C语言编写牛顿插值多项式的实现

C语言编写牛顿插值多项式的实现
C语言编写牛顿插值多项式的实现

1

实验名称:Newton 插值多项式

实验目的

了解Newton 插值多项式

实验类型

设计型

实验环境

Windows XP TC

实验内容

相关知识:通过n+1个节点的次数不超过n 的Newton 插值多项式为:

)())(](,,,[))(](,,[)](,[)()(11010102100100----++--+-+=n n n x x x x x x x x x f x x x x x x x f x x x x f x f x N

数据结构:两个一维数组或一个二维数组

算法设计:(略)

实验用例: 已知函数y=f(x)的一张表(同上一个试验)

试验要求:利用Newton 插值多项式)(x N n 求被插值函数f(x)在点x=65处的近似值。建议:

画出Newton 插值多项式)(x N n 的曲线。

编写代码:

#include

#include

double Juncha(double a[13][2],int f,int l)

{

double m;

if((l-f)>1)

{

m=(Juncha(a,f+1,l)-Juncha(a,f,l-1))/(a[l][0]-a[f][0]); }

else

m=(a[l][1]-a[f][1])/(a[l][0]-a[f][0]);

return m;

}

double Newton(double a[13][2],double x) {

double m,n,y;

int i,j;

y=a[0][1];

i=j=1;

while(i!=13)

{

j=0;

m=n=1.0;

m=Juncha(a,j,i);

while(j!=i)

{

n=(x-a[j][0])*n;

j++;

}

y=y+m*n;

i++;

}

return y;

}

double Lglr(double a[13][2],double x) {

double m,n,y;

int i,j;

m=n=1.0;

i=j=y=0;

while(i!=13)

{

j=0;

m=n=1;

while(j<13)

{

if(j!=i)

m=(x-a[j][0])*m;

j++;

}

j=0;

while(j<13)

{

if(j!=i)

n=(a[i][0]-a[j][0])*n;

j++;

}

y=y+m/n*a[i][1];

i++;

}

return y;

}

void main()

{

double a[13][2]={0,5,10,1,20,7.5,30,3,40,4.5,50,8.8,

60,15.5,70,6.5,80,-5,90,-10,100,-2,110,4.5,120,7}; double x,x1;

int arw[6]={515,235,520,240,515,245};

int arw1[6]={315,45,320,40,325,45};

int gdriver=VGA;

int gmode=VGAHI;

initgraph(&gdriver, &gmode, "c:\\TC20\\BGI");

c leardevice();

printf("input x:\n");

scanf("%lf",&x);

x1=x;

printf("y=%f\n",Newton(a,x));

s etbkcolor(7);

s etcolor(14);

s etlinestyle(0,0,3);

d rawpoly(3,arw);

d rawpoly(3,arw1);

l ine(120,240,520,240);

l ine(320,40,320,440);

s etlinestyle(1,0,1);

line(320,150,320,340);

line(330,150,330,340);

line(340,150,340,340);

line(350,150,350,340);

line(360,150,360,340);

line(370,150,370,340);

line(380,150,380,340);

line(390,150,390,340);

line(400,150,400,340);

line(410,150,410,340);

line(420,150,420,340);

line(430,150,430,340);

line(440,150,440,340);

setcolor(3);

outtextxy(320,30,"Y");

outtextxy(310,245,"O");

outtextxy(525,240,"X");

settextstyle(4,0,4);

outtextxy(450,400,"Newton...");

x=0;

s etcolor(2);

s etlinestyle(0,0,3);

m oveto((x+320),(240-Newton(a,x)));

w hile(x<=119)

{

x=x+1;

lineto((x+320),(240-Newton(a,x)));

}

x=0;

s etcolor(6);

s etlinestyle(0,0,1);

m oveto((x+320),(240-Lglr(a,x)));

w hile(x<=119)

{

x=x+1;

lineto((x+320),(240-Lglr(a,x)));

}

s etcolor(4);

s etlinestyle(1,0,1);

l ine((x1+320),((240-Newton(a,x1))-80),(x1+320),((240-Newton(a,x1))+120)); getch();

c losegraph();

}

实验结果(测试用例、实验结果)

实验总结与心得

通过本次实验,对Newton插值多项式有了更深刻的了解!

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

Newton插值多项式的C程序实例

附录 (一)等距结点的Newton 插值法的程序算法步骤 步骤 按照差分公式,求差分.然后利用Newton 前插公式或Newton 后插公式并把数值带入.即可以求得n 次多项式. 它在计算机上的应用步骤如下: 步骤1 输入所要求的牛顿多项式的次数n ,步长h ,并依次输入1+n 个节点 ),(i i y x . 步骤2 求得各界差分 步骤3 代入牛顿插值公式,可计算得出结果 (二)等距节点下Newton 插值的实例 例题1 已知的值列表如下: 近似计算325.1tan ,305.1tan . 解: 采用Newton 向后插公式.为此,做差分表 ).2)(1(! 30016 .0)1(!20128.01690.00723.4)(3+++++ +=t t t t t t x p 将5.001 .033 .1325.1-=-= t 代入上式,得 tan1.325≈P 3 1.325 =3.9861 将5.201 .033 .1305.1-=-=t 上式中可以得到 tan1.305≈P 3 1.305 =3.6733

C程序如下: #include void main() { float x[11],y[11][11],xx,temp,newton,t,h; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("步长:\n请输入要运算的值:h="); scanf("%f",&h); printf("请输入%d组值:\n",n+1); for(i=0;i

对拉格朗日插值法与牛顿插值法的学习和比较

对拉格朗日插值法与牛顿插值法的学习和比较 摘要:根据对拉格朗日插值法和牛顿插值法的理解,本文主要介绍了拉格朗日插值法和牛顿插值法的相关内容以及它们的区别。 关键词:拉格朗日插值法;牛顿插值法 The leaning and comparison of the Lagrange interpolation and Newton interpolation Abstract: Based on the understanding of the Lagrange interpolation and Newton interpolation ,this paper mainly describes some related knowledge as well as the difference between these two methods. Keywords: Lagrange interpolation ; Newton interpolation 前言 在工程和科学研究中出现的函数是多种多样的。常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数)(x f 在区间],[b a 上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值(即一张函数表)。显然,要利用这张函数表来分析函数)(x f 的性态,甚至直接求出其他一些点上的函数值可能是非常困难的。面对这些情况,总希望根据所得函数表(或结构复杂的解析表达式),构造某个简单函数)(x P 作为)(x f 的近似。这样就有了插值法,插值法是解决此类问题目前常用的方法。 如设函数)(x f y =在区间],[b a 上连续,且在1+n 个不同的点b x x x a n ≤≤,,,10 上分别取值n y y y ,,,10 。 插值的目的就是要在一个性质优良、便于计算的函数类Φ中,求一简单函数)(x P ,使 ),,1,0()(n i y x P i i == 而在其他点i x x ≠上,作为)(x f 的近似。 通常,称区间],[b a 为插值区间,称点n x x x ,,,10 为插值节点,称式i i y x P =)(为插值条件,称函数类Φ为插值函数类,称)(x P 为函数)(x f 在节点n x x x ,,,10 处的插值函数。求插值函数)(x P 的方法称为插值法。 插值函数类Φ的取法不同,所求得的插值函数)(x P 逼近)(x f 的效果就不同。它的选择取决于使用上的需要,常用的有代数多项式、三角多项式和有理函数等。当选用代数多项式作为插值函数时,相应的插值问题就称为多项式插值。本文讨论的拉格朗日插值法与牛顿插值法就是这类插值问题。 在多项式插值中,最常见、最基本的问题是:求一次数不超过n 的代数多项式 n n x a x a a x P +++= 10)( 使),,1,0()(n i y x P i i n ==,其中,n a a a ,,,10 为实数。

牛顿形式的埃尔米特插值多项式

期末论文 课程名称:数值分析 院系名称:巢湖学院数学系所在班级:11级数本(2)班学生学号:11020170 学生姓名:张秀丽

目录 【题目】:牛顿形式的埃尔米特插值多项式 【摘要】:......................................................... 【关键词】:.......................................................... 【正文】: 一、引言 二、重节点均差与泰勒插值 三、埃尔米特插值典例 四、牛顿形式的埃尔米特插值多项式的一些应用领域 【结束语】:......................................................... 【参考文献】:..........................................................

牛顿形式的埃尔米特插值多项式 【摘要】:在了解了插值法以后,陆续的又接触和学习到多项式插值、拉格朗日插值、牛顿插值多项式等,但在有些实际问题中,仍需要其它要求,下面又给出有关牛顿的埃尔米特插值的内容。 【关键词】:重节点均差、泰勒插值、泰勒插值多项式、埃尔米特插值。 【正文】: 一、引言 插值法是一种古老的数学方法,它来自生产实践。早在一千多年前的隋唐时期制定历法时就应用了二次插值,隋朝刘绰将等距节点二次插值应用于天文计算。但插值理论都是在17世纪微积分产生以后才逐步发展的,牛顿的等距节点插值公式及均差插值公式都是当时的重要成果。近半世纪由于计算机的广泛使用和造船、航空、精密机械加工等实际问题的需要,使插值法在理论上和实践上得到进一步发展,尤其是20世纪40年代后期发展起来的样条插值,更获得广泛应用,成为计算机图形学的基础。 在插值法的提出后我们了解了多项式插值;应用各种不同的方法对给定的插值点为求得形如01()...n n P x a a x a x =+++的插值多项式我们得到了线性插值与抛物线插值;把线性插值与抛物线插值推广到一般情形,通过讨论如何构造通过n+1个节点01...n x x x <<<的n 次插值多项式()n L x ,我们定义了n 次插值基函数从而得到了拉格朗日插值多项式:()()n n k k k o L x y l x ==?。利用插值基函数很 容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为重要。但当插值点增减时,计算要全部重新进行,甚为不变,为了计算方便可重新设计一种逐次生成插值多项式的方法,通过一系列的考察与讨论我们利用均差得到了牛顿均差插值多项式001001201()()[,]()[,,]()()...n P x f x f x x x x f x x x x x x x =+-+--++ 101[,...,]()...()n n f x x x x x x ---,随后还涉及了差分形式的牛顿插值公式等。 插值多项式要求在插值节点上函数值相等,有的实际问题还要求在节点上倒数值相等,甚至高阶导数值也相等,满足这种要求的插值多项式称为埃尔米特插值多项式。 二、重节点均差与泰勒插值 先给出一个关于均差的结论。 设01[,],,,...,n n f C a b x x x ?为[,]a b 上的相异节点,则01[,,...,]n f x x x 是其变量的连续函数。 如果[,]a b 上的节点互异,根据均差定义,若1[,]f C a b ?,则有 00'0000 ()()[,]()lim lim x x x x f x f x f x x f x x x -==-. 由此定义重节点均差

数值分析课程实验报告-拉格朗日和牛顿插值法

《数值分析》课程实验报告 用拉格朗日和牛顿插值法求解函数值 算法名称用拉格朗日和牛顿插值法求函数值 学科专业xxxxx 作者姓名xxxx 作者学号xxxxx 作者班级xxxxxx xxx大学 二〇一五年十二月

《数值分析》课程实验报告

得到的近似值为。 拉格朗日插值模型简单,结构紧凑,是经典的插值法。但是由于拉格朗日的插值多项式和每个节点都有关,当改变节点个数时,需要重新计算。且当增大插值阶数时容易出现龙格现象。 2.牛顿插值法 在命令窗口输入: x=[ ]; y=[ ]; xt=; [yt,N]=NewtInterp(x,y,xt) z=::2; yz=subs(N,'t',z); figure; plot(z,sqrt(z),'--r',z,yz,'-b') hold on plot(x,y,'marker','+') hold on plot(xt,yt,'marker','o') h=legend('$\sqrt{x}$','牛顿','$(x_k,y_k)$','$x=$'); set(h,'Interpreter','latex') xlabel('x') ylabel('y') 得到结果及图像如下: yt = N = - *t^4 + *t^3 - *t^2 + *t +

得到√的近似值为,插值函数为 N =- *t^4 + *t^3 - *t^2 + *t + , 其计算精度是相当高的。 Lagrange插值法和Newton插值法解决实际问题中关于只提供复杂的离散数据的函数求值问题,通过将所考察的函数简单化,构造关于离散数据实际函数f(x)的近似函数P(x),从而可以计算未知点出的函数值,是插值法的基本思路。 实际上Lagrange插值法和Newton插值法是同一种方法的两种变形,其构造拟合函数的思路是相同的,而实验中两个实际问题用两种算法计算出结果是相同的。

牛顿插值法实验报告

牛顿插值法 一、实验目的:学会牛顿插值法,并应用算法于实际问题。 二、实验内容:给定函数 x x f =)(,已知: 414214.1)0.2(=f 449138.1)1.2(=f 483240.1)2.2(=f 516575.1)3.2(=f 549193.1)4.2(=f 三、实验要求: (1)用牛顿插值法求4次Newton 插值多项式在2.15处的值,以此作为函数的近似值)15.2(15.2N ≈。在MATLAB 中用内部函数ezplot 绘制出4次Newton 插值多项式的函数图形。 (2)在MATLAB 中用内部函数ezplot 可直接绘制出以上函数的图形,并与作出的4次Newton 插值多项式的图形进行比较。 四、实验过程: 1、编写主函数。打开Editor 编辑器,输入Newton 插值法主程序语句: function [y,L]=newdscg(X,Y,x) n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end end C=A(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); L(k,:)=poly2sym(C);

%%%%%%%%%%%%%%%%%% t=[2,2.1,2.2,2.3,2.4]; fx=sqrt(t); wucha=fx-Y; 以文件名newdscg.m保存。 2、运行程序。 (1)在MATLAB命令窗口输入: >> X=[2,2.1,2.2,2.3,2.4]; Y =[1.414214,1.449138,1.483240,1.516575,1.549193]; x=2.15;[y,P]=newdscg(X,Y,x) 回车得到: y =1.4663 wucha =1.0e-06 * -0.4376 -0.3254 -0.3026 0.0888 0.3385 P = - (4803839603609061*x^4)/2305843009213693952 + (7806239355294329*x^3)/288230376151711744 - (176292469178709*x^2)/1125899906842624 + (1624739243112817*x)/2251799813685248 + 1865116246031207/4503599627370496 (2)在MATLAB命令窗口输入: >> v=[0,6,-1,3]; >> ezplot(P),axis(v),grid >> hold on >> x=0:0.1:6; >> yt=sqrt(x);plot(x,yt,':') >> legend('插值效果','原函数') >> xlabel('X') >> ylabel('Y') >>title('Newton插值与原函数比较') 回车即可得到图像1-1。

MA AB 牛顿插值法例题与程序

题目一:多项式插值 某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。 二、数学原理 假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式: )() )(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -??-+??+-++=αααα(1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =) ((i=0,1,2……n )确定。 根据均差的定义,把x 看成[a,b]上的一点,可得 f(x)=f (0x )+f[10x x ,](0x -x ) f[x,0x ]=f[10x x ,]+f[x,10x x ,](1x -x ) …… f[x,0x ,…x 1-n ]=f[x,0x ,…x n ]+f[x,0x ,…x n ](x-x n ) 综合以上式子,把后一式代入前一式,可得到: f(x)=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+ …+f[x,0x ,…x n ](0x -x )…(x-x 1-n )+f[x,0x ,…x n ,x ])(x 1n +ω=N n (x )+) (x n R 其中 N n (x )=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+ …+f[x,0x ,…x n ](0x -x )…(x-x 1-n )(2) )(x n R =f(x)-N n (x )=f[x,0x ,…x n ,x ]) (x 1n +ω(3) ) (x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。一般有 f k =α[k 10x x x ??,](k=0,1,2,……,n )(4)

牛顿插值法

牛顿插值算法 专业信息与计算科学 班级 113010102 姓名罗彪 学号 11301010229

1实验名称 牛顿插值法实验报告 2 实验目的 (1) 掌握牛顿插值法的基本思路和步骤,适用范围及精确度; (2) 培养编程与上机调试能力; (3) 熟悉Matlab6.1软件环境. 3 实验要求 (1) 利用牛顿插值法的求NEWTON 插值多项式的值,在matlab 中用内部 函数绘制函数图形。 (2) 利用Matlab 软件作为辅助工具来实现该实验. 4 实验原理 在拉格朗日插值方法中,若增加一个节点数据,其插值的多项式需重新计算。现构造一个插值多项式Nn(x),只需对Nn-1(x)作简单的修正即可得到,这样计算方便。 利用牛顿插值公式,当增加一个节点时,只需在后面多计算一项,而前面的计算仍有用;另一方面Nn(x)的各项系数恰好又是各阶差商而各阶差商可用差商公式来计算。 由线性代数知,对任何一个不高n 次的多项式P (x )=b0+b1x+b2x2+…+bnxn(幂基)(1) 也可将其写成P(x)=a0+a1(x-x0)+a2(x-x0)(x-x1)+…an(x-x0)..(x-xn-1) 其中ai 为系数,xi 为给定节点,可由(1)求出ai 一般情况下,牛顿插值多项式Nn(x)可写成Nn(X)= a0+a1(x-x0)+a2(x-x0)(x-x1)+…an(x-x0)..(x-xn-1)只需求出系数ai 即可得插值多项式。 5实验题目 给定21()1f x x =+ [5,5]x ∈-,取节点5(0,1,,10)k x k k =-+=,构造牛顿插值函 数计算点50.5(0,1, ,20)j t j j =-+=处10()N x 的值,并绘制图形与()f x 比较。 6实验步骤 输入n 值及())(,i i x f x ,,,1,0,n i =;要计算的函数点x 。 对给定的,x 由 [][][]00010101201101()()(),()(),,()()(),,n n n N x f x x x f x x x x x x f x x x x x x x x x f x x x -=+-+--+ +---

Newton插值法实例

Newton插值法求解梁的挠度实例 学院:建筑工程学院学号:2111206052 姓名:王瑞峰 一、问题来源 求解梁弯曲时的挠度,通常采用积分法和叠加法.积分法是利用挠曲线近似微分方程进行积分求解,积分常数可由粱的边界条件或连续光滑条件来确定.但当粱所受载荷复杂时,就要分段积分并确定多个积分常数,计算相当繁琐。而叠加法虽然比较简单,但需对梁所受的载荷进行分解,且必须分解成早已知道所产生挠度的单个载荷.若载荷作用位置不同,所用公式也不同,无规律可言,具有一定的局限性。所以就需要一种更好普遍实用的方法来求解。 二、数学模型 实例: 图1所示简支梁AB受集度为q的均布载荷作用,其弯曲刚度为脚,长度为l并等分成四段,试求1、2、3三个等分点处的挠度。 三、方法选择 牛顿插值法是一种数值计算方法,基本原理是利用牛顿插值方程代替挠曲线近似微分方程,然后用代数的方法求解.如果将梁分成较多的区段,则相应地求解较多的插值方程,且精度较高。特别指出:当求解方程较多、运算繁琐时可用计算机解决。 下面从图形表示的一般函数y=f(x)入手,推出该方法.如图2所示,将x轴进行等分,各等分点从左到右标以号码,其间距a又称为步长。如在等电处,其纵坐标分别为等。 现在讨论对应于的A点处函数y的一阶导数.因函数y在处的一阶导数

与函数在点处的一阶差商相等,即 (a) 其二阶导数即一阶导数的变化率,可代表梁在处的挠度,等于f(x)在点处的二阶差商的2倍,即 (b) 结合梁的挠曲线微分方程,我们可以得到梁的牛顿插值方程: (c) 方程中其弯矩M和弯曲刚度EI加上角标i表明这些量为梁在x轴上i点处所求算的量。 要应用该方程求解,需沿梁选择一系列的点写出插值方程,所得的方程组可以求解所选点处的挠度。 四、解答过程及其编程 因为此梁对称,1、3两点处的挠度相等,即y1=y3,所以只有两个值y1和y2为方程中的未知量 点1处(i=1):,弯矩,其牛顿插值方程为: 又因为,上式简化为: (1) 点2处(i=2):,弯矩,其牛顿插值方程为: 又因为,所以上式简化为: (2) 可以用Matlab分别求得y1,y2 代码如下: A=[-2,1;1,-1];b=[3/512;1/256]; y=inv(A)*b 截图如下:

牛顿插值法原理及应用

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x 0)...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

相关文档
最新文档