2016届高三物理一轮复习课时提升练12圆周运动

2016届高三物理一轮复习课时提升练12圆周运动
2016届高三物理一轮复习课时提升练12圆周运动

课时提升练(十二) 圆周运动

(限时:45分钟)

A 组 对点训练——巩固基础知识

题组一 圆周运动物理量及运动分析

1.自行车的小齿轮A 、大齿轮B 、后轮C 是

互关联的三个转动部分,且半径R B =4R A 、R C

8R A ,如图4-3-16所示.当自行车正常骑行时 图4-3-16

A 、

B 、

C 三轮边缘的向心加速度的大小之比a A ∶a B ∶a C 等于( )

A .1∶1∶8

B .4∶1∶4

C .4∶1∶32

D .1∶2∶4 【解析】 小齿轮A 与后轮C 角速度相等,由a =ω2R 可知a A ∶a C =1∶8.小齿轮A 与大齿轮B 线速度相等,由a =v 2/R 可知,a A ∶a B =4∶1,所以a A ∶a B ∶a C =4∶1∶32,选项C 正确.

【答案】 C

2.图4-3-17为一种“滚轮——平盘无级变

速器”的示意图,它由固定于主动轴上的平盘

和可随从动轴移动的圆柱形滚轮组成.由于摩

擦的作用,当平盘转动时,滚轮就会跟随转动,

如果认为滚轮不会打滑,那么主动轴转速n 1、 图4-3-17 从动轴转速n 2、滚轮半径r 以及滚轮距离主动轴中心的距离x 之间的关系是( )

A .n 2=n 1x r

B .n 2=n 1r x

C .n 2=n 1x 2

r 2 D .n 2=n 1x r

【解析】 不打滑、线速度相同,即2πn 1x =2πn 2r ,所以n 2=n 1x r ,

A 对.

【答案】 A

3.如图4-3-18所示,某机器内有两个围绕各自的固定轴匀速

图4-3-18

转动的铝盘A 、B ,A 盘固定一个信号发射装置P ,能持续沿半径向外发射红外线,P 到圆心的距离为28 cm.B 盘上固定一个带窗口的红外线信号接收装置Q ,Q 到圆心的距离为16 cm.P 、Q 转动的线速度相同,都是4π m/s.当P 、Q 正对时,P 发出的红外线恰好进入Q 的接收窗口,则Q 每隔一定时间就能接收到红外线信号,这个时间的最小值应为( )

A .0.56 s

B .0.28 s

C .0.16 s

D .0.07 s

【解析】 根据公式T =2πr v 可求出P 、Q 转动的周期分别为T 1=

0.14 s 和T 2=0.08 s ,根据题意,只有当P 、Q 同时转到题图所示位置时,Q 才能接收到红外线信号,所以所求的最小时间应该是它们转动周期的最小公倍数,即0.56 s ,所以选项A 正确.

【答案】 A

题组二 圆周运动的动力学分析

4.(2015·河北廊坊联考)如图4-3-19所示,在匀速转

动的圆筒内壁上,有一物体随圆筒一起转动而未滑动.当

圆筒的角速度逐渐增大时(不滑动),下列说法正确的是

( ) 图4-3-19

A .物体所受弹力增大,摩擦力也增大了

B .物体所受弹力增大,摩擦力减小了

C .物体所受弹力和摩擦力都减小了

D .物体所受弹力增大,摩擦力不变

【解析】 物体随圆筒一起转动时,受到三个力的

作用:重力G 、筒壁对它的弹力F N 和筒壁对它的摩擦

力F f (如图所示).其中G 和F f 是一对平衡力,筒壁对

它的弹力F N 提供它做圆周运动的向心力.当圆筒转动

时,不管其角速度多大,只要物体随圆筒一起转动而未滑动,则物体所受的(静)摩擦力F f 大小就等于其重力.而根据向心力公式,F N =mrω2,当角速度ω增大时F N 也增大,选项D 正确.

【答案】 D

5.世界一级方程式锦标赛新加坡大奖赛赛道

圈长5.067公里,共有23个弯道,如图4-3-20所

示,赛车在水平路面上转弯时,常常在弯道上冲出跑

道,则以下说法正确的是( ) 图4-3-20

A .是由于赛车行驶到弯道时,运动员未能及时转动方向盘才造成赛车冲出跑道的

B .是由于赛车行驶到弯道时,运动员没有及时加速才造成赛车冲出跑道的

C .是由于赛车行驶到弯道时,运动员没有及时减速才造成赛车冲出跑道的

D .由公式F =mω2r 可知,弯道半径越大,越容易冲出跑道

【解析】 赛车在水平面上转弯时,它需要的向心力是由赛车与

地面间的摩擦力提供的.由F =m v 2r 知,当v 较大时,赛车需要的向心

高三物理知识点电磁感应匀速圆周运动

高三物理知识点:电磁感应、匀速圆 周运动 1.[感应电动势的大小计算公式] )E=nΔΦ/Δt{法拉第电磁感应定律,E:感应电动势,n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 2)E=BLV垂 {L:有效长度} 3)Em=nBSω{Em:感应电动势峰值} 电磁感应物理知识点4)E=BL2ω/2 {ω:角速度,V:速度}2.磁通量Φ=BS {Φ:磁通量,B:匀强磁场的磁感应强度,S:正对面积} 3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}* 4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数,ΔI:变化电流,t:所用时间,ΔI/Δt:自感电流变化率} 注:感应电流的方向可用楞次定律或右手定则

判定,楞次定律应用要点〔见第二册P173〕;自感电流总是阻碍引起自感电动势的电流的变化;单位换算:1H=103mH=106μH。其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=2r 4.向心力F心=mV2/r=mω2r=mr2=mωv=F合 高中物理匀速圆周运动5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn 8.主要物理量及单位:弧长:米;角度:弧度;频率:赫;周期:秒;转速:r/s;半径:米;线速度:m/s;角速度:rad/s;向心加速度:m/s2。注:向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

高中物理 运动的描述 概念总结

第1章运动的描述 1.机械运动 运动:运动是宇宙中的普遍现象.从广义来讲,宇宙中的一切物体都是运动的,没有绝对静止的物体;从狭义来说,运动是指机械运动. 静止:一个物体相对于另一个物体的位置没有改变,我们就说它是静止的.静止都是相对运动而言的,不存在绝对静止的物体. 机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式. 2.参考系和坐标系 参考系:在描述一个物体的运动时,选来作为标准的另外的某个物体叫参考系 对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的. ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷. ③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系. 坐标系:为了定量描述物体的位置及位置的变化而建立的参考系.(标明原点、正方向和单位长度) (1)要准确地描述物体的位置及位置变化,需要建立坐标系; (2)如果物体在一维空间运动(即沿一直线运动),只需建立直线坐标系(数轴); 如果物体在二维空间运动(即在同一平面运动),需要建立平面直角坐标系; 如果物体在三维空间运动时,则需要建立三维直角坐标系; 3.质点的认识 (1)定义:用来代替物体的有质量的点. ①质点是用来代替物体的具有质量的点,因而其突出特点是“具有质量”和“占有位置”,但没有大小,它的质量就是它所代替的物体的质量. ②质点没有体积或形状,因而质点是不可能转动的.任何转动的物体在研究其自转时都不可简化为质点. ③质点不一定是很小的物体,很大的物体也可简化为质点.同一个物体有时可以看作质点,有时又不能看作质点,要具体问题具体分析. (2)物体可以看成质点的条件:如果在研究的问题中,物体的形状、大小及物体上各部分运动的差异是次要或不起作用的因素,就可以把物体看做一个质点. (3)突出主要因素,忽略次要因素,将实际问题简化为物理模型,是研究物理学问题的基本思维方法之一,这种思维方法叫理想化方法.质点就是利用这种思维方法建立的一个理想化物理模型.

2018_2019学年高中物理第二章圆周运动第二节第1课时实验:探究向心力大小与半径、角速度、质量的关系

第1课时 实验:探究向心力大小与半径、角速度、质量的关系 一、实验目的 1.定性感知向心力的大小与什么因素有关. 2.学会使用向心力演示器. 3.探究向心力与质量、角速度、半径的定量关系. 二、实验方法:控制变量法 三、实验方案 1.用细绳和物体定性感知向心力的大小. (1)实验原理:如图1所示,细线穿在圆珠笔的杆中,一端拴住小物体,另一端用一只手牵住,另一只手抓住圆珠笔杆并用力转动,使小物体做圆周运动,可近似地认为作用在小物体上的细线的拉力,提供了圆周运动所需的向心力,而细线的拉力可用牵住细线的手的感觉来判断. 图1 (2)器材:质量不同的小物体若干,空心圆珠笔杆,细线(长约60 cm). (3)实验过程: ①在小物体的质量和角速度不变的条件下,改变小物体做圆周运动的半径进行实验. ②在小物体的质量和做圆周运动的半径不变的条件下,改变物体的角速度进行实验. ③换用不同质量的小物体,在角速度和半径不变的条件下,重复上述操作. (4)结论:半径越大,角速度越大,质量越大,向心力越大.

2.用向心力演示器定量探究 (1)实验原理 如图2所示,匀速转动手柄,可以使塔轮、长槽和短槽匀速转动,槽内的小球也就随之做匀速圆周运动.这时,小球向外挤压挡板,挡板对小球的反作用力提供了小球做匀速圆周运动的向心力.同时,小球压挡板的力使挡板另一端压缩弹簧测力套筒里的弹簧,弹簧的压缩量可以从标尺上读出,该读数显示了向心力大小. 图2 (2)器材:向心力演示器. (3)实验过程 ①把两个质量相同的小球放在长槽和短槽上,使它们的转动半径相同.调整塔轮上的皮带,使两个小球的角速度不一样,探究向心力的大小与角速度的关系. ②保持两个小球质量不变,增大长槽上小球的转动半径.调整塔轮上的皮带,使两个小球的角速度相同,探究向心力的大小与半径的关系. ③换成质量不同的球,分别使两球的转动半径相同.调整塔轮上的皮带,使两个小球的角速度也相同,探究向心力的大小与质量的关系. ④重复几次以上实验. (4)数据处理 ①m、r一定 ②m、ω一定

高中物理必修二匀速圆周运动经典试题

1.一辆32.010m =?kg 的汽车在水平公路上行驶,经过半径50r =m 的弯路时,如果车速72v =km/h ,这辆汽车会不会发生测滑?已知轮胎与路面间的最大静摩擦力4max 1.410F =?N . 2.如图所示,在匀速转动的圆盘上沿半径放着用细绳连接着的质量都为1kg 的两物体,A 离转轴20cm ,B 离转轴30cm ,物体与圆盘间的最大静摩擦力都等于重力的0.4倍,求: (1)A .B 两物体同时滑动时,圆盘应有的最小转速是多少? (2)此时,如用火烧断细绳,A .B 物体如何运动? 3.一根长0.625m l =的细绳,一端拴一质量0.4kg m =的小球,使其在竖直平面内绕绳的另一端做圆周运动,求: (1)小球通过最高点时的最小速度? (2)若小球以速度 3.0m/s v =通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动. 4.在光滑水平转台上开有一小孔O ,一根轻绳穿过小孔,一端拴一质量为0.1kg 的物体A ,另一端连接质量为1kg 的物体B ,如图所示,已知O 与A 物间的距离为25cm ,开始时B 物与水平地面接触,设转台旋转过程中小物体A 始终随它一起运动.问: (1)当转台以角速度4rad/s ω=旋转时,物B 对地面的压力多大? (2)要使物B 开始脱离地面,则转台旋的角速度至少为多大?

h 5.(14分)质量m=1kg 的小球在长为L=1m 的细绳作用下在竖直平面内做圆周运动,细绳能承受的最大拉力T max =46N,转轴离地h=6m ,g=10m/s 2。 试求:(1)在若要想恰好通过最高点,则此时的速度为多大? (2)在某次运动中在最低点细绳恰好被拉断则此时的速度v=? (3)绳断后小球做平抛运动,如图所示,求落地水平距离x ? 6.汽车与路面的动摩擦因数为μ,公路某转弯处半径为R (设最大静摩擦力等于滑动摩擦力),求: (1)若路面水平,要使汽车转弯不发生侧滑,汽车速度不能超过多少? (2)若汽车在外侧高、内侧低的倾斜弯道上拐弯,弯道倾角为θ,则汽车完全不靠摩擦力转弯 的速率是多少? 7.质量0.5kg 的杯子里盛有1kg 的水,用绳子系住水杯在竖直平面内做“水流星”表演,转动 半径为1m ,水杯通过最高点的速度为4m/s ,g 取10 m/s 2,求: (1) 在最高点时,绳的拉力?(2) 在最高点时水对杯底的压力?(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少? 8.质量为m 的火车在轨道上行驶,火车内外轨连线与水平面的夹角为α=37°,如图,弯道半径R =30 m ,g=10m/s 2.求:(1)当火车的速度为V 1=10 m /s 时,火车轮缘挤压外轨还是内轨? (2)当火车的速度为V 2 =20 m /s 时,火车轮缘挤压外轨还是内轨?

高一物理运动的描述(培优篇)(Word版 含解析)

一、第一章运动的描述易错题培优(难) 1.甲、乙两辆赛车从同一地点沿同一平直公路行驶。它们的速度图象如图所示,下列说法正确的是( ) A.60 s时,甲车在乙车的前方 B.20 s时,甲、乙两车相距最远 C.甲、乙加速时,甲车的加速度大于乙车的加速度 D.40 s时,甲、乙两车速度相等且相距900m 【答案】AD 【解析】 【详解】 A、图线与时间轴包围的面积表示对应时间内的位移大小,由图象可知60s时,甲的位移大于乙的位移,所以甲车在乙车前方,故A正确; B、40s之前甲的速度大于乙的速度,40s后甲的速度小于乙的速度,所以40s时,甲乙相距最远,在20s时,两车相距不是最远,故B错误; C、速度?时间图象斜率表示加速度,根据图象可知,甲加速时的加速度小于乙加速时的加速度,故C错误; D、根据图象可知,40s时,甲乙两车速度相等都为40m/s,甲的位移 ,乙的位移,所以甲乙相距,故D正确; 故选AD。 【点睛】 速度-时间图象切线的斜率表示该点对应时刻的加速度大小,图线与时间轴包围的面积表示对应时间内的位移大小,根据两车的速度关系知道速度相等时相距最远,由位移求相距的距离。 2.物体沿一条东西方向的水平线做直线运动,取向东为运动的正方向,其速度—时间图象如图所示,下列说法中正确的是

A.在1 s末,物体速度为9 m/s B.0~2 s内,物体加速度为6 m/s2 C.6~7 s内,物体做速度方向向西的加速运动 D.10~12 s内,物体做速度方向向东的加速运动 【答案】AC 【解析】 【分析】 【详解】 A.由所给图象知,物体1 s末的速度为9 m/s,选项A正确;B.0~2 s内,物体的加速度 a= 126 2 v t ?- = ? m/s2=3m/s2 选项B错误; C.6~7 s内,物体的速度、加速度为负值,表明它向西做加速直线运动,选项C正确;D.10~12 s内,物体的速度为负值,加速度为正值,表明它向西做减速直线运动,选项D 错误. 3.一个物体做直线运动的位移—时间图象(即x t-图象)如图所示,下列说法正确的是 A.物体在1s末运动方向改变 B.物体做匀速运动 C.物体运动的速度大小为5m/s D.2s末物体回到出发点 【答案】BC 【解析】 【分析】 【详解】 AB.位移时间图象的斜率表示速度,根据图象可知物体一直向负方向匀速运动,故A错误、B正确; C.物体运动的速度大小为5m/s,故C正确;

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

高考物理一轮复习 第1章 运动的描述 匀变速直线运动 第1节 描述运动的基本概念教案

第1章 运动的描述 匀变速直线运动 第1节 描述运动的基本概念 一、参考系 质点 1.参考系 (1)定义:为了研究物体的运动而假定不动的物体。 (2)选取原则:可任意选取,但对同一物体的运动,所选的参考系不同,对它运动的描述可能会不同。通常以地面为参考系。 2.质点 (1)定义:用来代替物体的有质量的点。 (2)物体可看作质点的条件:研究一个物体的运动时,物体的大小和形状对研究问题的影响可以忽略。 二、位移 速度 1.位移和路程 (1)位移描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量。 (2)路程是物体运动轨迹的长度,是标量。 2.速度和速率 (1)平均速度:物体的位移与发生这段位移所用时间的比值,即v =Δx Δt ,其方向与位移的方向相同,是矢量。 (2)瞬时速度:运动物体在某一时刻或某一位置的速度,方向沿轨迹上物体所在点的切

线方向指向前进的一侧,是矢量。 (3)速率:瞬时速度的大小,是标量。 (4)平均速率:路程与时间的比值,不一定等于平均速度的大小。 三、加速度 1.定义:速度的变化量与发生这一变化所用时间的比值。 2.定义式:a =Δv Δt 。 3.方向:与速度变化的方向相同,是矢量。 4.物理意义:描述物体速度变化快慢的物理量。 1.思考辨析(正确的画“√”,错误的画“×”) (1)参考系必须是固定不动的物体。 (×) (2)质点是一种理想化模型,实际并不存在。 (√) (3)在某一段时间内物体运动的位移为零,则该物体一定是静止的。 (×) (4)平均速度的方向与位移方向相同。 (√) (5)甲的加速度a 甲=2 m/s 2,乙的加速度a 乙=-3 m/s 2 ,a 甲>a 乙。 (×) 2.(多选)(人教版必修1P 11T 1和P 14T 1改编)下列说法正确的是( ) A .“一江春水向东流”中江水运动是以河岸为参考系的 B .“太阳东升西落”中太阳以地球为参考系 C .“火车8点42分到站”,“8点42分”指的是时刻 D .“第3 s 末”和“第3 s 内”都是指的时间间隔1 s [答案] ABC 3.(多选)(人教版必修1P 14T 2和P 29T 2改编)下列说法可能正确的是( ) A .出租车的收费标准为1.60元/公里,其中的“公里”说的是位移 B .物体运动的加速度等于0,而速度却不等于0 C .两物体相比,一个物体的速度变化量比较大,而加速度却比较小 D .物体具有向东的加速度,而速度的方向却向西 [答案] BCD 4.(教科版必修1P 14T 2改编)下列所说的速度中,指平均速度的是( ) A .百米赛跑的运动员以9.5 m/s 的速度冲过终点线 B .子弹以800 m/s 的速度撞击到墙上

「精品」高三物理圆周运动专题复习试题试卷及参考答案

圆周运动专题复习 (附参考答案) 考点一.圆周运动中的运动学分析 1.如图所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一 点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r ,b 点在小轮 上,到小轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘 上,若在转动过程中,皮带不打滑,则( ) A .a 点与b 点的线速度大小相等 B .a 点与b 点的角速度大小相等 C .a 点与c 点的线速度大小相等 D .a 点与d 点的向心加速度大小相等 2.如图所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同 一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮 相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由 于摩擦作用,B 轮也随之无滑动地转动起来.a 、b 、c 分别为三轮边 缘的三个点,则a 、b 、c 三点在运动过程中的( ) A .线速度大小之比为3∶2∶2 B .角速度之比为3∶3∶2 C .转速之比为2∶3∶2 D .向心加速度大小之比为9∶6∶4 考点二.圆周运动中的向心力来源问题 1.在高速公路的拐弯处,通常路面都是外高内 低.如图所示,在某路段汽车向左拐弯,司机左 侧的路面比右侧的路面低一些.汽车的运动可看 做是半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g.要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( ) A .gRh L B .gRh d C . gRL h D . gRd h 2.“飞车走壁”是一种传统的杂技艺术,演员骑车在倾角很大的桶面 上做圆周运动而不掉下来.如图所示,已知桶壁的倾角为θ,车和人 的总质量为m ,做圆周运动的半径为r ,若使演员骑车做圆周运动时 不受桶壁的摩擦力,下列说法正确的是( ) A .人和车的速度为grtan θ B .人和车的速度为grsin θ C .桶壁对车的弹力为mg cos θ D .桶壁对车的弹力为mg sin θ 3.公路急转弯处通常是交通事故多发地带.如图,某公路急转弯处是一圆弧,当汽车行驶的速率为v c 时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处( ) A .路面外侧高内侧低 B .车速只要低于v c ,车辆便会向内侧滑动 C .车速虽然高于v c ,但只要不超出某一最高限度,车辆便不会向外侧滑动 D .当路面结冰时,与未结冰时相比,v c 的值变小 考点三.水平面内的圆周运动 1.如图所示,质量M =0.64 kg 的物体置于可绕竖直轴匀速转动的平台上, M 用细绳通过光滑的定滑轮与质量为m =0.3 kg 的物体相连.假定M 与轴 O 的距离r =0.2 m ,与平台的最大静摩擦力为2 N .为使m 保持静止状态,

高一物理匀速圆周运动知识点及习题教学文稿

高一物理匀速圆周运动知识点及习题

高一物理匀速圆周运动知识介绍 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,匀速圆周运动,这种运动就叫做“匀速圆周运动”,匀速圆周运动是圆周运动中,最常见和最简单的运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。

天体的匀速圆周运动 定义 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,这种运动就叫做“匀速圆周运动”,亦称“匀速率圆周运动”。因为物体作圆周运动时速率不变,但速度方向随时发生变化。所以匀速圆周运动的线速度是无时不刻不在变化的。

匀速圆周运动 运动条件 物体作匀速圆周运动时,速度的大小虽然不变,但速度的方向时刻改变,所以匀速圆周运动是变速运动。又由于作匀速圆周运动时,它的向心加速度的大小不变,但方向时刻改变,故匀速圆周运动是变加速运动。“匀速圆周运动”一词中的“匀速”仅是速率不变的意思。做匀速圆周运动的物体仍然具有加速度,而且加速度不断改变,因其加速度方向在不断改变,其运动轨迹是圆,所以匀速圆周运动是变加速曲线运动。匀速圆周运动加速度方向始终指向圆心。做变速圆周运动的物体总能分解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。 公式解析 计算公式 1、v(线速度)=ΔS/Δt=2πr/T=ωr=2πrf (S代表弧长,t代表时间,r代表半径,f代表频率) 2、ω(角速度)=Δθ/Δt=2π/T=2πn (θ表示角度或者弧度) 3、T(周期)=2πr/v=2π/ω 4、n(转速)=1/T=v/2πr=ω/2π 5、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^2 6、an(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2 7、vmax=√gr (过最高点时的条件) 8、fmin (过最高点时的对杆的压力)=mg-√gr (有杆支撑)

高中物理圆周运动知识点总结 高中物理圆周运动公式

高中物理圆周运动知识点总结高中物理圆周运动公式高中物理教学中,圆周运动问题既是一个重点,又是一个难点。下面给大家带来高中物理圆周运动知识点,希望对你有帮助。 1.圆周运动:质点的运动轨迹是圆周的运动。 2.匀速圆周运动:质点的轨迹是圆周,在相等的时间内,通过的弧长相等,质点所作的运动是匀速率圆周运动。 3.描述匀速圆周运动的物理量 (1)周期(T):质点完成一次圆周运动所用的时间为周期。 频率(f):1s钟完成圆周运动的次数。f= (2)线速度(v):线速度就是瞬间速度。做匀速圆周运动的质点,其线速度的大小不变,方向却时刻改变,匀速圆周运动是一个变速运动。 由瞬时速度的定义式v=,当Δt趋近于0时,Δs与所对应的弧长(Δl)基本重合,所以v=,在匀速圆周运动中,由于相等的时间内通过的弧长相等,那么很小一段的弧长与通过这段弧长所用时间的比

值是相等的,所以,其线速度大小v=(其中R是运动物体的轨道半径,T为周期) (3)角速度(ω):作匀速圆周运动的质点与圆心的连线所扫过的角度与所用时间的比值。ω==,由此式可知匀速圆周运动是角速度不变的运动。 4.竖直面内的圆周运动(非匀速圆周运动) (1)轻绳的一端固定,另一端连着一个小球(活小物块),小球在竖直面内作圆周运动,或者是一个竖直的圆形轨迹,一个小球(或小物块)在其内壁上作竖直面的圆周运动,然后进行计算分析,结论如下: ①小球若在圆周上,且速度为零,只能是在水平直径两个端点以下部分的各点,小球要到达竖直圆周水平直径以上各点,则其速度至少要满足重力指向圆心的分量提供向心力 ②小球在竖直圆周的最低点沿圆周向上运动的过程中,速度不断减小(重力沿运动方向的分量与速度方向是相反的,使小球的速度减小),而小球要到达最高点,则必须在最低点具有足够大的速度才

高中物理运动的描述和运动图像专题

高中物理直线运动的描述和运动图像问题专题 1、直线运动图像有x-t ,v-t 和a-t 图像; 2、直线运动情况有静止、匀速直线、匀变速直线(匀加、匀减)、非匀变速直线运动(变加速直线:↑↑v a ,、↑↓v a ,、↓↑v a ,、↓↓v a ,); 3、运动方向可分为:单一方向运动,往返运动,迂回前进运动; 4、初状态可分为:静止开始、具有一定初速度开始; 5、教学目的: ①掌握运动的描述;也就是如何描述一个物体的运动过程; ②学会运动建模;也就是通过带有箭头的线段对物体运动过程形象化; ③掌握图像的画法;根据想象或自己建立的模型画出相应图像; ④学会图像与图像间的相互转换; 一、图像t x -:(斜率代表:v ,x 的正负只代表方向,不代表大小) 1、运动描述原则: 先描述方向,再描述做什么运动,能详细尽量详细; 例1:如右图所示(单一方向单一运动): ①静止; ②向正方向做匀速直线运动; ③向正方向做减速运动; ④向正方向做加速运动; 例2、如右图所示(单一方向匀速且周期变化运动): ①2 00 T -,向正方向做匀速直线运动(假设速度为1v ); ② 00 2 T T -,向正方向做匀速直线运动(假设速度为2v ); ③2300T T -,以速度1v 向正方向做匀速直线运动; ④0022 3T T -,以速度2v 向正方向做匀速直线运动; 由图中斜率大小知:21v v >

例3、如右图所示(单一方向加减速且周期变化运动) ①2 00 T -,向正方向做减速直线运动; ② 00 2 T T -,向正方向做加速直线运动; ③2300T T -,向正方向做减速直线运动; ④0022 3T T -,向正方向做加速直线运动; 例4、如右图所示(匀速往返运动) ①2 00 T -,向正方向做匀速直线运动; ② 00 2 T T -,向负方向做匀速直线运动; ③2300T T -,向正方向做匀速直线运动; ④0022 3T T -,向负方向做匀速直线运动; 例5、如右图所示(加减速往返运动) ①2 00 T -,向正方向做加速直线运动; ② 00 2 T T -,向正方向做减速直线运动; ③2300T T -,向负方向做加速直线运动; ④0022 3T T -,向负方向做减速直线运动; 例6、如右图所示(匀速迂回前进运动) ①2 00 T -,向正方向做匀速直线运动; ② 00 2 T T -,向负方向做匀速直线运动; ③2 300T T -,向正方向做匀速直线运动;

完整版圆周运动教学设计

《圆周运动》教学设计 六盘水市第二实验中学卢毅 一、教材分析 本节课的教学内容为新人教版第五章第四节《圆周运动》,它是在学生学习了曲线运 动的规律和曲线运动的处理方法以及平抛运动后接触到的又一类曲线运动实例。本节作为该章的重要内容之一,主要向学生介绍了描述圆周运动快慢的几个物理量,匀速圆周运动的特点,在此基础上讨论这几个物理量之间的变化关系,为后续学习圆周运动打下良好的基础。 二、学情分析 通过前面的学习,学生已对曲线运动的条件、运动的合成和分解、曲线运动的处理方法、平抛运动的规律有了一定的了解和认识。在此基础上了,教师通过生活中的实例和实物,利用多媒体,引导学生分析讨论,使学生对圆周运动从感性认识到理性认识,得出相关概念和规律。在生活中学生已经接触到很多圆周运动实例,对其并不陌生,但学生对如何描述圆周运动快慢却是第一次接触,因此学生在对概念的表述不够准确,对问题的猜想不够合理,对规律的认识存在疑惑等。教师在教学中要善于利用教学资源,启发引导学生大胆猜想、合理推导、细心总结、敢于表达,这就能对圆周运动的认识有深度和广度。 三、设计思想 本节课结合我校学生的实际学习情况,对教材进行挖掘和思考,始终把学生放在学习主体的地位,让学生在思考、讨论交流中对描述圆周运动快慢形成初步的系统认识,让学生的思考和教师的引导形成共鸣。 本节课结合了曲线运动的规律及解决方法,利用生活中曲线运动实例(如钟表、转动的飞轮等)使学生建立起圆周运动的概念,在此基础上认识描述圆周运动快慢的相关物理量。总体设计思路如下:

提出问题:除了用线速度、角速度描述圆周运动快慢,能否用其它物理量描述圆周运动的快慢?学生 思考、讨论交流,教师引导分析,利用物体做圆周运动转过一圈所需要时间多少来描述圆周运动的快 慢,即周期。 一 四、教学目标 (一)、知识与技能 1、知道什么是圆周运动、匀速圆周运动。理解线速度、角速度、周期的概念,会用线速度角速度公式进行计算。 2、理解线速度、角速度、周期之间的关系,即v *r r。 3、理解匀速圆周运动是变速运动。 4、能利用圆周运动的线速度、角速度、周期的概念分析解决生活生产中的实际问题。 (二)、过程与方法 1、知道并理解运用比值定义法得出线速度概念,运用极限思想理解线速度的矢量性和瞬时性。 2、体会在利用线速度描述圆周运动快慢后,为什么还要学习角速度。能利用类比定义线速度概念的方法得出角速度概念。 (三)、情感、态度与价值观 1、通过极限思想的运用,体会物理与其他学科之间的联系,建立普遍联系的世界观。 2、体会物理知识来源于生活服务于生活的价值观,激发学生的学习兴趣。 3、通过教师与学生、学生与学生之间轻松融洽的讨论和交流,让学生感受快乐学习。 五、教学重点、教学难点 (一)、教学重点1、理解线速度、角速度、周期的概念2、掌握线速度、角速度、周期之间的关系(二)、教学难点1、理解线速度、角速度、周期的物理意义及引入这些概念的必要性。2、理解线速

高考物理模型之圆周运动模型

第二章 圆周运动 解题模型: 一、水平方向的圆盘模型 1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求: (1)当转盘的角速度ωμ12=g r 时,细绳的拉力F T 1。 (2)当转盘的角速度ωμ232=g r 时,细绳的拉力F T 2。 图2.01 解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=g r 。 (1)因为ωμω102=g r ,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得 F mg T 22=μ。 2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心

r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大 角速度为多大?(g m s =102/) 图2.02 解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。ω再增大,AB 间绳子开始受到拉力。 由F m r fm =1022ω,得:ω011111 055===F m r m g m r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。如ω再增加,就不能维持匀速圆周运动了,A 、B 就在圆盘上滑动起来。设此时角速度为ω1,绳中张力为F T ,对A 、B 受力分析: 对A 有F F m r fm T 11121+=ω 对B 有F F m r T fm -=2212 2ω 联立解得:ω112 112252707=+-==F F m r m r rad s rad s fm fm /./ 3. 如图2.03所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置,两轮半径 R R A B =2,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止在A 轮边缘上。若将小木块放在B 轮上,欲使木块相对B 轮也静止,则木块距B 轮转轴的最大距离为( ) A. R B 4 B. R B 3 C. R B 2 D. R B 答案: C

最新高考物理专题复习:圆周运动精编版

2020年高考物理专题复习:圆周运动精编 版

专题4.2 圆周运动 【高频考点解读】 1.掌握描述圆周运动的物理量及它们之间的关系. 2.理解向心力公式并能应用; 3.了解物体做离心运动的条件. 【热点题型】 题型一圆周运动的运动学问题 例1.如图4-3-3所示,当正方形薄板绕着过其中心O并与板垂直的转动轴转动时,板上A、B两点( ) 图4-3-3 A.角速度之比ωA∶ωB=2∶1 B.角速度之比ωA∶ωB=1∶ 2 C.线速度之比v A∶v B=2∶1 D.线速度之比v A∶v B=1∶ 2 【提分秘籍】 1.圆周运动各物理量间的关系

2.对公式v =ωr 的理解 当r 一定时,v 与ω成正比; 当ω一定时,v 与r 成正比; 当v 一定时,ω与r 成反比。 3.对a =v 2 r =ω2r 的理解 当v 一定时,a 与r 成反比; 当ω一定时,a 与r 成正比。 4.常见的三种传动方式及特点 (1)皮带传动:如图4-3-1甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B 。 图4-3-1 (2)摩擦传动:如图4-3-2甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B 。 图4-3-2 (3)同轴传动:如图乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA =ωB 。 【举一反三】 如图4-3-4所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B 轮也随之无滑动地转动起来。a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在运动过程中的( )

高三物理_圆周运动练习题

高三物理 圆周运动练习题 1.如图所示,轻绳的上端系于天花板上的O 点,下端系有一只小球。将小球拉离平衡位置一个角度后无初速释放。当绳摆到竖直位置时,与钉在O 点正下方P 的钉子相碰。在绳与钉子相碰瞬间,以下哪些物理量的大小没有发生变化 A.小球的线速度大小 B.小球的角速度大小 C.小球的向心加速度大小 D.小球所受拉力的大小 2.关于做曲线运动物体的速度和加速度,下列说法中正确的是 A.速度、加速度都一定随时在改变 B.速度、加速度方向都一定随时在改变 C.速度、加速度大小都一定随时在改变 D. 速度、加速度的大小可能都保持不变 3.如图所示,两根长度不同的细线分别系有两个小球,细线的上端都系于O 点。设法让两个小球在同一水平面上做匀速圆周运动。已知细线长之比为L 1∶L 2=3∶1,L 1跟竖直方向成 60o角。下列说法中正确的有 A.两小球做匀速圆周运动的周期必然相等 B.两小球的质量m 1∶m 2=3∶1 C.L 2跟竖直方向成60o角 D.L 2跟竖直方向成45o角 4.在水平面上,小花猴拉着小滑块做匀速圆周运动,O 点为圆心。能正确地表示小滑块受到的牵引力F 及摩擦力F f 的图是 A. B. D. 5.如图所示,长0.5m 的轻质细杆,一端固定有一个质量为3kg 的小球,另一端由电动机带动,使杆绕O 在竖直平面内作匀速圆周运动,小球的速率为2m/s 。取g =10m/s 2正确的是 A.小球通过最高点时,对杆的拉力大小是6N B.小球通过最高点时,对杆的压力大小是24N C.小球通过最低点时,对杆的拉力大小是24N D.小球通过最低点时,对杆的拉力大小是54N 7.飞机在水平面内做匀速圆周运动时的向心力由重力和机翼受到的升力共同提供。一架教练机正以某一速率在水平面内做匀速圆周运动。当飞行半径为R 1=500m 时,机翼与水平面的 F

高中物理---运动的描述教案

高中物理---运动的描述教案 一质点参考系和坐标系 (一)物体和质点(subject and mass point) 1 质点:不考虑物体的大小和形状,把物体简化为一个有质量的点 2 质点是一种科学的抽象,是一种理想化的模型 (理想化模型:指抓住问题主要因素,忽略次要因素,对实际问题近似的一种思想) 活动与交流 1.研究火车的各种运动情况时,哪些情况下需要考虑火车的长度?哪些情况不需要? 2.研究地球自转和地球绕太阳公转时,是否可以忽略地球的大小? 讨论交流 1.同一物体有时看做质点,有时又不能看做质点,要具体问题具体分析.如研究火车从北京到上海时,可把火车看做质点,不考虑火车的长度,而研究火车通过某一座桥时,这时就不能把火车看做质点 2.质点是用来代替物体的具有质量的点,任何转动的物体,在研究自转时,都不可简化为质点.所以在研究地球自转时,不可以忽略地球的大小,地球不能当做质点来处理. 质点不一定是很小的物体,很大的物体也可简化为质点,但在研究地球绕太阳公转运动时,由于地球的直径比地球和太阳之间的距离小得多,地球上各点相对于太阳的运动可以看做是相同的,即地球的大小可忽略不计,在这种情况下,地球当做质点来处理 3 物体看成质点条件 a)当物体上各部分运动情况都相同时,物体上任何一点的运动情况都能反映物体的运动,物体可看成质点 b)物体的大小、形状对所研究的问题可以忽略不计的情况下可看成质点 c)同一个物体在不同的问题中,有时可以当做质点,有时不能当做质的质点 实例分析 在下列运动中,研究对象可当做质点的有 A 远洋航行的巨轮 B 研究飞行中直升飞机上的螺旋浆的转动情况

高中物理公式学习方法之匀速圆周运动公式

高中物理公式学习方法之匀速圆周运动公式 角速度与转速的关系ω=2πn(此处频率与转速意义相同) 主要物理量及单位:弧长(s):(m);角度(Φ):弧度(rad);频率(f);赫(Hz);周期(T):秒(s);转速(n);r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心; 做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变. 加速度a=(Vt-V0)/t (以V0为正方向,a与V0同向(加速)a>0;a与V0反向(减速)则a<0) 实验用推论Δs=aT2(Δs为连续相邻相等时间(T)内位移之差) 主要物理量及单位:初速度(V0):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t):秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 a=(Vt-V o)/t只是测量式,不是决定式; 其它相关内容:质点、位移和路程、参考系、时间与时刻、s--t 图、v--t图/速度与速率、瞬时速度。 质点的运动

----曲线运动、万有引力 平抛运动 竖直方向位移:y=gt2/2 运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 合速度Vt=(Vx2+Vy2)1/2=[V02+(gt)2]1/2 合速度方向与水平夹角β:tgβ=V y/Vx=gt/V0 合位移:s=(x2+y2)1/2 位移方向与水平夹角α:tgα=y/x=gt/2V0 水平方向加速度:ax=0;竖直方向加速度:ay=g 注: 平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; 运动时间由下落高度h(y)决定与水平抛出速度无关; θ与β的关系为tgβ=2tgα; 在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 匀速圆周运动 向心加速度a=V2/r=ω2r=(2π/T)2r 向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 角速度与线速度的关系:V=ωr 角速度与转速的关系ω=2πn(此处频率与转速意义相同)

高中物理第2章1圆周运动教案教科版必修2

学 习 目 标 知 识 脉 络(教师用书独具) 1.理解匀速圆周运动的概念和特点.(重点) 2.理解线速度、角速度、周期、频率等概念,会对它们进行定量计算.(重点) 3.知道线速度与角速度的定义,知道线速度与周期、角速度与周期的关系.(重点、难点) 高中物理第2章1圆周运动教案教科版必修2 一、形形色色的圆周运动 1.圆周运动:物体的运动轨迹是圆的运动. 2.匀速圆周运动:在相等时间内通过的圆弧长度相等的圆周运动. 二、匀速圆周运动的线速度、角速度和周期 1.线速度 (1)大小:线速度是描述做圆周运动的质点运动快慢的物理量.线速度的大小等于质点通过的弧长跟所用时间的比值,即v =Δs Δt . (2)方向:线速度不仅有大小,而且有方向.物体在某一时刻或通过某一位置的线速度方向就是圆周上该点的切线方向. 2.角速度 (1)定义:角速度是描述圆周运动的特有概念.连接运动质点和圆心的半径转过的角度和所用时间的比值,叫做匀速圆周运动的角速度. (2)公式:ω=Δφ Δt . (3)单位:角速度的单位是弧度每秒,符号是rad/s. 3.周期 做匀速圆周运动的物体运动一周所用的时间叫周期,用T 表示,其国际制单位为秒(s). 三、线速度、角速度和周期间的关系

1.r 、T 、v 、ω之间的关系 质点沿半径为r 的圆周做匀速圆周运动,周期是T ,则 (1)线速度v =2πr T . (2)角速度ω=2πT . (3)线速度与角速度的关系为v =r ω. 2.转速 (1)转速是指转动物体在单位时间内转过的圈数,常用符号n 表示. (2)单位:转/秒(r/s)或转/分(r/min). (3)角速度与转速的关系是ω=2πn . 1.思考判断(正确的打“√”,错误的打“×”) (1)做匀速圆周运动的物体相等时间内通过的弧长相等.( ) (2)做匀速圆周运动的物体相等时间内通过的位移相同.( ) (3)匀速圆周运动是一种匀速运动. ( ) (4)匀速圆周运动的周期相同时,角速度及转速都相同.( ) (5)匀速圆周运动的物体周期越长,转动越快. ( ) (6)做匀速圆周运动的物体在角速度不变情况下,线速度与半径成正比. ( ) 【提示】 (1)√ (2)× (3)× (4)√ (5)× (6)√ 2.(多选)关于匀速圆周运动,下列说法正确的是( ) A .匀速圆周运动是匀速运动 B .匀速圆周运动是变速运动 C .匀速圆周运动是线速度不变的运动 D .匀速圆周运动是线速度大小不变的运动 BD [这里的“匀速”,不是“匀速度”,也不是“匀变速”,而是速率不变,匀速圆周运动实际上是一种速度大小不变、方向时刻改变的变速运动,故B 、D 正确.] 3.(多选)甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3∶1,线速度之比为2∶3,那么下列说法中正确的是( ) A .它们的半径之比为2∶9 B .它们的半径之比为1∶2 C .它们的周期之比为2∶3 D .它们的周期之比为1∶3

相关文档
最新文档