量子调控与量子信息

量子调控与量子信息
量子调控与量子信息

附件2

“量子调控与量子信息”重点专项

2016年度项目申报指南

“量子调控与量子信息”重点专项的总体目标是瞄准我国未来信息技术和社会发展的重大需求,围绕量子调控与量子信息领域的重大科学问题和瓶颈技术难题,培养和造就一批具有国际竞争力和影响力的研究团队,开展基础性、战略性和前瞻性探索研究和关键技术攻关,产生一批原创性的具有重要意义和重要国际影响的研究成果,并在若干方面将研究成果转化为可预期的具有市场价值的产品,为构筑具有我国自主知识产权的量子调控与量子信息技术的科学基础,以及推动我国量子信息技术的实用化做出重要贡献,为我国在未来的国际战略竞争中抢占核心技术的制高点打下坚实基础。

本专项将对我国有优势和引领作用的研究方向如新型超导、拓扑态、量子通信等强化支持力度,对我国比较薄弱但亟待加强的重要研究方向进行特殊支持。积极鼓励和倡导原始创新,力争在国际上形成以我国为主导的研究新方向。除开展基础研究外,还要积极推动应用研究,在新原理原型器件等方面取得突破,向功能化集成和实用化方向推进。量子调控前沿基础研究的目标是认识和了解量子世界的基本现象和规律,通过开发新材料、构筑

—1—

新结构、发现新物态以及施加外场等手段对量子过程进行调控和开发,在关联电子体系、小量子体系、人工带隙体系等重要研究方向上建立突破经典调控极限的全新量子调控技术。量子信息基础研究和应用研究的目标是在量子通信的核心技术、材料、器件、工艺等方面突破一系列关键瓶颈,初步具备构建空地一体广域量子通信网络的能力,实现量子相干和量子纠缠的长时间保持和高精度操纵,实现可扩展的量子信息处理,并应用于大尺度的量子计算和量子模拟以及量子精密测量。

“量子调控与量子信息”重点专项将部署6个方面的研究任务:1.关联电子体系;2.小量子体系;3.人工带隙体系;4.量子通信;5.量子计算与模拟;6.量子精密测量。

根据专项实施方案和“十二五”期间有关部署,2016年优先支持15个研究方向。申报单位针对重要支持方向,面向解决重大科学问题和突破关键技术进行一体化设计,组织申报项目。鼓励围绕一个重大科学问题或重要应用目标,从基础研究到应用研究全链条组织项目。鼓励依托国家实验室、国家重点实验室等重要科研基地组织项目。

项目执行期一般为5年。为保证研究队伍有效合作、提高效率,项目下设课题数原则上不超过4个,每个项目所含单位数控制在4个以内。所有重要支持方向均受理青年科学家项目申请。

1. 关联电子体系

—2—

1.1 多种量子有序态的竞争与调控

研究内容:关联电子体系中多种量子序的竞争和量子序在外场下的调控及物理机制。

考核指标:发现过渡族和稀土化合物等窄能带功能材料新体系;揭示关联电子体系中电荷、自旋、轨道等宏观量子序的共存和竞争的微观机理,以及导致的新奇量子效应;确定其物理相图,建立对这些量子序及新奇量子效应的多场调控技术;发现具有新奇量子效应的新材料,构筑基于量子有序态调控的原型器件。

1.2 新型高温超导和非常规超导材料

研究内容:新型高温超导和非常规超导材料的制备、新奇物性及超导机理。

考核指标:构筑新型高温超导和界面超导材料,获得超导转变温度高于液氦的超导新材料;揭示高温超导和界面超导电性的机理;构筑具有新奇物性的非常规超导材料;建立非常规超导反常物性与超导电性的调控技术。

1.3 自旋阻挫和自旋液体

研究内容:量子自旋阻挫体系和自旋液体的物理性质。

考核指标:揭示自旋阻挫和自旋液体量子材料体系中的新奇现象;发现新的自旋阻挫和量子自旋液体材料,推动基于新现象的新应用;建立对新奇物性调控的新技术。

2. 小量子体系

—3—

2.1 拓扑量子材料、物性与器件

研究内容:设计、预言和合成新型拓扑量子材料,研究其新奇量子物态和拓扑量子相变,探索新型拓扑电子学原型器件。

考核指标:发现几种面向应用、性能更优的新型拓扑量子材料;制备出几类具有潜在应用价值的新型拓扑电子学原型器件;利用极低温、强磁场、高压等综合极端条件以及微纳器件加工技术实现对拓扑量子物态的多参量调控,揭示拓扑量子物态及其相变的一般规律。通过理论预测、材料生长、器件探索方面的全链条设计,实现国际引领。

2.2 新型磁性材料、磁结构和自旋电子学

研究内容:新型磁性材料、磁结构和自旋极化、自旋流的检测和调控。

考核指标:发现若干新型磁性材料和磁结构;建立新表征技术;阐明单原子、单分子自旋效应,构筑高密度、低能耗磁存储器件;建立与半导体技术兼容的自旋极化电流和自旋流的产生、输运、检测及调控新技术;构筑自旋电子学器件。

2.3 受限和外场下小量子体系

研究内容:受限体系特别是单原子/单分子、单电子、单光子、单自旋和单激发态等单量子态的检测和操控,轻元素原子核量子态的检测与操控,小量子体系对局域场等外场的响应及量子态调控。

—4—

考核指标:构筑新型小量子体系,建立单量子态的高灵敏检测技术;建立单量子态包括轻元素原子核的高效调控技术;建立局域场和小量子体系作用的理论和计算新方法;发展局域场谱学新技术,提出新概念,揭示新现象;构筑新原理原型器件,发展新型单光子光源。

3. 人工带隙体系

3.1 新型人工带隙材料和器件

研究内容:基于光子能带与带隙调控的新材料和新器件。

考核指标:揭示人工带隙材料光子能带和带隙的调控机理,发现所独有的新现象和效应;发展新型设计方法,建立制备和表征关键技术;制备具有特殊传播特性的新材料,实现具有发射特性高效可调的新器件。

3.2 微腔与量子态的耦合

研究内容:微腔与各种量子态的耦合及导致的新效应。

考核指标:建立高品质因子微腔的制备方法以及与量子态的可控耦合技术;阐明微腔与各种量子态相互作用的调控机理、方法和技术,揭示强耦合导致的新颖效应和腔量子电动学效应;建立微腔与各种量子态的高效耦合和调控新技术,制备新原理器件。

4. 量子通信

4.1 可集成化的广域量子通信网络技术

研究内容:支持城域量子通信组网的测量器件无关量子密钥

—5—

分发关键技术,满足远距离量子中继需求的冷原子量子存储技术,基于卫星平台的自由空间量子通信技术,满足广域量子通信网络需求的具有自主知识产权的核心量子通信器件。

考核指标:发展GHz光注入激光器等关键技术,结合经典全光通信网络,获得基于测量器件无关量子密钥分发的最优拓扑城域组网方式,并进行实验演示;发展可以确定性地产生纠缠、具备通讯波段接口的冷原子量子存储技术,性能指标满足超越光纤直接传输安全距离极限的远距离(~500公里)量子中继需求;发展基于太阳暗线量子光源、强背景声隔离和抑制等关键技术,在星间量子通信和全天时卫星量子通信技术上取得突破,初步形成构建空地一体广域量子通信网络体系的能力;自主研发广域量子通信网络所需的核心器件,包括重复频率超过GHz的基于InGaAsP/InP雪崩二极管(探测效率超过20%,暗计数低于2Kcps)、参量上转换(探测效率超过50%,暗计数低于1Kcps)、超导(探测效率超过90%,暗计数低于1Kcps)的单光子探测器等。

5. 量子计算与模拟

5.1 基于超冷原子气体的量子模拟

研究内容:超冷玻色、费米量子气体在人造规范势与光晶格中的拓扑和多体量子效应。

考核指标:在超冷玻色、费米量子气体中设计新的拓扑系统,探测其独特的量子性质,动态操控拓扑量子态;产生并探测量子—6—

多体纠缠。为各类量子霍尔态和Majorana费米子等新奇量子态在拓扑量子信息与量子计算方面的应用奠定基础。

5.2 半导体量子芯片

研究内容:半导体量子芯片研发的物理、材料和信息学基础。

考核指标:探究和优化拥有长量子相干特性的半导体量子比特材料体系(如空穴载流子材料、无核自旋材料等)、编码方式(如新型准平行能级、电荷比特、自旋比特等)和调控机理;构造可集成的基本量子逻辑单元库;构建多量子比特扩展的基本架构,探索与半导体系统兼容的飞行量子比特,实现半导体量子比特长程耦合,获得量子数据总线模型,为大规模集成化半导体量子芯片的研发奠定基础。

5.3 超导量子芯片与量子混合系统

研究内容:20个以上超导量子比特的量子芯片制备,多比特高精度相干操纵及可扩展的量子模拟和量子计算。

考核指标:自主设计、制备并测试包含20个以上的超导量子比特的芯片;获得超过20微秒以上的退相干时间和99.9%以上的逻辑门操作保真度;实现超导量子比特与长寿命量子存储体系的量子接口和多种物理体系的混合系统,通过光学、微波等手段实现全方位调控;通过多个超导比特的纠缠操纵进行高复杂度的量子模拟实验;通过超越量子容错阈值的量子逻辑门和量子纠错实现可容错的量子计算。

—7—

5.4 离子阱量子计算

研究内容:基于囚禁离子的量子计算技术。

考核指标:在离子实验系统中相干控制15—20个量子比特,实现多比特量子纠缠和量子算法演示;将单比特量子逻辑门保真度提高到99.99%以上,双比特量子逻辑门保真度提高到99%,超越容错量子计算的阈值要求;将单离子量子比特的相干时间提高到1000秒;发展刀片离子阱以及新型更容易扩展集成的离子阱的制备技术与加工工艺,实现不同种离子的混合囚禁系统,以延长相干时间和量子逻辑门保真度。

6. 量子精密测量

6.1 基于原子与光子相干性的量子精密测量

研究内容:光子—原子耦合新机理,光子—原子关联量子干涉技术。

考核指标:实现新型光子与原子量子态源,获得突破传统测量技术极限的新型量子精密测量技术,实现新型原子干涉仪、光子—原子混合量子干涉仪、冷原子干涉仪,实现转动和重力的高精度测量。

6.2 超越标准量子极限的量子关联精密测量

研究内容:基于囚禁原子与离子的超越标准量子极限的新型原子频标,单量子与多量子关联高灵敏测量与应用。

考核指标:实现频率稳定度随时间演化优于1/τ1/2的原子频—8—

标;发展新型原子频标比对方法,传输精度超越标准量子极限;实现原子阱单原子灵敏检测及在痕量放射性惰性气体同位素标定中的应用;利用原子、离子、光子等可控多量子体系的关联态突破标准量子测量极限。

—9—

量子密钥分发误码协调算法分析

—22— 量子密钥分发误码协调算法分析 赵 峰,王发强,郑力明,路轶群,刘颂豪 (华南师范大学信息光电子科技学院光子信息技术广东省高校重点实验室,广州 510006) 摘 要:误码消除是量子密钥分发过程的关键技术之一。分析了奇偶-汉明单向函数纠错算法的原理,给出了对原始量子密钥进行误码协调的步骤及表达式,对这种算法的纠错能力进行了理论和实验分析。结果显示,当原始密钥误码率为11%时,利用该纠错技术能够完全消除误码,且最终密钥生成效率与密钥的原始误码率直接相关。 关键词:误码协调;奇偶比较;汉明码;量子密钥分发 Error Reconciliation Algorithm for Quantum Key Distribution ZHAO Feng, WANG Faqiang, ZHENG Liming, LU Yiqun, LIU Songhao (Lab of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006) 【Abstract 】Error reconciliation is a necessary step for quantum key distribution process. The efficiency and the correction ability of error reconciliation procedures are analyzed and estimated, and it gives some expressions about it. The experiment results indicate that it can easily eliminate all errors when the error rate is at 11%. 【Key words 】Error reconciliation; Parity comparison; Hamming codes; Quantum key distribution 计 算 机 工 程Computer Engineering 第33卷 第12期 Vol.33 No.12 2007年6月 June 2007 ·博士论文· 文章编号:1000—3428(2007)12—0022—03 文献标识码:A 中图分类号:TP391 量子密钥分发使得合法通信双方Alice 和Bob 在异地可 以随时建立起秘密的随机序列,通常称为密钥,其安全性由海森堡的不确定性原理和量子不可克隆定理保证。然而,由于实际量子信道存在不可避免的噪声,以及非法窃听者干扰,使得合法双方生成的密钥中存在一定的误码。因此,当密钥分发完成后,若其误码率在一定范围内,则通信双方通常利 用保密纠错技术来消除误码[1~4]。 量子密钥分发过程一般需要4个步骤:量子传输,数据筛选,保密数据纠错和信息保密增强。经典通信中的误码消除技术常常会伴随通信信息的泄漏。实际量子保密通信误码消除过程需要极少的泄漏密钥的信息,并且泄漏的信息可以通过保密增强技术来消除[5,6]。 数据纠错技术是通信系统中不可缺少的部分,在量子保密通信中通常利用奇偶比较方法来构造各种纠错协议[7,8],通常双方按照协议将生成的密钥分成段,并计算其奇偶性,然后在经典信道中进行奇偶比较。为了消除窃听者获得的信息,在每次比较结束双方丢掉一位。利用奇偶比较完全消除误码,需要多次在经典信道上进行通信。由于通信的次数会随着密钥长度增加而增加,通常n 位的序列需要2log n 次通信[7],并且,为了安全起见每次通信前需要身份认证[9] ,这样完全消除密钥误码过程需要的时间随着密钥增加而增加。 二元汉明码的纠错能力为1=t ,利用汉明码的校验矩阵h 来构造校验码,Alice 和Bob 双方通过比较校验码来验证共享密钥的完整性,在文献[10]中用于量子密钥分发误码协 调[10]。本文对奇偶-汉明纠错算法在量子密钥分发过程中的应用进行分析。 1 奇偶-汉明纠错算法 奇偶-汉明纠错算法利用了奇偶比较来检误,比较汉明校验码进行纠错。由于二元汉明码的纠错能力为1,当某段的误码多于一个时利用汉明算法可能会引入误码。因此,汉明算法仅仅当密钥误码率很低,每段含一个误码以上可能很小时是很有效的。Alice, Bob 首先利用奇偶比较方法对误码进行一次比较,若奇偶性一致,则表示该段中没有误码或含有偶数个误码;若奇偶不一致,则表示含有奇数个误码,当误码率较低而且服从二相分布,则存在一个误码的概率远远大于奇数多个。然后利用汉明纠错方法对奇偶性不一致的进行纠错。通常为了减少泄漏的信息,在奇偶比较结束时丢掉最后一位。而利用汉明纠错算法则需丢掉m 位,其位置为{}{}2(0,...,1)i i m ∈?。 二元汉明校验矩阵()(3)m h m ≥,表述为 ) 2](mod 2[1 )(,?=i m j i j h (1) 例如当3≡m 时,其矩阵表示为 ? ?????????=000111101100111010101)3(h (2) 利用校验矩阵构造校验码{}1,...,i S S i m ==,,则i S 为 {}m j m j i j i m h X S 1,0)2(mod 121)(,∈??? ?????=∑?= (3) 其中,1 1,...,2m j X j ?=()为合法通信双方(Alice,Bob )含有误码的一段密钥序列。双方进行纠错过程中在经典信道上发送 {}i S S =,而不发送j X 本身。 利用奇偶-汉明纠错算法过程如下:Alice 和Bob 选择相 基金项目:国家“973”计划基金资助项目(G2001039302) 作者简介:赵 峰(1979-),男,博士生,主研方向:量子信息技术;王发强、郑力明,副教授;路轶群,研究员;刘颂豪,院士 收稿日期:2006-08-10 E-mail :qkd@https://www.360docs.net/doc/b52973555.html,

[NSFC]光子带隙调控、新效应及其应用

项目名称:光子带隙调控、新效应及其应用首席科学家:xxx 起止年限:2011.1至2015.8 依托部门:教育部上海市科委

二、预期目标 总体目标: 围绕光子晶体的带隙调控、新现象及其应用,研究光子晶体带隙调控新机理和新现象,如特异材料及复合周期性结构和关联光子学微结构阵列;研究光子人工微结构集成回路的调控机理与新现象,如光子晶体和亚波长金属周期微结构中高品质微腔、对量子受限系统中的受激激发和自发辐射过程的影响、量子信息的制备和调控等。研究光子晶体中光调控新效应与潜在应用研究,如三维光子晶体的光调控新效应、非线性光子晶体的光调控新效应、光子局域共振微结构诱导的干涉效应和宏观量子效应等。通过项目的实施,在基础研究上取得一批在国际学术界领先的成果,产生一批有自主知识产权的专利技术,为光通讯、微波通讯、光电集成、航空航天系统及国防科技等领域的跨越式发展提供基础研究支撑。 五年目标: 1.设计与制备微波波段特异材料,利用特异材料及其复合周期结构 的特殊带隙结构、奇异缺陷模式和界面模式,研制新型微波原理性器件如新型飞行器天线罩、用于高速移动系统无线信道分析的新型天线等。 2.设计与制备光子晶体与量子受限系统复合结构,利用光子晶体与 量子受限系统复合结构光电量子调控和量子限制所产生的新激光原理和激光现象,研制新型激光器。 3.设计与制备亚波长金属周期微结构与量子受限系统复合结构,利 用光子晶体与量子受限系统复合结构光电量子调控和量子限制所产生的新跃迁激发原理和吸收现象,研制新型红外波段探测器。 4.设计与制备光子学微结构阵列,利用非线性光子学微结构阵列的

特殊带隙结构和光调控效应,研制新型光调制器件如光开关。5.发表一批高质量学术论文,形成一批有自主知识产权的专利技术。

量子与光学

量子与光学 ——量子光学领域的历程、进展以及量子点 徐慧远 111086

一、量子光学 在经典力学中,生活的简单的。颗粒就是颗粒,波就是波,并且我们确切地知道事物存在的位置和状态。然而,任何一个学过物理的人都会告诉你,在量子领域,问题就变得复杂多了。下面我将从一个特别的视角来描述量子——量子光学,把量子理论和光学结合在一起构成了一个奇特,精彩的世界。 根据澳大利亚昆士兰大学的量子光学领域的专家Gerard Milburn的说法,这一领域的研究要追溯到上世纪60年代。值得一提的是,哈佛大学的Roy Glauber教授最先开始量子电磁场的相干光研究,并以此获得了诺贝尔奖。 Milburn解释道,“Roy在光学干涉实验中展示了已经广为人知的相干性质领域的量子状态。尽管这证实了特定的场态会从经典光学中重新得到已知的结果,但是这一新的量子光学领域表明了独特的量子表现将会变成某些类型情境的证据”。“通过理论科学家和实验科学家之间的紧密的交流,这一学科在上世界60至90年代之间的历史可以看成是一种这一前景的稳固的实现。” 根据Milburn的说法,上世界70年代是研究光子计数统计的量子特性的最重要的10年,并且在预言和观测光子的反聚束方面达到了顶峰。在随后的80年代科学家们又反过头来补充研究光的波动性,重点关注于相位依赖特性。在90年代,纠缠态的非经典方面又成为了研究的主要领域,随后出现了贝尔不等式这些具有先驱性的成果。 90年代还见证了在原子凝聚物和量子信息这些新领域的分歧,并且取得了重大的进步。量子光学早90年代早期就已成为量子信息理论领域的一些新思想的理想的实验土壤,并且之后取得了巨大的成功。许多更加令人称奇的关于量子理论的预言(包括电子传输和反贝尔不等式)都已经被证实在量子光学领域具有惊人的可靠性。Milburn还解释了这些巨大成功的原因: “实验室要想达到光频段,温度就必须极其低。因而光频段的热激发通常可以忽略的,因此可以直接研究量子相干性而不用去考虑热噪声产生的隐藏的影响。当然,必须得考虑自发辐射和光子吸收,”Milburn还提到“这一领域的大部分的进展都是来自于减轻这些热噪声影响从而得到相干量子控制的一个非凡的水平,尤其是在量子通信协议方面,比如说量子密匙分配。” 那么将来这一领域将会怎样呢?下一个十年,量子光通信和计算无疑将会继续取得重大的成果。Nature的一篇社论中高度评价了量子信息协议的实现在近些年取得的进展。目前应用方面主要受到硬件方面的限制,尤其是光子探测器和可靠的单光子源的需求。好消息是有文章表明在这方面已经有了稳步的进展。 近来在处理要求更高的任务时所涉及到的量子光学系统定标方面的一项非常重要的发展就是集成光学电路的应用,这打开了片上量子光学实验的这一具有有人前景的大门。已有文章报道了实现了具有很高集成度的器件,从而避免了繁

全光纤四态分离调制连续变量量子密钥分发解读

全光纤四态分离调制连续变量量子密钥分发 【摘要】:现代社会已经步入信息化时代,信息安全的重要性日渐凸显。能够保障信息安全的密码学越来越受到人们的重视,其应用已渗透到人们日常生活的各个领域。基于量子力学基本原理的量子密钥分发可以使合法通信双方获得一组的无条件安全的随机密钥,该密钥可用于信息的加密与解密,进而实现双方的保密通信,任何第三方的窃听都可以被通信双方察觉到。量子密钥分发的无条件安全性,使得相关的理论和实验进入了一个飞速发展的时期,在未来的国防、金融、网络和通信等领域具有广阔的应用前景。连续变量量子密钥分发利用光场的正交分量作为信息的载体,所需光源易于制备,探测效率高,同时和当前的光通信网络具有良好的兼容性,近年来受到极大关注,在理论和实验方面均得到了迅猛的发展。按照调制方式可将相干态连续变量量子密钥分发分为高斯调制和非高斯调制方案,四态分离调制方案属于非高斯调制方案,具有调制方法简单、数据协调效率高等优点,理论上可以实现距离长达百公里以上的安全密钥分发。本论文从理论和实验两方面对基于该方案搭建的全光纤连续变量量子密钥分发系统展开了研究。论文首先回顾了连续变量量子密钥分发的国内外发展动态,接下来对该领域内的基础理论知识进行了介绍,并对基于平衡零拍探测的四态分离调制连续变量量子密钥分发的无条件安全性进行了分析。然后对适用于该领域的全光纤脉冲平衡零拍探测装置的各种特性及相应测量结果进行了分析,最后介绍了基于全光纤器件的实验系统,

目前已在该系统上实现了距离为30km,安全密钥速率为1kbits/s的量子密钥分发。本论文的主要工作内容包含以下三个方面。1.理论分析了基于平衡零拍探测的四态分离调制相干态连续变量量子密钥分发方案的两种模型,它们是制备与测量模型和EPR纠缠模型。在制备与测量模型中介绍了所选方案的编码规则,经过编码后双方可获得一组相关联的二进制数。在该模型下,形象地给出了信号光场以及额外噪声在相空间中的演化过程。在EPR纠缠模型下对所选方案的无条件安全性进行了分析。首先介绍了系统中的各种噪声,将Alice端的源额外噪声等效为Fred所拥有的量子态,接着给出了Alice和Bob之间互信息量的计算方法,Bob采用了平衡零拍的探测方法。然后详细地分析了Eve可获得的信息量的上限Holevo边界的计算过程。最后给出了安全密钥速率及额外噪声的计算方法。额外噪声是决定密钥分发的距离及安全密钥速率大小的关键因素。两种模型是等价的。在安全性的证明过程中,假设Eve拥有各种可能存在的先进装备,但是她的攻击手段并不能违背量子力学原理而且无法获得Bob端的装置的信息。在Eve可以获得Fred的量子态时,Alice端的源额外噪声与通道额外噪声是等效的。2.设计并制作了适用于量子通信领域的全光纤时域脉冲平衡零拍探测装置,该探测装置的脉冲重复速率可达2MHz,增益为3.2μV/光子,共模抑制比为76dB,信噪比可达20dB以上,总的量子效率为66%。论文详细分析了该探测装置的工作原理和特性,包括共模抑制比、散粒噪声极限和探测装置的稳定性。要获得高的共模抑制比,不仅要选取两个响应特性尽量相同的光电二极管,而且要求两光电二

量子信息与量子计算课程论文

半导体量子点的电子自旋相干和自旋操控 摘要:现在各国科学家都在努力希望实现量子计算机,而量子计算机需要一些重要的量子性质,其一是“量子相干性”。该文介绍了量子相干性,并简略介绍了半导体量子点中的电子的自旋相干性,简要探讨半导体量子点的电子自旋操控的方法 关键词:量子点自旋相干自旋调控 一﹑量子相干性 量子相干性,或者说“态之间的关联性”。其一是爱因斯坦和其合作者在1935年根据假想实验作出的一个预言。这个假想实验时这样的:高能加速器中,由能量生成的一个电子和一个正电子朝着相反的方向飞行,在没有人观测时,两者都处于向右和向左自旋的叠加态而进行观测时,如果观测到电子处于向右自旋的状态,那么正电子就一定处于向左自旋的状态。这是因为,正电子和电子本是通过能量无中生有而来,必须遵守守恒定律。这也就是说,“电子向右自旋”和“正电子向左自旋”的状态是相关联的,称作“量子相干性”。这种相干性只有用量子理论才能说明。 要在量子计算机中实现高效率的并行运算,就要用到量子相干性。彼此有关的量子比特串列,会作为一个整体动作。因此,只要对一个量子比特进行处理,影响就会立即传送到串列中多余的量子比特。这一特点,正是量子计算机能够进行高速运算的关键。 二﹑半导体量子点中的电子的自旋相干性

半导体中的电子电荷相干态已经由超快脉冲激光光谱进行了广 泛的研究。强的激光脉冲在半导体中产生了大量的电子和空穴,它们的动力学过程大致可分成3 个阶段: (1) 无碰撞或相干阶段。在这个阶段内,电子和空穴与光场之间产生了一个相干的耦合振荡,导致 了材料极化强度的振荡,类似于二能级系统的拉比跳跃。 (2) 位相弛豫阶段。在这个阶段内,电子和空穴都失去了它们的位相相干性,类 似于二能级系统的退相弛豫。 (3) 准热平衡阶段。由于电子- 声子相互作用,电子和空穴将能量传递给声子(晶格) ,它们分别弛豫到导 带和价带的顶部,形成准平衡状态。利用不同延迟时间的泵- 探束瞬态吸收光谱可以测量半导体中的退相弛豫时间。图1 是GaAs 三个激发载流子浓度下瞬态差分透射系数ΔT作为延迟时间的函数。 由图1 可见,有两个衰减过程;一个是快过程,另一个是慢过程。前者对应于位相弛豫,后者对应于准热平衡弛豫。实验测得GaAs中 的位相弛豫时间分别为30 ,19 ,13fs ,对应于由小到大三个载流子 浓度。这个位相弛豫时间是较小的,主要是由电子的谷间散射引起的。

受限空间中光与超冷原子分子量子态的调控及其应用

项目名称:受限空间中光与超冷原子分子量子态的 调控及其应用 首席科学家:贾锁堂山西大学 起止年限:2012.1至2016.8 依托部门:山西省科技厅

一、关键科学问题及研究内容 拟解决的关键科学问题: 超冷原子分子作为一种理想的介质已经被广泛用于物质与场的相互作用,原子/分子量子态是精密光谱、量子信息以及超高灵敏测量的重要量子资源。为实现受限空间中光场与超冷原子分子相互作用所产生的新型量子态的操控与应用,拟解决的关键科学问题如下: 1)在超冷条件下,从单原子到原子系综的量子态(包括纠缠态、相干叠加态、自旋压缩态等)制备和操控的新原理、新方法。中性原子的冷却及长时间的有效控制;偶极阱中单粒子的高效装载以及在特定环境(如微光学阱、微腔)中单粒子的外态和内态的控制;基于冷原子系综的自旋压缩态制备和应用及量子非破坏性测量;失谐偶极光阱,制备高密度超低温冷原子团;利用量子非破坏性测量并实现冷原子自旋压缩态、冷原子自旋压缩、量子Fisher信息及量子关联。 2)受限空间中光与原子/分子相互作用(包括强耦合)的物理实现及其新奇量子效应。微型光学阱和微光学腔的构建和控制的新方法;基于强耦合真空受激拉曼绝热输运过程的量子态的制备;耗散过程对量子态制备和操控的影响以及克服退相干的新途径;极化费米子超流体系、玻色-费米混合体系、组错晶格的相互作用与玻色体系等的新奇量子态;BCS-BEC渡越的物理机制。 3)超冷极性分子量子气体的高效制备和分子量子态操控的新机制。超冷极性分子及相干叠加态和纠缠态的制备;利用外场有效调控极性分子之间的偶极—偶极相互作用以及超冷极性分子与单光子的强耦合作用;实现高保真度的量子信息存储以及精密光谱测量。 4)精密光谱、量子计量、量子测量(包括量子非破坏性测量等)和量子信息中的新原理和新技术。发展基于噪声微扰的新型精密光谱方法,进行原子系统中磁场的精密测量;基于光腔和电磁诱导透明(EIT)联合作用以及冷原子系综的自旋压缩态的制备,实现突破标准量子极限的精密测量,提高量子计量中参数估计的精度;进行超冷极性分子的超高分辨光谱测量,利用分子纠缠态实现量子逻辑门;利用受限空间中光与原子分子强耦合相互作用产生的新型量子态,实现原子的量子寄存、可控单光子源以及量子节点。

第21章--量子光学基础

第21章--量子光学基础

第二十一章 量子光学 基础 一、选择题 1、用频率为ν1的单色光照射某一种金属时,测 得光电子的最大动能为E K 1;用频率为ν2的单色 光照射另一种金属时,测得光电子的最大动能为 E K 2.如果E K 1 >E K 2,那么 (A) ν1一定大于ν2. (B) ν1一定小于ν2. (C) ν1一定等于ν2. (D) ν1可能大于也可 能小于ν2. [ D ] 2、用频率为ν1的单色光照射某种金属时,测得 饱和电流为I 1,以频率为ν2的单色光照射该金属 时,测得饱和电流为I 2,若I 1> I 2,则 (A) ν1 >ν2. (B) ν1 <ν2. (C) ν1 =ν2. (D) ν1与ν2的关 系还不能确定. [ D ] 3、已知某单色光照射到一金属表面产生了光电 效应,若此金属的逸出电势是U 0 (使电子从金属 逸出需作功eU 0),则此单色光的波长λ 必须满 足: (A) λ ≤)/(0eU hc . (B) λ ≥)/(0 eU hc . (C) λ ≤)/(0 hc eU . (D) λ ≥) /(0hc eU . [ A ] 4、已知一单色光照射在钠表面上,测得光电子 的最大动能是 1.2 eV ,而钠的红限波长是5400

?,那么入射光的波长是 (A) 5350 ?. (B) 5000 ?. (C) 4350 ?. (D) 3550 ?. [ D ] 5、在均匀磁场B 内放置一极薄的金属片,其红 限波长为λ0.今用单色光照射,发现有电子放出, 有些放出的电子(质量为m ,电荷的绝对值为e ) 在垂直于磁场的平面内作半径为R 的圆周运动, 那末此照射光光子的能量是: (A) 0λhc . (B) 0 λhc m eRB 2)(2+ . (C) 0λhc m eRB +. (D) 0λhc eRB 2+. [ B ] 6、一定频率的单色光照射在 某种金属上,测出其光电流 的曲线如图中实线所示.然 后在光强度不变的条件下增 大照射光的频率,测出其光电流的曲线如图中虚线所示.满足题意的图是: [ D ] O I U O I U O I U O I U

量子光学与量子信息讲课教案

量子光学与量子信息

量子光学与量子信息 摘要:量子光学是应用辐射的量子理论研究光辐射的产生、相干统计性质、传输、检测以及光与物质相互作用中的基础物物理问题的一门学科。 关键字:量子光学量子信息 JC模型 TC模型 早在1900和1905年,普朗克和爱因斯坦就提出了光量子假说,并成功解释了黑体辐射谱分布与光电效应,确定了光具有波粒二象性的基本物理思想。然而,长期以来由于经典电磁辐射理论能完满地解释绝大多数物理光学实验现象,光的量子理论并未得到系统发展。直到2O世纪7O年代以后,随着激光与光电子技术的进步,一系列用经典理论无法解释的非经典光学效应逐步被实验观测,才形成了以量子化光场为基础的量子光学学科领域。 光量子或称光子为基本能量单元的量子化光场遵循量子电动力学基本规律,严格地说只有用QED理论,才能解释迄今为止所观察到的所有光学现象。量子光学用量子电动力学理论研究光场的量子性和相干性,以及光与原子相互作用的量子力学效应。当前,量子光学中应用性较强的重要研究领域有:光场的量子噪声,光场与物质相互作用中的动量传递、腔量子电动力学等。 在光学与原子物理这门课程的学习中,我们了解到了量子化这个概念。那么,量子光学在科技实验研究中有哪些应用呢? 首先,量子光学的原理和理论基础为: 热辐射基尔霍夫定律 一.热辐射

1.热辐射:在一定时间内辐射能量的多少及能量按波长的分布都与物体的温度有关,故称电磁辐射为热辐射(温度辐射); 辐射能(λ,T ),如炉子,酒精灯… 2.平衡热辐射:相同时间内辐射与吸收的能量相等,T 不变 二. 辐出度(辐射出射度,发射本领) 1. 单色辐出度:单位时间内从物体表面单位面积上向各个方向所发射的波长在λλλd ~+范围内辐射能量)T (dE λ和波长间隔λd 的比值 λ λλd )T (dE )T (e = 2. 辐出度:单位时间内从物体表面单位面积上向各个方向所发射的各种波长的辐射总能量。 λλd )T ,(e )T (E ?∞ =0 三. 吸收比、反射比 1. 吸收比:J B )T (a = 单色吸收比:) T ,(J )T ,(B )T ,(a λλλ= 2. 反射比:J R )T (=ρ 单色反射比:) T ,(J )T ,(R )T ,(λλλρ= 不透明物体:1=+)T ,()T ,(a λρλ 四. 绝对黑体(黑体) 1. 定义:1=)T ,(a λ的物体

浅谈量子力学与量子思维

量子力学:不平凡的诞生预示了不平凡的神奇 ——浅谈量子力学与量子思维 理学院物理系林功伟 量子力学自诞生以来,极大地推动了现代科学和技术的发展,已经深刻地改变了我们的生活方式。从电脑、电视、手机到核能、航天、生物技术,处处它都在大显身手,它已经把人类社会带入量子时代。但量子理论究竟带给了我们什么?这个问题,至今带给我们的仍只是无尽的想象。近年来,校长钱旭红院士,从改变思维的角度出发,在多种场合呼吁全社会要重视量子思维方式并加以运用,不久前又在“文汇科技沙龙”上,提议让“量子思维”尽早走入中小学课堂。那么,量子力学究竟是什么? 量子力学的诞生是一段波澜壮阔的传奇。它的发展史是物理学乃至整个科学史上最为动人心魄的篇章之一。不平凡的诞生预示了不平凡的神奇。在量子世界中,处事原则处处与我们熟悉的牛顿力学主宰的世界截然不同。在我们熟悉的世界,要么是波,要么是粒子。在量子世界,既是波也是粒子,既不是波也不是粒子,兼具波和粒子的特质,即波粒二象性。从而引申出量子叠加、测量塌缩、量子纠缠等种种神奇的现象。 量子叠加:鱼和熊掌亦可得兼 在经典的牛顿力学体系中,把粒子的运动都归结为确定轨道的机械运动。知道粒子某个时刻的运动状态与力的作用,就可以推断粒子的过去,也可以预知粒子的未来。就像一个算命先生,你告诉他生辰八字,他掐指一算就知道你的前世来生。在这种机械观下,仿佛一切都是注定的、唯一确定的。然而,在量子世界,一切都变得不一样。比如,有一天要从上海去北京,异想天开的你既想乘坐京沪高铁体验沿途的风光,又想搭乘飞机享受鸟瞰大地的感觉。我们习惯的方式是同

一时间我们只能选择其一,必须割爱其一。但在量子世界中你可以在火车上和飞机里共存量子叠加态上,鱼和熊掌亦可得兼。 这种量子叠加状态非常奇特。同一时刻,你既体验着高铁沿途的风光,也享受着飞机上鸟瞰大地的感觉,如果说同一时刻有两件事,但分别要求在火车上和在飞机里完成,量子叠加态的你完全可以神奇地一一照做。就像《西游记》中的孙悟空有分身术,同时一个上天一个入地。现在科学家们正利用这一原理来研制未来的量子计算机。量子计算机中的量子比特可以在无数的空间中量子叠加。它们并行地操作完成复杂的计算。已有研究表明这种量子并行计算确实可以在某些特定的复杂计算问题上大大提高效率。例如:一个400位的阿拉伯数字进行质数因子分解,目前即使最快的超级计算机也要耗时上百亿年,这几乎等于宇宙的整个寿命;而具有相同时钟脉冲速度的量子计算机可能只需要几分钟。还有利用量子快速搜索算法,可能很快从一个大森林里找到一片叶子,或者在一个沙滩上找到一颗沙子。在量子世界,“大海捞针”已不再是没有可能的事,简直“易如反掌”。 量子叠加不仅可以是同一个物质在它不同状态的叠加,还允许不同物质的叠加,哪怕这两个物质是迥然不同类的。比如光和原子,前者是宇宙中最快的,一眨眼可以绕地球好几周;后者可以慢悠悠地停留在某处。如果让它们量子叠加一起会怎么样呢?有种叫电磁诱导透明的技术就可以让光和原子相干叠加。叠加后我们称之为暗态极子,它是半光半原子的混合体,就像希腊神话中半人半神的帕尔修斯,既具备人的情感,也具备神的能力。人们发现这种半光半原子混合体的速度是介于之间的,它既不像光速那么快,也不像原子慢悠悠停留在某处,它的速度取决于光在其中叠加的比重。人们通过调节这个比重就可以让光乖乖地慢下来,需要的时候还可以让光再飞奔起来。在运用上,光子相互作用很小,而原子之间容易产生大的相互作用。有趣的是:最近,我们研究小组通过合理设计可以利用原子的优点来弥补光子的缺点,设计出强的单光子相互作用。如果把这个过程提升到量子思维的话,不就是我们生活中的“取长补短”“协同合作”吗?而这个思维能力正是当代社会所迫切需要的。

量子计算机的发展现状与趋势_王建锋

高教论坛 量子计算机的发展现状与趋势 王建锋 (郑州大学体育学院体育教育系,河南郑州450000) 量子信息科学引入后,重新对计算、信息编码与处理进行了诠释。作为一门高效处理信息的学科,量子信息体现了科技的进步。该 学科融入了多个学科,包括信息科学、 物理学,以及材料学。因此,与传统的计算相比,也具有更强大的生命力。可以看出,自从应用量子 信息科学后,使计算机的更加安全,并且提高了通信的质量。 尽管量子计算机尚在初步发展阶段,但是该学科具有很大的发展潜力。因此,对量子计算机的发展现状与趋势进行探讨非常有必要。 1量子计算机的发展现状1.1研究概况(1)拓扑量子计算。 拓扑量子计算方案由一位数学物理学家提出。根据拓扑量子不受扰动的特点,完成量子计算机的构造。在此基础上,进行容错量子的计算。当前,该计算已经引起了国内外的重视。世界上很多大学已经开始了理论与实验方面的研究。在进行拓扑量子计算时,每个子都有几下几个特点。第一,有很多准例子,分为不同的类型,其作用是进行信息的初始化。第二,当每个子进行交换时,只要满足辫群规 则,就能实现拓扑量子门。 然后,完成信息的处理。第三,在拓扑量子计算中,不用考虑环境影响的因素。所以,保证了处理的准确性。当前,美国已经根据相关研究,成功建立了基本的量子位。 (2)单向量子计算。 单向量子是一种新的途径。该计算采用了量子的纠缠态、经典通信,以及局域操作,来传递非局域作用,继而实现等价的非局域哈密顿量功能。所以,成功建立了一种高度纠缠的状态。该状态被称为图态。利用相邻的量子比特进行LOCC过程,可以完成出发端量子比特的逻辑门操作。根据以上原理,有助于完成电路的设计。可以看出,如何高效的转换量子比特数目图态是其模型计算的难点。 (3)绝热量子计算。 绝热量子计算的核心思想是:依靠绝热演化的性能,来等效实现量子玄正的变换。当表现为绝对零度时,系统则处于初始状态。此时,如果不存在能级交叉的现象,那么在理论上来将,系统就会保持基态。但是,在系统演化前后,基态就存在玄正变换的关系。在这种情况下,则可以根据绝热的过程,来实现量子计算。以上方案既有优点,也有缺陷。其优点在于保证系统处于基态。其缺陷为能隙缩小,延长了绝热演化的时间。针对以上问题,采用量子仿真技术就可以解决。该技术的应用,促进了科技的快速发展。 1.2实验进展(1)量子点体系。 量子点体系是在微加工方法的基础上,利用半导体二维电子气,然后成功研制出单电子晶体管。该体系符合量子力学规律,代表了未来量子计算机发展的方向。近年来,国际上多个单位通过研究,在这方面取得了很大进展。研究表明,当半导体量子点具备一定条件后,就可以作为量子芯片。尽管如此,量子芯片在应用的过程中,还存在很大的问题,比如受到周边环境影响较大。鉴于此,在未来的研究中,必须加大力度。 (2)超导量子电路。 该量子计算的核心是Josephson。根据不同的表征量子比特,将其分为三个类型,分贝是电荷、相位,以及磁通。研究表明,该量子电路的特点包括以下两个方面。一方面,利用量子电路结构,能够完成 电路的设计、制定。同时,也可以完成对磁通信号的调整、控制。另一 方面,根据当前的微电子制造工艺,提高了该量子电路的拓展性。 (3)离子阱体系。离子阱体系诞生后,首先实现了量子计算。当前,经过不断的研究,该体系已经在实验方面,取得了很大的进展,其水平非常高。近年来,主要的研究方向为:提高量子操控的单元技术、体系的拓展 等。 调查显示,美国已经启动了相关的计划,预计能够取得更大的研究成果。 2量子计算机的发展趋势近年来,美国实施了研究量子芯片的计划。该计划是时候,不仅推动了量子计算机的研究,而且加大了竞争。随着半导体芯片的快速发展,其晶体管的尺寸也不断减少。目前,与单位流感病毒的大小差不多。其次,晶体管的数目也逐渐减少,量子效应不断增强。在传统模式下,能够达到控制电子的物理极限。当单位晶体管只能容纳一个电子时,也必然满足量子学的规律。可以看出,芯片在发展的过程中,很大程度上依赖于新一代的量子力学计算芯片。随着半导体 微电子技术被突破后,就出现了量子芯片。 美国竞争力计划推行后,代表了量子芯片的实际应用。由于量子芯片与国家安全、产业安全息息相关,美国相关负责人已经将芯片科技提到重要战略位置。受美国的影响,日本、欧共体等也启动了相关的计划,引发了新的计算机技术竞争。目前,在新的发展形势下,给我国电子个工业也带来了机遇和挑战。因此,我们必须抓住机遇,稳步推行量子调控计划。只有这样,才能在未来不受制于人,实现信息技术的革新。调查显示,近年来,通过不懈的努力,我国已经加快了量子信息技术的发展,并取得了很大成绩。表现为:在多光子纠缠、量子密码技术方面,取得了很大的进展和突破。但是,与西方国家相比,我国的研究基础还很薄弱,缺乏原创性的成果,总体水平还不高。特别是在量子计算机学科主流方向上,与西方国家存在很大的差距。鉴于此,我国需要迫切开展更富有挑战性的量子计算机计划,同时不断壮大科研队伍,保证技术方面的支撑。只有加强基础建设,才能实现新一轮的突破,在国际竞争中抢占制高点。 随着社会、经济的快速发展,量子计算机以强大的计算能力,得到了广泛的应用。可以看出,在未来的发展中,量子计算机必然在世界领域内,占有一席之地。尽管如此,该体系在运作的过程中,依然存在很多问题。因此,世界各国需要加大研究的力度,不断创新技术,完善体系,以此来获得更大的研究成果。 参考文献 [1]邹奕成,毛杰.量子计算机的发展[J].科教导刊:电子版,2016(24):131-131.[2]刘超,梁丽,徐亮.计算机的发展趋势分析[J].产业与科技论坛,2013,12(2):91-92.[3]潘斌辉,孔外平.量子计算机的发展现状与趋势[J].中国科学院院刊,2010,25(5):4-8.[4]马宏源,李伟.量子计算机的研究与发展[J].北京电力高等专科学校学报:社会科学版,2010,27. 作者简介:王建锋(1974-),男,汉族,籍贯:河南省登封市大金店镇金东村,学士学位,讲师,研究方向:计算机。 摘要:与传统的计算工具相比,量子计算机更加先进。应用该工具后,在处理数据上发挥了更强大的功能,解决了以往比较困难的 数学问题。基于此, 引起了世界各国的重视。本文结合实际的工作经验,对量子计算机的发展现状进行了分析。然后,提出了在未来的时代中,量子计算机的发展趋势。 关键词:量子计算机;发展;现状;趋势;分析57··

量子计算和量子信息(量子计算部分,Nielsen等着)6

6.1 当x=0时有(2|0><0|-I )|x>=|0> 当x>0时有(2|0><0|-I )|x>=-|x> 所以2|0><0|-I I 即为相移算子 6.2 |φ><φ|=1/N Σ i =0 N?1Σ j =0 N?1|i><φ|-I )Σ k =0N?1 a k |k>=2/N Σi =0 N?1Σ j =0 N?1|i>-Σk =0 N?1a k |k> 而|i>,|j>,|k>都经过标准归一化,所以当|j>=|k>时,有|j>!=|k> 时,有|j>-Σ k =0 N?1a k |k>=Σ k =0 N?1[-a k +]|k> 其中=Σ k =0 N?1a k N 6.3 (此处为验证Grover 迭代能写成以下矩阵形式) |φ>=cos(θ/2)|α>+sin(θ/2)|β>写成向量形式为[cos(θ/2) sin(θ/2)]T 所以G|φ>= cos θ?sin θsin θ cos θ cos(θ/2)sin(θ/2) = cos(3θ/2) sin(3θ/2) =cos(3θ/2)|α>+sin(3θ/2)|β> 所以Grover 迭代能写成G= cos θ ?sin θsin θ cos θ 6.4 按照书上只有一解的过程,对于多解只能测量出所有解的和 6.5 6.6 (⊙为张量积符号 X 为PauliX 门, Z 为PauliZ 门) 框中的门可以表示为 (X ⊙X)(I ⊙H )(|0><0|⊙I+|1><1|⊙X )(I ⊙H)(X ⊙X) =X|0><0|X ⊙XHHX+X|1><1|X ⊙XHXHX(HXH=Z) =|1><1|⊙I +|0><0|⊙(-Z) =(I -|0><0|)⊙I +|0><0|⊙(I-2|0><0|)

长距离量子密钥分发系统

长距离量子密钥分发系统 【摘要】:量子保密通信提供了一种绝对安全的通信方案,它的安全性由不可改变的自然规律保证,是任何技术都无法攻破的。本文以实用的长距离量子密钥分发系统为研究目的,围绕着困扰长距离量子密钥分发的三个主要技术障碍,分别就纠缠光子产生,单光子探测,稳定和安全的量子密钥分发方案展开研究。我们通过BBO晶体内非共线光参量放大,同时实现了光参量下转换和上转换。这种光子级联四波混频过程产生了紫外和可见的纠缠彩虹对。彩虹对由波长连续变化的紫外和可见光子组成,这些光子一一对应相互纠缠,并且按照角度变化组成彩虹环。纠缠彩虹对能够同时提供多波长的纠缠光子对,其中紫外纠缠光子能够用于产生进一步纠缠。进而,本文提出了基于多波长纠缠光子对的高效的量子通信网络方案。在单光子探测研究中,本文提出了电容平衡门脉冲单光子探测技术,利用可调电容产生一个相同的尖峰噪声,然后通过差模网络抵消。该技术克服了尖峰噪声的影响,使基于InGaAs/InP-APD的近红外单光子探测器能够工作在最佳状态,获得了极高的信噪比,其在1550nm的暗计数与探测效率比为1.7×10~(-6)/脉冲,是目前国际上最好的指标之一。基于电容平衡门脉冲单光子探测技术,我们随即成功开发了新型的近红外单光子探测器,它具有操作简便,结构紧凑,性能优异,工作稳定等特点。我们提出和实现了基于Sagnac干涉仪的量子密钥分发方案,被美国LosAlamos国家实验室的量子保密通信路线图列为代表性方案之一。

随后我们在50km光纤中完成了长期稳定的PlugPlay量子密钥分发系统,平均光子数0.1,误码率低于4%。在该PlugPlay系统基础上,我们利用自行研制的高信噪比的近红外单光子探测器,实现了155km 单光子路由实验,干涉对比度达到87%。由于光纤本身不均匀,以及外界压力和温度变化,使得光纤双折射无规则随机变化,从而使偏振态在长距离光纤中无法稳定传输。本文发展了一种单光子水平的偏振反馈补偿技术,解决了偏振光在光纤中传输时因光纤双折射变化引起的随机抖动,在长距离光纤中实现了长时间稳定的单光子水平的偏振态传输,并首次在100km长距离光纤中实现了基于偏振编码的量子密钥分发模拟实验。我们在实验上模拟了截取-重发攻击,并且提出了基于强参考光的量子密钥分发方案,通过监测强参考光,可以有效地阻止光子分束攻击,从而使基于相干光源的量子密钥分发系统的安全距离延长至146km。【关键词】:量子保密通信量子密钥分发单光子探测纠缠光子Sagnac干涉仪单光子路由截取-重发攻击光子分束攻击 【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2007 【分类号】:TN918

《关于量子通信》非连续文本阅读练习及答案

阅读下面的文字,完成7~9题。 材料一: 日前,中国科学院在京召开新闻发布会对外宣布,“墨子号”量子科学实验卫星提前并圆满实现全部既定科学目标,为我国在未来继续引领世界量子通信研究奠定了坚实的基础。 通信安全是国家信息安全和人类经济社会生活的基本需求。千百年来,人们对于通信安全的追求从未停止。然而,基于计算复杂性的传统加密技术,在原理上存着着被破译的可能性,随着数学和计算能力的不断提升,经典密码被破译的可能性与日俱增。中国科学技术大学潘建伟教授说:“通过量子通信可以解决这个问题,把量子物理与信息技术相结合,用一种革命性的方式对信息进行编码、存储、传输和操纵,从而在确保信息安全、提高运算速度、提升测量精度等方面突破经典信息技术的瓶颈。” 量子通信主要研究内容包括量子密钥分发和量子隐形传态。量于密钥分发通过量子 态的传输,使遥远两地的用户可以共享无条件安全的密钥,利用该密钥对信息进行一次 一密的严格加密。这是目前人类唯一已知的不可窃听、不可破译的无条件安全的通信方式,量子通信的另一重要内客量子隐形传态,是利用量子纠缠特性,将物质的未知量子 态精确传递到遥远地点,而不用传递物质本身,通过隐形传输实现信息传递。(摘 编自吴月辉《“墨子号”,抢占量子科技创新制高点),《人民日报》2017年8月10日) 材料二: 潘建伟的导师安东·蔡林格说,潘建伟的团队在量子互联网的发展方面冲到了领先地位。量子互联网是由卫星和地面设备构成的能够在全球范围分享量子信息的网络。这将使不可破解的全球加密通信成为可能,同时也使我们可以开展一些新的控制远距离量子联系的实验。目前,潘建伟的团队计划发射第二颗卫星,他们还在中国的天宫二号空间站上进行着一项太空量子实验。潘建伟说,未来五年“还会取得很多精彩的成果,一个新的时代已经到来”。 潘建伟是一个有着无穷热情的乐观主义者。他低调地表达了自己的信心,称中国政府将会支持下一个宏伟计划——一项投资20亿美元的量子通信、量子计量和量子计算的五年计划,与此形成对照的是欧洲2016年宣布的旗舰项目,投资额为12亿美元。 (摘编自伊丽莎白·吉布尼《一位把量子通信带到太空又带回地球的物理学家》,《自然》2017年12月) 材料三: 日本《读卖新闻》5月2日报道:中国实验设施瞄准一流(记者:莳田一彦,船越翔)在中国南部广东省东莞市郊外的丘陵地带,中国刚刚建成了大型实施设施“中国散裂中子

量子光学重点整理

一、量子调控的途径:外场调控(振幅、相位、啁啾及形状等手段调控)和结构调控(利 用材料的结构特征调控,比如原子、分子及半导体微结构等); 量子干涉与相干现象:激光诱导原子态相干,导致了介质不同激发通道间的量子干涉。从而可操控介质的光学特性。 经典相干导致原子相干 经典干涉导致量子干涉 量子化的基本思想: 找出描述经典场的一组完备的正则“坐标”和“动量”,然后把它们视为相应的算符,满足正则坐标和正则动量的对易式,从而使其量子化。 粒子数算符 ??? N a a+ =的本征态就是FOCK态|n>。 Fock表象也叫占有数表象能量表象二、 相干态的三种定义: 1,湮灭算符的本征态 2. ()0 D αα = 相干态是位移算符作用在真空态上得来的,是谐振子基态的位移形 式。 3.光子数态的分解: 相干态的性质: 1.粒子数分布是泊松分布相干态下的光子的平均数目

2.相干态是最小不确定态 3.相干态并非正交系 4.相干态是光场正频部分(湮灭算符)的本征态,具有和真空态一样的最小测不准关系。 5.相干态的相干度是1. 压缩态: 相干态时: FOCK态时: 压缩算子: 压缩相干态:双光子想干态 一、实现光学压缩态的基本条件 1、有合适的机制,对光强或光场的振幅的起伏进行抑制; 2、有合适的对相位灵敏的放大机制,使得被压缩的光场分量放大,而另一个分量衰减。实现光学压缩态的实验途径 1、四波混频产生光学压缩态 2.用光学参量振荡实现压缩态的实验 三、压缩态光的应用 1).减小光通讯中的噪声,大大提高信噪比

2).引力波检测 3).激光光谱 海森堡绘景下的薛定谔方程: 二能级近似: 电偶极近似: 旋转波近似: 旋转波近似的全量子理论理解: 慢变振幅近似:

量子光学与量子信息

量子光学与量子信息 摘要:量子光学是应用辐射的量子理论研究光辐射的产生、相干统计性质、传输、检测以及光与物质相互作用中的基础物物理问题的一门学科。 关键字:量子光学 量子信息 JC 模型 TC 模型 早在1900和1905年,普朗克和爱因斯坦就提出了光量子假说,并成功解释了黑体辐射谱分布与光电效应,确定了光具有波粒二象性的基本物理思想。然而,长期以来由于经典电磁辐射理论能完满地解释绝大多数物理光学实验现象,光的量子理论并未得到系统发展。直到2O 世纪7O 年代以后,随着激光与光电子技术的进步,一系列用经典理论无法解释的非经典光学效应逐步被实验观测,才形成了以量子化光场为基础的量子光学学科领域。 光量子或称光子为基本能量单元的量子化光场遵循量子电动力学基本规律,严格地说只有用QED 理论,才能解释迄今为止所观察到的所有光学现象。量子光学用量子电动力学理论研究光场的量子性和相干性,以及光与原子相互作用的量子力学效应。当前,量子光学中应用性较强的重要研究领域有:光场的量子噪声,光场与物质相互作用中的动量传递、腔量子电动力学等。 在光学与原子物理这门课程的学习中,我们了解到了量子化这个概念。那么,量子光学在科技实验研究中有哪些应用呢? 首先,量子光学的原理和理论基础为: 热辐射 基尔霍夫定律 一. 热辐射 1.热辐射:在一定时间内辐射能量的多少及能量按波长的分布都与物体的温度有关,故称电磁辐射为热辐射(温度辐射); 辐射能(λ,T ),如炉子,酒精灯… 2.平衡热辐射:相同时间内辐射与吸收的能量相等,T 不变 二. 辐出度(辐射出射度,发射本领) 1. 单色辐出度:单位时间内从物体表面单位面积上向各个方向所发射的波长在λλλd ~+范围内辐射能量)T (dE λ和波长间隔λd 的比值 λλλd )T (dE )T (e = 2. 辐出度:单位时间内从物体表面单位面积上向各个方向所发射的各种波长的辐射总能量。

相关文档
最新文档