用同样的Key对密码数据进行解密,便再现了明码形式的核心数据。这样,便保证了核心数据(如PIN、MAC等)在公共通信网中传输的安全性和可靠性 DES的加密过程: 第一阶段:初始置换IP。在第一轮迭代之前,需要加密的64位明文首先通过初始置换IP 的作用,对输入分组实施置换。最后,按照置换顺序,DES将64位的置换结果分为左右两部分,第1位到第32位记为L0,第33位到第64位记为R0。 第二阶段:16次迭代变换。DES采用了典型的Feistel结构,是一个乘积结构的迭代密码算法。其算法的核心是算法所规定的16次迭代变换。DES算法的16才迭代变换具有相同的结构,每一次迭代变换都以前一次迭代变换的结果和用户密钥扩展得到的子密钥Ki作为输入;每一次迭代变换只变换了一半数据,它们将输入数据的右半部分经过函数f后将其输出,与输入数据的左半部分进行

加密算法介绍及加密算法的选择

加密算法介绍及如何选择加密算法 加密算法介绍 一.密码学简介 据记载,公元前400年,古希腊人发明了置换密码。1881年世界上的第一个电话保密专利出现。在第二次世界大战期间,德国军方启用“恩尼格玛”密码机,密码学在战争中起着非常重要的作用。 随着信息化和数字化社会的发展,人们对信息安全和保密的重要性认识不断提高,于是在1997年,美国国家标准局公布实施了“美国数据加密标准(DES)”,民间力量开始全面介入密码学的研究和应用中,采用的加密算法有DES、RSA、SHA等。随着对加密强度需求的不断提高,近期又出现了AES、ECC等。 使用密码学可以达到以下目的: 保密性:防止用户的标识或数据被读取。 数据完整性:防止数据被更改。 身份验证:确保数据发自特定的一方。 二.加密算法介绍 根据密钥类型不同将现代密码技术分为两类:对称加密算法(秘密钥匙加密)和非对称加密算法(公开密钥加密)。 对称钥匙加密系统是加密和解密均采用同一把秘密钥匙,而且通信双方都必须获得这把钥匙,并保持钥匙的秘密。 非对称密钥加密系统采用的加密钥匙(公钥)和解密钥匙(私钥)是不同的。 对称加密算法 对称加密算法用来对敏感数据等信息进行加密,常用的算法包括: DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。

3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。 AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高; AES 2000年10月,NIST(美国国家标准和技术协会)宣布通过从15种侯选算法中选出的一项新的密匙加密标准。Rijndael被选中成为将来的AES。 Rijndael是在 1999 年下半年,由研究员 Joan Daemen 和 Vincent Rijmen 创建的。AES 正日益成为加密各种形式的电子数据的实际标准。 美国标准与技术研究院 (NIST) 于 2002 年 5 月 26 日制定了新的高级加密标准(AES) 规范。 算法原理 AES 算法基于排列和置换运算。排列是对数据重新进行安排,置换是将一个数据单元替换为另一个。AES 使用几种不同的方法来执行排列和置换运算。 AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和 256 位密钥,并且用 128 位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换和替换输入数据。 AES与3DES的比较 非对称算法

详解加密技术概念、加密方法以及应用-毕业论文外文翻译

详解加密技术概念、加密方法以及应用 随着网络技术的发展,网络安全也就成为当今网络社会的焦点中的焦点,几乎没有人不在谈论网络上的安全问题,病毒、黑客程序、邮件炸弹、远程侦听等这一切都无不让人胆战心惊。病毒、黑客的猖獗使身处今日网络社会的人们感觉到谈网色变,无所适从。 但我们必需清楚地认识到,这一切一切的安全问题我们不可一下全部找到解决方案,况且有的是根本无法找到彻底的解决方案,如病毒程序,因为任何反病毒程序都只能在新病毒发现之后才能开发出来,目前还没有哪能一家反病毒软件开发商敢承诺他们的软件能查杀所有已知的和未知的病毒,所以我们不能有等网络安全了再上网的念头,因为或许网络不能有这么一日,就象“矛”与“盾”,网络与病毒、黑客永远是一对共存体。 现代的电脑加密技术就是适应了网络安全的需要而应运产生的,它为我们进行一般的电子商务活动提供了安全保障,如在网络中进行文件传输、电子邮件往来和进行合同文本的签署等。其实加密技术也不是什么新生事物,只不过应用在当今电子商务、电脑网络中还是近几年的历史。下面我们就详细介绍一下加密技术的方方面面,希望能为那些对加密技术还一知半解的朋友提供一个详细了解的机会! 一、加密的由来 加密作为保障数据安全的一种方式,它不是现在才有的,它产生的历史相当久远,它是起源于要追溯于公元前2000年(几个世纪了),虽然它不是现在我们所讲的加密技术(甚至不叫加密),但作为一种加密的概念,确实早在几个世纪前就诞生了。当时埃及人是最先使用特别的象形文字作为信息编码的,随着时间推移,巴比伦、美索不达米亚和希腊文明都开始使用一些方法来保护他们的书面信息。近期加密技术主要应用于军事领域,如美国独立战争、美国内战和两次世界大战。最广为人知的编码机器是German Enigma机,在第二次世界大战中德国人利用它创建了加密信息。此后,由于Alan Turing和Ultra计划以及其他人的努力,终于对德国人的密码进行了破解。当初,计算机的研究就是为了破解德国人的密码,人们并没有想到计算机给今天带来的信息革命。随着计算机的发展,运算能力的

基于置换移位的单字节分组加密方法

基于置换移位的单字节分组加密方法 为了减少无线传感器网络编码的冗余字节,提高基于Feistel结构的无线传感器网络分组加密的安全性,提出了一种新的单字节分组密码加密方法。那么接下来我就给大家介绍一下这种加密方法。 一、无线传感器网络Feistel结构分组加密算法 基于Feistel结构的WSN分组算法结构如图1所示。 结构采用了置换和多轮的Feistel结构。输入的8bit明文分组首先被进行单字节位的置换变换;然后被分成两个4bit的Ri、Li(其中i为Feistel加密的轮次,i=1,2,3,4,…,n),再进行扎轮的Feistel结构加密,其中每轮的Feistel加密结构如图2所示。

八比特分组的Feistel结构的处理过程表示为: 其中Ri、Ri-1、Li、Li-1、T都为4bit,走为密钥,f为加密函数。其中Feistel加密的最后一轮不进行高低半字节交换;最后再进行一次单字节的置换变换。 二、置换操作 考察单字节的置换变化。从字节数据A变换到字节B的置换变换,可以看做是A数据的二进制位的重新排列,例如,设字节A=(abcdejgh)T,B=(dhefgcba)T,其中a、b、c、d、e、f、h、g都取0或1,变换前后A和B字节中位值为1和0的总数不变,T表示矩 阵转置操作。则这种变换可以表示为:

其中T表示矩阵转置。可见通过变换矩阵P完成了从A到JEI的置换变换: 观察矩阵P,可见有以下规律: (a)P是由1和0组成的矩阵,是由以下8个向量a1~a8构成的矩阵: (b)P的秩为8,即: (c)P的n(n为整数)次幂矩阵仍然是由1和0组成的矩阵,且以次幂矩阵的秩也为8:

现代密码学-古典密码实验报告

现代密码学 实 验 报 告 院系:理学院 班级:信安二班 姓名: 学号:

前言 密码学(Cryptology)是研究秘密通信的原理和破译秘密信息的方法的一门学科。密码学的基本技术就是对数据进行一组可逆的数学变换,使未授权者不能理解它的真实含义。密码学包括密码编码学(Cryptography)和密码分析学(Cryptanalyst)两个既对立又统一的主要分支学科。研究密码变化的规律并用之于编制密码以保护信息安全的科学,称为密码编码学。研究密码变化的规律并用之于密码以获取信息情报的科学,称为密码分析学,也叫密码破译学。 密码学在信息安全中占有非常重要的地位,能够为信息安全提供关键理论与技术。密码学是一门古老而深奥的学问,按其发展进程,经历了古典密码和现代密码学两个阶段。现代密码学(Modern Cryptology)通常被归类为理论数学的一个分支学科,主要以可靠的数学方法和理论为基础,为保证信息的机密性、完整性、可认证性、可控性、不可抵赖性等提供关键理论与技术。

古典密码算法实验 在密码编码体制中有两种基本也是古老的编码体制一直沿用至今,它们是代替密码和置换密码,其历史悠久并且是现代密码体制的基本组成部分,在密码学中占有重要地位。古典密码是密码学发展的一个阶段,也是近代密码学产生的渊源,一般把Shannon 在1949 年发表“保密系统的通信理论”之前的时期称为古典密码时期。尽管古典密码大多比较简单,一般可用手工或机械方式实现,且都可用统计分析方法破译,目前已很少采用。但是,古典密码所采用的代替技术和置换技术仍然是现代分组密码算法设计的基础,了解它们的设计原理,有助于理解、设计和分析现代密码。 一、实验目的 通过编程实现经典的代替密码算法和置换密码,包括移位密码、维吉尼亚密码、周期置换密码、列置换密码,加深对代替技术的了解,为现代分组密码实验奠定基础。 二、实验原理 代替(Substitution)是古典密码中基本的处理技巧,就是将明文字母由其他字母表中

加密算法

加密算法介绍 褚庆东 一.密码学简介 据记载,公元前400年,古希腊人发明了置换密码。1881年世界上的第一个电话保密专利出现。在第二次世界大战期间,德国军方启用“恩尼格玛”密码机,密码学在战争中起着非常重要的作用。 随着信息化和数字化社会的发展,人们对信息安全和保密的重要性认识不断提高,于是在1997年,美国国家标准局公布实施了“美国数据加密标准(DES)”,民间力量开始全面介入密码学的研究和应用中,采用的加密算法有DES、RSA、SHA等。随着对加密强度需求的不断提高,近期又出现了AES、ECC等。 使用密码学可以达到以下目的: 保密性:防止用户的标识或数据被读取。 数据完整性:防止数据被更改。 身份验证:确保数据发自特定的一方。 二.加密算法介绍 根据密钥类型不同将现代密码技术分为两类:对称加密算法(秘密钥匙加密)和非对称加密算法(公开密钥加密)。 对称钥匙加密系统是加密和解密均采用同一把秘密钥匙,而且通信双方都必须获得这把钥匙,并保持钥匙的秘密。 非对称密钥加密系统采用的加密钥匙(公钥)和解密钥匙(私钥)是不同的。 对称加密算法 对称加密算法用来对敏感数据等信息进行加密,常用的算法包括: DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。 3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。 AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;

AES 2000年10月,NIST(美国国家标准和技术协会)宣布通过从15种侯选算法中选出的 一项新的密匙加密标准。Rijndael被选中成为将来的AES。Rijndael是在 1999 年下半年,由研究员 Joan Daemen和 Vincent Rijmen 创建的。AES 正日益成为加密各种形式的电子 数据的实际标准。 美国标准与技术研究院 (NIST) 于 2002 年 5 月 26 日制定了新的高级加密标 准 (AES) 规范。 算法原理 AES 算法基于排列和置换运算。排列是对数据重新进行安排,置换是将一个数据单元替换为另一个。AES 使用几种不同的方法来执行排列和置换运算。 AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和 256 位密钥,并 且用 128位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换和替换输入数据。 非对称算法 常见的非对称加密算法如下: RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的; DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准); ECC(Elliptic Curves Cryptography):椭圆曲线密码编码学。 ECC

相关文档
最新文档