无机材料科学基础教程(第二版)课后答案

无机材料科学基础教程(第二版)课后答案
无机材料科学基础教程(第二版)课后答案

第一章晶体几何基础

1-1 解释概念:

等同点:晶体结构中,在同一取向上几何环境和物质环境皆相同的点。

空间点阵:概括地表示晶体结构中等同点排列规律的几何图形。

结点:空间点阵中的点称为结点。

晶体:内部质点在三维空间呈周期性重复排列的固体。

对称:物体相同部分作有规律的重复。

对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合为对称型,也称点群。

晶类:将对称型相同的晶体归为一类,称为晶类。

晶体定向:为了用数字表示晶体中点、线、面的相对位置,在晶体中引入一个坐标系统的过程。

空间群:是指一个晶体结构中所有对称要素的集合。

布拉菲格子:是指法国学者 A.布拉菲根据晶体结构的最高点群和平移群对称及空间格子的平行六面体原则,将所有晶体结构的空间点阵划分成14种类型的空间格子。

晶胞:能够反应晶体结构特征的最小单位。

晶胞参数:表示晶胞的形状和大小的6个参数(a、b、c、α、β、γ).

1-2 晶体结构的两个基本特征是什么?哪种几何图形可表示晶体的基本特征?

解答:⑴晶体结构的基本特征:

①晶体是内部质点在三维空间作周期性重复排列的固体。

②晶体的内部质点呈对称分布,即晶体具有对称性。

⑵14种布拉菲格子的平行六面体单位格子可以表示晶体的基本特征。

1-3 晶体中有哪些对称要素,用国际符号表示。

解答:对称面—m,对称中心—1,n次对称轴—n,n次旋转反伸轴—n

螺旋轴—ns ,滑移面—a、b、c、d

1-5 一个四方晶系的晶面,其上的截距分别为3a、4a、6c,求该晶面的晶面指数。

解答:在X、Y、Z轴上的截距系数:3、4、6。

截距系数的倒数比为:1/3:1/4:1/6=4:3:2

晶面指数为:(432)

补充:晶体的基本性质是什么?与其内部结构有什么关系?

解答:①自限性:晶体的多面体形态是其格子构造在外形上的反映。

②均一性和异向性:均一性是由于内部质点周期性重复排列,晶体中的任何一部分在结构上是相同的。异向性是由于同一晶体中的不同方向上,质点排列一般是不同的,因而表现出不同的性质。

③对称性:是由于晶体内部质点排列的对称。

④最小内能和最大稳定性:在相同的热力学条件下,较之同种化学成分的气体、液体及非晶质体,晶体的内能最小。这是规则排列质点间的引力和斥力达到平衡的原因。

晶体的稳定性是指对于化学组成相同,但处于不同物态下的物体而言,晶体最为稳定。自然界的非晶质体自发向晶体转变,但晶体不可能自发地转变为其他物态。

第二章晶体化学基础

2-1 名词解释:配位数与配位体,同质多晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。

答:配位数:晶体结构中与一个离子直接相邻的异号离子数。

配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。

同质多晶:同一化学组成在不同外界条件下(温度、压力、pH值等),结晶成为两种以上不同结构晶体的现象。

多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。

位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。

重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。

晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。

配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论。

图2-1 MgO晶体中不同晶面的氧离子排布示意图

2-2 面排列密度的定义为:在平面上球体所占的面积分数。

(a)画出MgO(NaCl型)晶体(111)、(110)和(100)晶面上的原子排布图;

(b)计算这三个晶面的面排列密度。

解:MgO晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。

(a)(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。

(b)在面心立方紧密堆积的单位晶胞中,

(111)面:面排列密度=

(110)面:面排列密度=

(100)面:面排列密度=

2-3 试证明等径球体六方紧密堆积的六方晶胞的轴比c/a≈1.633。

证明:六方紧密堆积的晶胞中,a 轴上两个球直接相邻,a0=2r ;c 轴方向上,中间的一个球分别与上、下

各三个球紧密接触,形成四面体,如图2-2所示:

图2-2 六方紧密堆积晶胞中 有关尺寸关系示意图

2-4 设原子半径为R ,试计算体心立方堆积结构的(100)、(110)、(111)面的面排列密度和晶面族的面间距。 解:在体心立方堆积结构中:

(100)面:面排列密度=

面间距=

(110)面:面排列密度=

面间距=

(111)面:面排列密度=

面间距=

2-5 以NaCl 晶胞为例,试说明面心立方紧密堆积中的八面体和四面体空隙的位置和数量。 答:以NaCl 晶胞中(001)面心的一个球(Cl-离子)为例,它的正下方有1个八面体空隙(体心位置),与其对称,正上方也有1个八面体空隙;前后左右各有1个八面体空隙(棱心位置)。所以共有6个八面体空隙与其直接相邻,由于每个八面体空隙由6个球构成,所以属于这个球的八面体空隙数为6×1/6=1。

在这个晶胞中,这个球还与另外2个面心、1个顶角上的球构成4个四面体空隙(即1/8小立方体的体心位置);由于对称性,在上面的晶胞中,也有4个四面体空隙由这个参与构成。所以共有8个四面体空隙与其直接相邻,由于每个四面体空隙由4个球构成,所以属于这个球的四面体空隙数为8×1/4=2。 2-6 临界半径比的定义是:紧密堆积的阴离子恰好互相接触,并与中心的阳离子也恰好接触的条件下,阳离子半径与阴离子半径之比。即每种配位体的阳、阴离子半径比的下限。计算下列配位的临界半径比:(a )立方体配位;(b )八面体配位;(c )四面体配位;(d )三角形配位。

解:(1)立方体配位

在立方体的对角线上正、负离子相互接触,在立方体的棱上两个负离子相互接触。因此:

(2)八面体配位

在八面体中,中心对称的一对阴离子中心连线上正、负离子相互接触,棱上两个负离子相互接触。因此:

(3)四面体配位

在四面体中中心正离子与四个负离子直接接触,四个负离子之间相互接触(中心角

)。因此:

底面上对角中心线长为:

(4)三角体配位

在三角体中,在同一个平面上中心正离子与三个负离子直接接触,三个负离子之间相互接触。因此:

2-7 一个面心立方紧密堆积的金属晶体,其原子量为M,密度是8.94g/cm3。试计算其晶格常数和原子间距。

解:根据密度定义,晶格常数

原子间距=

2-8 试根据原子半径R计算面心立方晶胞、六方晶胞、体心立方晶胞的体积。

解:面心立方晶胞:

六方晶胞(1/3):

体心立方晶胞:

2-9 MgO具有NaCl结构。根据O2-半径为0.140nm和Mg2+半径为0.072nm,计算球状离子所

占据的体积分数和计算MgO的密度。并说明为什么其体积分数小于74.05%?

解:在MgO晶体中,正负离子直接相邻,a0=2(r++r-)=0.424(nm)

体积分数=4×(4π/3)×(0.143+0.0723)/0.4243=68.52%

密度=4×(24.3+16)/[6.023×1023×(0.424×10-7)3]=3.5112(g/cm3)

MgO体积分数小于74.05%,原因在于r+/r-=0.072/0.14=0.4235>0.414,正负离子紧密接触,而负离子之间不直接接触,即正离子将负离子形成的八面体空隙撑开了,负离子不再是紧密堆积,所以其体积分数小于等径球体紧密堆积的体积分数74.05%。

2-10 半径为R的球,相互接触排列成体心立方结构,试计算能填入其空隙中的最大小球半径r。体心立方结构晶胞中最大的空隙的坐标为(0,1/2,1/4)。

解:在体心立方结构中,同样存在八面体和四面体空隙,但是其形状、大小和位置与面心立方紧密堆积略有不同(如图2-3所示)。

设:大球半径为R,小球半径为r。则位于立方体面心、棱心位置的八面体空隙能够填充的最大的小球尺寸为:

位于立方体(0.5,0.25,0)位置的四面体空隙能够填充的最大的小球尺寸为:

2-11 纯铁在912℃由体心立方结构转变成面心立方,体积随之减小1.06%。根据面心立方结构的原子半径R面心计算体心立方结构的原子半径R体心。

解:因为面心立方结构中,单位晶胞4个原子,;而体心立方结构中,单位晶胞2个原子,

所以,

解得:RF=1.0251RI,或RI=0.9755RF

第三章晶体结构

3-1 名词解释

(a)萤石型和反萤石型

(b)类质同晶和同质多晶

(c)二八面体型与三八面体型

(d)同晶取代与阳离子交换

(e)尖晶石与反尖晶石

答:(a)萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。

反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。

(b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。

(c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构

三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。

(d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。

(e)正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+

分布在四面体空隙、而B3+分布于八面体空隙,称为正尖

晶石;

反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于

四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,

称为反尖晶石。

3-2 (a)在氧离子面心立方密堆积的晶胞中,画出适合

氧离子位置的间隙类型及位置,八面体间隙位置数与氧离

子数之比为若干?四面体间隙位置数与氧离子数之比又

为若干?

(b)在氧离子面心立方密堆积结构中,对于获得稳定结

构各需何种价离子,其中:

(1)所有八面体间隙位置均填满;

(2)所有四面体间隙位置均填满;

(3)填满一半八面体间隙位置;

(4)填满一半四面体间隙位置。

并对每一种堆积方式举一晶体实例说明之。

解:(a)参见2-5题解答。

(b)对于氧离子紧密堆积的晶体,获得稳定的结构所需

电价离子及实例如下:

(1)填满所有的八面体空隙,2价阳离子,MgO;

(2)填满所有的四面体空隙,1价阳离子,Li2O;

(3)填满一半的八面体空隙,4价阳离子,TiO2;

(4)填满一半的四面体空隙,2价阳离子,ZnO。

3-3 MgO晶体结构,Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO的密度。

解:参见2-9题。

3-4 Li2O晶体,Li+的半径为0.074nm,O2-的半径为0.140nm,其密度为1.646g/cm3,求晶胞常数a0;晶胞中Li2O的分子数。

解:按照已知密度计算:

根据已知离子半径计算:[LiO4]的棱为小立方体的面对角线。

从图3-1所示尺寸关系知道:

将已知数值代入上式并解方程得:

3-5 试解释

(a)在AX型晶体结构中,NaCl型结构最多;

(b)MgAl2O4晶体结构中,按r+/r-与CN关系,Mg2+、Al3+都填充八面体空隙,但在该结构中Mg2+进入四面体空隙,Al3+填充八面体空隙;而在MgFe2O4结构中,Mg2+填充八面体空隙,而一半Fe3+填充四面体空隙。

(c)绿宝石和透辉石中Si:O都为1:3,前者为环状结构,后者为链状结构。

答:(a)在AX型晶体结构中,一般阴离子X的半径较大,而阳离子A的半径较小,所以X 做紧密堆积,A填充在其空隙中。大多数AX型化合物的r+/r-在0.414~0.732之间,应该填充在八面体空隙,即具有NaCl型结构;并且NaCl型晶体结构的对称性较高,所以AX型化合物大多具有NaCl型结构。

(b)按照阳、阴离子半径比与配位数之间的关系,Al3+与Mg2+的配位数均应该为6,填入八面体空隙。但是,根据鲍林规则,高电价离子填充于低配位的四面体空隙时,排斥力要比填充八面体空隙中较大,稳定性较差,所以Al3+填入八面体空隙,而Mg2+填入四面体空隙。而在MgFe2O4结构中,由于Fe3+的八面体择位能为0,可以进入四面体或八面体空隙,当配位数为4时,Fe3+离子半径0.049nm,Mg2+离子半径0.057nm,Fe3+在四面体空隙中更加稳定,所以Mg2+填充八面体空隙、一半Fe3+填充四面体空隙。

(c)绿宝石和透辉石中Si:O都为1:3。但是,绿宝石中的其它阳离子Be2+和Al3+的离子半径较小,配位数较小(4或6),相互间斥力较大,所以绿宝石通过[SiO4]顶角相连形成六节环,再通过Be2+和Al3+将六节环连接起来,离子堆积结合状态不太紧密,这样晶体结构较稳定。透辉石中是Mg2+和Ca2+,离子半径较大,配位数较大(分别为6和8),相互间斥力较小,所以透辉石通过[SiO4]顶角相连形成单链,离子堆积结合状态比较紧密。

3-6叙述硅酸盐晶体结构分类原则及各种类型的特点,并举一例说明之。

解:硅酸盐矿物按照硅氧四面体的连接方式进行分类,具体类型见表3-1。

表3-1 硅酸盐矿物的结构类型

结构类型共用氧数形状络阴离子氧硅比实例

岛状0 四面体[SiO4]4- 4 镁橄榄石Mg2[SiO4]

组群状1~2 六节环[Si6O18]12- 3.5~3 绿宝石Be3Al2[Si6O18]

链状2~3 单链[Si2O6]4-3~2.5 透辉石CaMg[Si2O6]

层状 3 平面层[Si4O10]4- 2.5 滑石Mg3[Si4O10](OH)2

架状 4 骨架[SiO2] 2 石英SiO2

3-7 堇青石与绿宝石有相同结构,分析其有显著的离子电导,较小的热膨胀系数的原因。答:堇青石Mg2Al3[AlSi5O18]具有绿宝石结构,以(3Al3++2Mg2+)置换绿宝石中的

(3Be2++2Al3+)。6个[SiO4]通过顶角相连形成六节环,沿c轴方向上下迭置的六节环内形成了一个空腔,成为离子迁移的通道,因而具有显著的离子电导;另外离子受热后,振幅增大,但由于能够向结构空隙中膨胀,所以不发生明显的体积膨胀,因而热膨胀系数较小。3-8 (a)什么叫阳离子交换?

(b)从结构上说明高岭石、蒙脱石阳离子交换容量差异的原因。

(c)比较蒙脱石、伊利石同晶取代的不同,说明在平衡负电荷时为什么前者以水化阳离子形式进入结构单元层,而后者以配位阳离子形式进入结构单元层。

答:(a)在粘土矿物中,如果[AlO6]层中部分Al3+被Mg2+、Fe2+代替时,一些水化阳离子(如Na+、Ca2+等)进入层间,来平衡多余的负电荷,在一定条件下这些阳离子可以被其它阳离子交换,这种现象称为阳离子交换。

(b)高岭石的阳离子交换容量较小,而蒙脱石的阳离子交换容量较大。因为高岭石是1:1型结构,单网层与单网层之间以氢键相连,氢键强于范氏键,水化阳离子不易进入层间,因此阳离子交换容量较小。而蒙脱石是为2:1型结构,复网层间以范氏键相连,层间联系较弱,水化阳离子容易进入复网层间以平衡多余的负电荷,因此蒙脱石的阳离子交换容量较大。(c)蒙脱石和伊利石均为2:1型结构。但是,蒙脱石的铝氧八面体层中大约有1/3的Al3+被Mg2+所取代,平衡电荷的水化阳离子半径大,而且水化阳离子与负电荷之间距离远,覆网层之间的结合力弱,所以进入层间位置。伊利石的硅氧四面体层中约1/6的Si4+被Al3+所取代,K+进入复网层间以平衡多余的负电荷,K+位于上下二层硅氧层的六边形网络的中心,构成[KO12],K+与硅氧层中的负电荷距离近,结合力较强,因此以配位离子形式进入结构单元。

3-9 在透辉石CaMg[Si2O6]晶体结构中,O2-与阳离子Ca2+、Mg2+、Si4+配位型式有哪几种,符合鲍林静电价规则吗?为什么?

答:透辉石CaMg[Si2O6],O2-与阳离子Ca2+、Mg2+、Si4+配位型式有三种,即2个桥氧和2个非桥氧形成[SiO4],6个非桥氧形成[MgO6],4个桥氧和4个非桥氧形成[CaO8]。

在教材的图3-22b中,同时与1个Si4+、2个Mg2+和1个Ca2+配位的非桥氧,其静电价强度总和为4×1/4+2×2×1/6+2×1/8=23/12,而同时与1个Si4+、1个Mg2+和1个Ca2+配位的非桥氧,其静电价强度总和为4×1/4+2×1/6+2×1/8=19/12,小于其负电价;同时与2个Si4+、2个Ca2+配位的桥氧,其静电价强度总和为4×2×1/4+2×2×1/8=5/2,大于其负电价。所以不完全符合鲍林静电价规则。但是其总体电价仍然平衡的,晶体结构仍然是稳定的。

原因在于Mg2+和Ca2+两种离子的离子半径不同、配位数不同、配位氧离子不同(桥氧或非桥氧)。

3-10 同为碱土金属阳离子Be2+、Mg2+、Ca2+,其卤化物BeF2和SiO2结构同,MgF2与TiO2(金红石型)结构同,CaF2则有萤石型结构,分析其原因。

答:碱土金属离子Be2+、Mg2+、Ca2+,随着原子序数的增大,离子半径逐渐增大,极化性能变化不大。当阴离子同为F-时,使得其r+/r-增大,配位数增大,由BeF2的4配位到MgF2

的6配位,再到CaF2的8配位。

3-11 金刚石结构中C原子按面心立方排列,为什么其堆积系数仅为34%。

答:为了分析晶体结构方便起见,金刚石结构中C原子可以看成按面心立方排列。但实际上由于C原子之间是共价键,具有方向性和饱和性,每个C原子只与4个C原子形成价键(紧密相邻),所以并没有达到紧密堆积(紧密堆积时每个原子同时与12个原子紧密相邻),其晶体结构内部存在很多空隙。所以其堆积系数仅为34%,远远小于紧密堆积的74.05%。

第四章晶体结构缺陷习题与解答

4.1 名词解释(a)弗伦克尔缺陷与肖特基缺陷;(b)刃型位错和螺型位错

解:(a)当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,在原正常格点上留下空位,这种缺陷称为肖特基缺陷。(b)滑移方向与位错线垂直的位错称为刃型位错。位错线与滑移方向相互平行的位错称为螺型位错。

4.2试述晶体结构中点缺陷的类型。以通用的表示法写出晶体中各种点缺陷的表示符号。试举例写出CaCl2中Ca2+置换KCl中K+或进入到KCl间隙中去的两种点缺陷反应表示式。解:晶体结构中的点缺陷类型共分:间隙原子、空位和杂质原子等三种。在MX晶体中,间隙原子的表示符号为MI或XI;空位缺陷的表示符号为:VM或VX。如果进入MX晶体的杂质原子是A,则其表示符号可写成:AM或AX(取代式)以及Ai(间隙式)。

当CaCl2中Ca2+置换KCl中K+而出现点缺陷,其缺陷反应式如下:

CaCl2++2Cl Cl

CaCl2中Ca2+进入到KCl间隙中而形成点缺陷的反应式为:

CaCl2+2 +2Cl Cl

4.3在缺陷反应方程式中,所谓位置平衡、电中性、质量平衡是指什么?

解:位置平衡是指在化合物MaXb中,M格点数与X格点数保持正确的比例关系,即M:X=a:b。电中性是指在方程式两边应具有相同的有效电荷。质量平衡是指方程式两边应保持物质质量的守恒。

4.4(a)在MgO晶体中,肖特基缺陷的生成能为6ev,计算在25℃和1600℃时热缺陷的浓度。(b)如果MgO晶体中,含有百万分之一mol的Al2O3杂质,则在1600℃时,MgO晶体中是热缺陷占优势还是杂质缺陷占优势?说明原因。

解:(a)根据热缺陷浓度公式:

exp(-)

由题意△G=6ev=6×1.602×10-19=9.612×10-19J

K=1.38×10-23 J/K

T1=25+273=298K T2=1600+273=1873K

298K: exp=1.92×10-51

1873K: exp=8×10-9

(b)在MgO中加入百万分之一的Al2O3杂质,缺陷反应方程为:

此时产生的缺陷为[ ]杂质。

而由上式可知:[Al2O3]=[ ]杂质

∴当加入10-6 Al2O3时,杂质缺陷的浓度为

[ ]杂质=[Al2O3]=10-6

由(a)计算结果可知:在1873 K,[ ]热=8×10-9

显然: [ ]杂质>[ ]热,所以在1873 K时杂质缺陷占优势。

4.5对某晶体的缺陷测定生成能为84KJ/mol,计算该晶体在1000K和1500K时的缺陷浓度。解:根据热缺陷浓度公式:

exp(-)

由题意△G=84KJ/mol=84000J/mol

则exp()

其中R=8.314J/mol·K

当T1=1000K时, exp()= exp=6.4×10-3

当T2=1500K时, exp()= exp=3.45×10-2

4.6试写出在下列二种情况,生成什么缺陷?缺陷浓度是多少?(a)在Al2O3中,添加0.01mol%的Cr2O3,生成淡红宝石(b)在Al2O3中,添加0.5mol%的NiO,生成黄宝石。

解:(a)在Al2O3中,添加0.01mol%的Cr2O3,生成淡红宝石的缺陷反应式为:

Cr2O3

生成置换式杂质原子点缺陷。其缺陷浓度为:0.01%×=0.004%=4×10-3 %

(b)当添加0.5mol%的NiO在Al2O3中,生成黄宝石的缺陷反应式为:

2NiO++2O O

生成置换式的空位点缺陷。其缺陷浓度为:0.5%×=0.3 %

4.7非化学计量缺陷的浓度与周围气氛的性质、压力大小相关,如果增大周围氧气的分压,

非化学计量化合物Fe1-xO及Zn1+xO的密度将发生怎样变化?增大?减少?为什么?

解:(a)非化学计量化合物Fe1-xO,是由于正离子空位,引起负离子过剩:

2Fe Fe+ O2(g)→2Fe+ V+O O

O2(g)→O O + V+2h

按质量作用定律,平衡常数

K=

由此可得

[V]﹠ P O1/6

即:铁空位的浓度和氧分压的1/6次方成正比,故当周围分压增大时,铁空位浓度增加,晶体质量减小,则Fe1-x O的密度也将减小。

(b)非化学计量化合物Zn1+x O,由于正离子填隙,使金属离子过剩:

ZnO+2e′+ O2(g)

根据质量作用定律

K=[] [e′]2

得 []P O-1/6

即:间隙离子的浓度与氧分压的1/6次方成反比,故增大周围氧分压,间隙离子浓度减小,晶体质量减小,则Zn1+x O的密度也将减小。

4.8非化学计量化合物FexO中,Fe3+/Fe2+=0.1,求FexO中的空位浓度及x值。

解:非化学计量化合物Fe x O,可认为是α(mol)的Fe2O3溶入FeO中,缺陷反应式为:

Fe2O32Fe+ V+3O O

α 2αα

此非化学计量化合物的组成为:

Fe Fe O

已知:Fe3+/Fe2+=0.1

则:

∴α= 0.044

∴x=2α+(1-3α)=1-α=0.956

又:∵[V3+]=α= 0.044

正常格点数N=1+x=1+0.956=1.956

∴空位浓度为

4.9 非化学计量氧化物TiO2-x的制备强烈依赖于氧分压和温度:(a)试列出其缺陷反应式。(b)求其缺陷浓度表达式。

解:非化学计量氧化物TiO2-x,其晶格缺陷属于负离子缺位而使金属离子过剩的类型。(a)缺陷反应式为:

2Ti Ti?/FONT>O2↑→2++3O O

O O→+2e′+O2↑

(b)缺陷浓度表达式:

[ V]

4.10试比较刃型位错和螺型位错的异同点。

解:刃型位错和螺型位错的异同点见表4-1所示。

表4-1 刃型位错和螺型位错的异同点

与柏格斯矢量的位置关系柏格斯矢量与刃性位

错线垂直

柏格斯矢量与螺型位

错线平行

第五章固溶体习题与解答

5.1试述影响置换型固溶体的固溶度的条件。解:

1.离子尺寸因素

从晶体稳定性考虑,相互替代的离子尺寸愈相近,则固溶体愈稳定。若以r1和r2分别代表

半径大和半径小的两种离子的半径。当它们半径差< 15%时,形成连续置换型固溶体。

若此值在15~30%时,可以形成有限置换型固溶体。而此值>30%时,不能形成固溶体。

2、晶体的结构类型

形成连续固溶体的两个组分必须具有完全相同的晶体结构。结构不同最多只能生成有限固溶体。

3、离子的电价因素

只有离子价相同或复合替代离子价总和相同时,才可能形成连续置换型固溶体。

4、电负性因素

电负性相近,有利于固溶体的生成。

5.2 从化学组成、相组成考虑,试比较固溶体与化合物、机械混合物的差别。

解:从化学组成、相组成考虑,固溶体、化合物和机械混合物的区别列下表5-1比较之。表5-1 固溶体、化合物和机械混合物比较

(以AO溶质溶解在B2O3溶剂中为例)

AB

B2-x A x O(x =0~2)

5.3试阐明固溶体、晶格缺陷和非化学计量化合物三者之间的异同点。列出简明表格比较。解:固溶体、晶格缺陷和非化学计量化合物都属晶体结构缺陷,但它们又各有不同,现列表5-2比较之。

表5-2 固溶体、晶格缺陷和非化学计量化合物比较

0MX

M M =

MX

X X=

AO B

解< 15% ,

间隙离子半径小,晶体结构开放,空YF 3

掺杂量控制< 30% ,Ca 2+

电价

≠Zr 4+

电价 2CaO

CaO

掺杂量控制 变价元素氧化物在氧化气氛O 2(g)→2Fe

+ V

+O O

[h ]

[P O

]

O 2(g)→+U

(2h )

[]

变价元素氧化物在还原气氛ZnO

+2e ′+

O 2(g)

[]

O O→

+2+ O2(g)

[ V

]

2332

合理性。(b)写出每一方程对应的固溶式。

解: 3MgO2+ +3OO (1)

2MgO2+ +2O O(2)

YF3Y +F+2F F (3)

2YF32Y ++6F F (4)

(a)书写缺陷方程首先考虑电价平衡,如方程(1)和(4)。在不等价置换时,3Mg2+→2Al3+;2Y3+→3Ca2+。这样即可写出一组缺陷方程。其次考虑不等价离子等量置换,如方程(2)和(3)2Mg2+→2Al3+;Y3+→Ca2+。这样又可写出一组缺陷方程。在这两组方程中,从结晶化学的晶体稳定性考虑,在离子晶体中除萤石型晶体结构可以产生间隙型固溶体以外,由于离子晶体中阴离子紧密堆积,间隙阴离子或阳离子都会破坏晶体的稳定性。因而间隙型缺陷在离子晶体中(除萤石型)较少见。上述四个方程以(2)和(3)较合理。当然正确的判断必须用固溶体密度测定法来决定。

(b)(1)

(2)

(3)

(4)

5.5一块金黄色的人造黄玉,化学分析结果认为,是在Al2O3中添加了0.5mol%NiO和0.02mol% Cr2O3。试写出缺陷反应方程(置换型)及化学式。

解:NiO和Cr2O3固溶入Al2O3的缺陷反应为:

2NiO2+ +2O O

Cr2O3

固溶体分子式为:Cr

取1mol试样为基准,则

m=0.005 ; m=0.0002 ; m=1-0.005-0.0002=0.9948

∵ 2NiO →2Al2 O3

Cr2 O3 →Al2 O3

∴取代前Al2O3所占晶格为:

0.9948+0.005/2+0.0002=0.9975mol (Al2O3)

取代后各组分所占晶格分别为:

Al2O3: mol

NiO: mol

Cr2 O3: mol

∴取代后,固溶体的分子式为:

0.9973 Al2O3·0.005 NiO ·0.0002 Cr2 O3

或Al1.9946Ni 0.005Cr0.0004 O2.9975

∴x=0.005, Y=0.0004

1.9946=2-0.005-0.0004=2-x-y

2.9975=3-x

5.6 ZnO是六方晶系,a=0.3242nm,c=0.5195nm,每个晶胞中含2个ZnO分子,测得晶体密度分别为5.74,5.606 g/cm3,求这两种情况下各产生什么型式的固溶体?

解:六方晶系的晶胞体积

V===4.73cm3

在两种密度下晶胞的重量分别为

W1=d1v=5.74×4.73×10-23=2.72×10-22(g)

W2=d2v=5.606×4.73×10-23=2.65×10-22(g)

理论上单位晶胞重

W=

=2.69(g)

∴密度是d1时为间隙型固溶体,是d2时为置换型固溶体。

5.7对于MgO、Al2O3和Cr2O3,其正、负离子半径比分别为0.47、0.36和0.40。Al2O3和Cr2O3形成连续固溶体。 (a) 这个结果可能吗?为什么? (b) 试预计,在MgO-Cr2O3系统中的固溶度是有限还是很大?为什么?

解:(a)Al2O3与Cr2O3有可能形成连续固溶体。因为:

①==10%<15%

②结构类型相同,均属刚玉型结构。

(b)对于MgO-Cr2O3系统,由于结构类型相差较大,前者为NaCl型,后者为刚玉型。虽然

==14.89%<15%,也不可能形成完全互溶的固溶体,而只能是有限固溶。

5.8 Al2O3在MgO中将形成有限固溶体,在低共熔温度1995℃时,约有18wt% Al2O3溶入MgO 中,MgO单位晶胞尺寸减小。试预计下列情况下密度的变化。(a) Al3+为间隙离子, (b) Al3+为置换离子。

解:(a) Al3+为间隙离子:

缺陷反应为:(1)

固溶式分子式:(2)

(b)Al3+为置换离子:

缺陷反应为:+(3)

固溶式分子式:(4)

取100g试样为基准:(为摩尔数)

m===0.176 (m为摩尔数)

m MgO===2.035

∴MgO中固溶18%wt的Al2O3后的分子式为:

2.035 MgO·0.176 Al2O3或Mg2.035Al0.352O2.563 (5)

(5)式各项除以2.563得Mg0.794Al0.137O (6)

由(6)式得x=0.137代入(2)(4)式,

对(a)有

即Mg0.794Al0.137O

(b)有Mg0.794Al0.137O

设:固溶前后晶胞体积不变,则密度变化为:

(,分别代表固溶前后密度)

所以,固溶后的密度小于固溶前的密度。

5.9用0.2mol YF3加入CaF2中形成固溶体,实验测得固溶体的晶胞参数a=0.55nm,测得固溶体密度ρ=3.64g/cm3,试计算说明固溶体的类型?(元素的相对原子质量:Y=88.90;

Ca=40.08;F=19.00)

解:YF3加入CaF2的缺陷反应方程如下:

YF3Y +F+2F F (1)

2YF32Y +V +6F F (2)

方程(1)和(2)的固溶式:(1)Ca1-x Y x F2+x (2) Ca(1-3/2x)Y x F2

按题意x=0.2代入上述固溶式得:间隙型固溶体分子式为Ca0.8Y0.2F2..2

置换型固溶体分子式为Ca0.7Y0.2F2;它们的密度分别设为ρ1和ρ2。CaF2是萤石型晶体,单位晶胞内含有4个萤石分子。

ρ1==3.659(g/cm3)

ρ2==3.346(g/cm3)

由ρ1与ρ2计算值与实测密度ρ=3.64g/cm3比较,ρ1值接近3.64g/cm3,因此0.2mol YF3加入CaF2中形成间隙型固溶体。

第六章熔体和非晶态固体

6-1 说明熔体中聚合物形成过程?

答:聚合物的形成是以硅氧四面体为基础单位,组成大小不同的聚合体。

可分为三个阶段初期:石英的分化;

中期:缩聚并伴随变形;

后期:在一定时间和一定温度下,聚合和解聚达到平衡。

6-2 简述影响熔体粘度的因素?

答:影响熔体粘度的主要因素:温度和熔体的组成。

碱性氧化物含量增加,剧烈降低粘度。

随温度降低,熔体粘度按指数关系递增。

6-3 名词解释(并比较其异同)

⑴晶子学说和无规则网络学说

⑵单键强

⑶分化和缩聚

⑷网络形成剂和网络变性剂

答:⑴晶子学说:玻璃内部是由无数“晶子”组成,微晶子是带有晶格变形的有序区域。

它们分散在无定形介中质,晶子向无定形部分过渡是逐渐完成时,二者

没有明显界限。

无规则网络学说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度

空间网络所构成。这种网络是由离子多面体(三角体或四面体)

构筑起来的。晶体结构网是由多面体无数次有规律重复构成,而

玻璃中结构多面体的重复没有规律性。

⑵单键强:单键强即为各种化合物分解能与该种化合物配位数的商。

⑶分化过程:架状[SiO4]断裂称为熔融石英的分化过程。

缩聚过程:分化过程产生的低聚化合物相互发生作用,形成级次较高的聚合物,次过程为缩聚过程。

⑷网络形成剂:正离子是网络形成离子,对应氧化物能单独形成玻璃。即凡氧化物的

单键能/熔点﹥0.74kJ/mol.k 者称为网络形成剂。

网络变性剂:这类氧化物不能形成玻璃,但能改变网络结构,从而使玻璃性质改变,

即单键强/熔点﹤ 0.125kJ/mol.k者称为网络变形剂。

6-4 试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体。它们的结构有什么不同?

答:利用X—射线检测。

晶体SiO2—质点在三维空间做有规律的排列,各向异性。

SiO2熔体—内部结构为架状,近程有序,远程无序。

SiO2玻璃—各向同性。

硅胶—疏松多孔。

6-5 玻璃的组成是13wt%Na2O、13wt%CaO、74wt%SiO2,计算桥氧分数?

解:

Na2O CaO SiO2

wt% 13 13 74

mol 0.21 0.23 1.23

∵Z=4 ∴X=2R﹣Z=2.39×2﹣4=0.72

Y=Z﹣X= 4﹣0.72=3.28

氧桥%=3.28/(3.28×0.5+0.72)

=69.5%

6-6 有两种不同配比的玻璃,其组成如下:

试用玻璃结构参数说明两种玻璃高温下粘度的大小?

解:对于1:Z=4 R1=O/Si=2.55

∴ X1=2R1﹣4=1.1 Y1=Z﹣X1= 4﹣1.1=2.9

对于2:R2= O/Si=2.45

∴ X2=2R2﹣4=0.9 Y2= 4﹣X2= 4﹣0.9=3.1

∵Y1﹤Y2∴序号1的玻璃组成的粘度比序号2的玻璃小。

6-7 在SiO2中应加入多少Na2O,使玻璃的O/Si=2.5,此时析晶能力是增强还是削弱?

解:设加入x mol的Na2O,而SiO2的量为y mol。

则O/Si=(x+2y)/ y =2.5

∴x=y/2 即二者的物质量比为1:2时,O/Si=2.5。

因为O/Si增加了,粘度下降,析晶能力增强了。

6-8 有一种平板玻璃组成为14Na2O—13CaO—73SiO2(wt%重量百分比),其密度为2.5g/cm3, 计算玻璃的原子堆积系数(AFP)为多少?计算该玻璃的结构参数值?

解:该玻璃的平均分子量

GM=0.14×62+0.13×56+0.73×60.02=59.77

在1?3中原子数为

n=ρNo/GM=2.5×10-24×6.02×1023/59.77 =0.252个/?3

在1?3原子所占体积

V=0.0252×4/3π[0.14×2×0.983+0.13×1.063+0.73×0.393+

(0.14+0.13+0.73×2)×1.323]

=0.4685

∴ AFP=0.46

结构参数:

Na2O CaO SiO2

wt% 14 13 73

mol 0.23 0.23 1.22

mol% 13.7 13.7 72.6

R=(13.7+13.7+72.6 ×2)/ 72.6=2.38

∵Z=4 ∴X=2R﹣Z=2.38×2﹣4=0.76

Y=Z﹣X= 4﹣0.76=3.24

6-9 试比较硅酸盐玻璃与硼酸盐玻璃在结构与性能上的差异。

答:结构差异:硅酸盐玻璃:石英玻璃是硅酸盐玻璃的基础。石英玻璃是硅氧四面体[SiO4]

以顶角相连而组成的三维架状结构。由于Si—O—Si键角变

动范围大,使石英玻璃中[SiO4]四面体排列成无规则网络结

构。SiO2是硅酸盐玻璃中的主要氧化物。

硼酸盐玻璃:B和O交替排列的平面六角环的B—O集团是硼酸盐玻璃的

重要基元,这些环通过B—O—B链连成三维网络。B2O3是网

络形成剂。这种连环结构与石英玻璃硅氧四面体的不规则网

络不同,任何O—B三角体的周围空间并不完全被临接的三

角体所填充,两个原子接近的可能性较小。

性能差异:硅酸盐玻璃:试剂和气体介质化学稳定性好、硬度高、生产方法简单等优

点。

硼酸盐玻璃:硼酸盐玻璃有某些优异的特性。例如:硼酐是唯一能用以制

造有吸收慢中子的氧化物玻璃;氧化硼玻璃的转化温度比硅

酸盐玻璃低得多;硼对中子射线的灵敏度高,硼酸盐玻璃作

为原子反应堆的窗口对材料起屏蔽中子射线的作用。

6-10 解释硼酸盐玻璃的硼反常现象?

无机材料科学基础答案

1、熔体的概念:不同聚合程度的各种聚合物的混合物 硅酸盐熔体的粘度与组成的关系(决定硅酸盐熔体粘度大小的主要因素就是硅氧四面体网络连接程度) 在熔体中加入LiO2、Na2O 、K2O 与BaO 、PbO 等,随加入量增加,粘度显著下降。 在含碱金属的硅酸盐熔体中,当Al2O3/Na2O ≤1时,用Al2O3代替SiO2可以起“补网”作用,从而提高粘度。一般加入Al2O3、SiO2与ZrO2有类似的效果。 流动度为粘度的倒数,Φ= 粘度的理论解释:绝对速度理论η=η0exp(ΔE/kT) 自由体积理论η=B exp [ ]=Aexp( ) 过剩熵理论η = Cexp [ = Cexp( ) 2、非晶态物质的特点 :近程有序,远程无序 3、玻璃的通性 (1)各向同性(若有应力,为各向异性) (2)介稳性 (3)熔融态向玻璃态转化的可逆与渐变性 (4)、熔融态向玻璃态转化时其物化性质随温度变化的连续性 4、 Tg 、Tf , 相对应的粘度与特点 钠钙硅酸盐熔体粘度与温度关系表明:熔融温度范围内,粘度为50~500dPa·s 。工作温度范围粘度较高,约103~107dPa·s 。退火温度范围粘度更高,约1012、5~1013、5 dPa·s 。 Tg-脆性温度、退火温度,Tf-软化温度、可拉丝的最低温度 5、 单键强度 > 335 kJ/mol(或80 kcal/mol)的氧化物——网络形成体。 单键强度 < 250 kJ/mol(或60 kcal/mol)的氧化物——网络变性体。 在250~335 kJ/mol 为——中间体,其作用介于玻璃的网络形成体与网络变性体之间。 6、玻璃形成的热力学观点: 熔体就是物质在TM 以上存在的一种高能状态。据随温度降低,熔体释放能量大小不同,冷却途径分为结晶化,玻璃化,分相 ΔGv 越大析晶动力越大,越不容易形成玻璃。 ΔGv 越小析晶动力越小,越容易形成玻璃。 玻璃形成的动力学观点: 过冷度增大,熔体质点动能降低,有利于质点相互吸引而聚结与吸附在晶核表面,有利于成核。 过冷度增大,熔体粘度增加,使质点移动困难,难于从熔体中扩散到晶核表面,不利于晶核长大。 过冷度与成核速率Iv 与晶体生长速率u 必有一个极值。 玻璃形成的结晶化学观点: (1)、键强(孙光汉理论) 熔点低的氧化物易于形成玻璃 (2)、键型 三种纯键型在一定条件下都不能形成玻璃。 )(00T T KV -α0T T B -)(0T T C D P -?0T T B -η1

无机材料科学基础试题及答案

1螺位错:柏格斯矢量与位错线平行的位错。 2同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 3晶胞:指晶体结构中的平行六面体单位,其形状大小与对应的空间格子中的单位平行六面体一致。 4肖特基缺陷:如果正常格点上的原子,热起伏过程中获得能量离开平衡位置,迁移到晶体的表面,在晶格内正常格点上留下空位,即为肖特基缺陷。肖特基缺陷:如果正常格点上的原子,热起伏过程中获得能量离开平衡位置,迁移到晶体的表面,在晶格内正常格点上留下空位,即为肖特基缺陷。 5聚合:由分化过程产生的低聚合物,相互作用,形成级次较高的聚合物,同时释放出部分Na2O,这个过程称为缩聚,也即聚合。 6非均匀成核:借助于表面、界面、微粒裂纹、器壁以及各种催化位置而形成晶核的过程。7稳定扩散:扩散质点浓度分布不随时间变化。 8玻璃分相:一个均匀的玻璃相在一定的温度和组成范围内有可能分成两个互不溶解或部分溶解的玻璃相(或液相),并相互共存的现象称为玻璃的分相(或称液相不混溶现象)。 9不一致熔融化合物:是一种不稳定的化合物。加热这种化合物到某一温度便发生分解,分解产物是一种液相和一种晶相,两者组成与化合物组成皆不相同,故称不一致熔融化合物。10晶粒生长:无应变的材料在热处理时,平均晶粒尺寸在不改变其分布的情况下,连续增大的过程。 11非本征扩散:受固溶引入的杂质离子的电价和浓度等外界因素所控制的扩散。或由不等价杂质离子取代造成晶格空位,由此而引起的质点迁移。(2.5)本征扩散:空位来源于晶体结构中本征热缺陷,由此而引起的质点迁移。 12稳定扩散:若扩散物质在扩散层dx内各处的浓度不随时间而变化,即dc/dt=0。不稳定扩散:扩散物质在扩散层dx内的浓度随时间而变化,即dc/dt≠0。这种扩散称为不稳定扩散。(2.5分) (2.5分) 13可塑性:粘土与适当比例的水混合均匀制成泥团,该泥团受到高于某一个数值剪应力作用后,可以塑造成任何形状,当去除应力泥团能保持其形状,这种性质称为可塑性。(2.5晶胞参数:表示晶胞的形状和大小可用六个参数即三条边棱的长度a、b、c和三条边棱的夹角α、β、γ即为晶胞参数。 14一级相变:体系由一相变为另一相时,如两相的化学势相等但化学势的一级偏微商(一级导数)不相等的称为一级相变。 15二次再结晶:是液相独立析晶:是在转熔过程中发生的,由于冷却速度较快,被回收的晶相有可能会被新析出的固相包裹起来,使转熔过程不能继续进行,从而使液相进行另一个单独的析晶过程,就是液相独立析晶。(2.5) 16泰曼温度:反应物开始呈现显著扩散作用的温度。(2.5) 17晶子假说:苏联学者列别捷夫提出晶子假说,他认为玻璃是高分散晶体(晶子)的结合体,硅酸盐玻璃的晶子的化学性质取决于玻璃的化学组成,玻璃的结构特征为微不均匀性和近程有序性。无规则网络假说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度空间网络所构成。这种网络是由离子多面体(三角体或四面体)构筑起来的。晶体结构网是由多面体无数次有规律重复构成,而玻璃中结构多面体的重复没有规律性。 18正尖晶石;二价阳离子分布在1/8四面体空隙中,三价阳离子分布在l/2八面体空隙的尖晶石。 19液相独立析晶:是在转熔过程中发生的,由于冷却速度较快,被回收的晶相有可能会被

无机材料科学基础习题答案

第一章晶体几何基础 1-1 解释概念: 等同点:晶体结构中,在同一取向上几何环境和物质环境皆相同的点。 空间点阵:概括地表示晶体结构中等同点排列规律的几何图形。 结点:空间点阵中的点称为结点。 晶体:内部质点在三维空间呈周期性重复排列的固体。 对称:物体相同部分作有规律的重复。 对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合为对称型,也称点群。 晶类:将对称型相同的晶体归为一类,称为晶类。 晶体定向:为了用数字表示晶体中点、线、面的相对位置,在晶体中引入一个坐标系统的过程。 空间群:是指一个晶体结构中所有对称要素的集合。 布拉菲格子:是指法国学者 A.布拉菲根据晶体结构的最高点群和平移群对称及空间格子的平行六面体原则,将所有晶体结构的空间点阵划分成14种类型的空间格子。 晶胞:能够反应晶体结构特征的最小单位。 晶胞参数:表示晶胞的形状和大小的6个参数(a、b、c、α 、β、γ ). 1-2 晶体结构的两个基本特征是什么?哪种几何图形可表示晶体的基本特征? 解答:⑴晶体结构的基本特征: ①晶体是内部质点在三维空间作周期性重复排列的固体。 ②晶体的内部质点呈对称分布,即晶体具有对称性。 ⑵14种布拉菲格子的平行六面体单位格子可以表示晶体的基本特征。 1-3 晶体中有哪些对称要素,用国际符号表示。 解答:对称面—m,对称中心—1,n次对称轴—n,n次旋转反伸轴—n 螺旋轴—ns ,滑移面—a、b、c、d 1-5 一个四方晶系的晶面,其上的截距分别为3a、4a、6c,求该晶面的晶面指数。 解答:在X、Y、Z轴上的截距系数:3、4、6。 截距系数的倒数比为:1/3:1/4:1/6=4:3:2 晶面指数为:(432) 补充:晶体的基本性质是什么?与其内部结构有什么关系? 解答:①自限性:晶体的多面体形态是其格子构造在外形上的反映。 ②均一性和异向性:均一性是由于内部质点周期性重复排列,晶体中的任何一部分在结构上是相同的。异向性是由于同一晶体中的不同方向上,质点排列一般是不同的,因而表现出不同的性质。 ③对称性:是由于晶体内部质点排列的对称。 ④最小内能和最大稳定性:在相同的热力学条件下,较之同种化学成分的气体、液体及非晶质体,晶体的内能最小。这是规则排列质点间的引力和斥力达到平衡的原因。 晶体的稳定性是指对于化学组成相同,但处于不同物态下的物体而言,晶体最为稳定。自然界的非晶质体自发向晶体转变,但晶体不可能自发地转变为其他物态。

无机材料科学基础 陆佩文 课后答案

2-1 名词解释(a )弗伦克尔缺陷与肖特基缺陷;(b )刃型位错和螺型位错 (c )类质同象与同质多晶 解:(a )当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,在原正常格点上留下空位,这种缺陷称为肖特基缺陷。(b )滑移方向与位错线垂直的位错称为刃型位错。位错线与滑移方向相互平行的位错称为螺型位错。(c )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 2-6(1)在CaF 2晶体中,弗仑克尔缺陷形成能为2.8eV ,肖特基缺陷的生成能为5.5eV ,计算在25℃和1600℃时热缺陷的浓度?(k =1.38×10-23J/K ) (2)如果CaF 2晶体中,含有百万分之一的YF 3杂质,则在1600℃时,CaF 2晶体中时热缺陷占优势还是杂质缺陷占优势?说明原因。 解:(1)弗仑克尔缺陷形成能为2.8eV ,小于肖特基缺陷形成能5.5eV ,所以CaF 2晶体中主要是弗仑克尔缺陷,肖特基缺陷可忽略不计。-----------1分 当T =25℃=298K 时,热缺陷浓度为: 242319298 1006.2)2981038.1210602.18.2exp()2exp(---?=?????-=?-=??? ??kT G N n f ----2分 当T =1600℃=1873K 时,热缺陷浓度为: 423191873 107.1)18731038.1210602.18.2exp()2exp(---?=?????-=?-=??? ??kT G N n f -----2分 (2)CaF 2中含百万分之一(10- 6)的YF 3时的杂质缺陷反应为: Ca F Ca CaF V F Y YF ''++??→??62223 由此可知:[YF3]=2[Ca V ''],所以当加入10- 6YF3时,杂质缺陷的浓度为: 73105][2 1][-?==''YF V Ca 杂--------------------1分 此时,在1600℃下的热缺陷计算为: Ca i Ca V Ca Ca ''+→?? x x +5×10- 7 则:8241089.2)107.1()exp(][]][[--???=?=?-==''kT G k Ca V Ca f Ca Ca i 即:871089.21 )105(--?=?+x x ,x ≈8.1×10-4 热缺陷浓度: 4101.8][-?=≈''x V Ca 热------------------1分

无机材料科学基础第九章习题

第九章习题与答案 一、判断正误 1、烧结中始终可以只有一相是固态。(对) 2、液相烧结与固相烧结的推动力都是表面能。(对) 3、二次再结晶对坯体致密化有利。(错) 4、扩散传质中压应力区空位浓度<无应力区空位浓度<张应力区空位浓度。(对) 5、晶粒长大源于小晶体的相互粘结。(错) 6、一般来说,晶界是气孔通向烧结体外的主要扩散通道。一般来说,晶界是杂质的富集之 地。(对) 二、填空 1、烧结的主要传质方式有:蒸发-凝聚传质、扩散传质、流动传质和溶解-沉淀传质四种,这四种传质过程的坯体线收缩ΔL/L与烧结时间的关系依次为ΔL/L=0、ΔL/L~t2/5、ΔL/L~t和ΔL/L~t1/3。 三、选择 1、在烧结过程中,只改变气孔形状不引起坯体收缩的传质方式是(a、c)。 a.表面扩散 b.流动传质 c.蒸发-凝聚 d.晶界扩散 2、在烧结过程中只改变坯体中气孔的形状而不引起坯体致密化的传质方式是(b)。 a. 流动传质 b. 蒸发—凝聚传质 c. 溶解—沉淀 d. 扩散传质 四、问答题 1、典型的传质过程有哪些?各采用什么烧结模型?分析产生的原因是什么? 答:典型的传质过程有:固相烧结的蒸发-凝聚传质、扩散传质,液相烧结的流动传质、溶解-沉淀传质。 固相烧结的蒸发-凝聚传质过程采用中心距不变的双球模型。 固相烧结的扩散传质、液相烧结的流动传质、溶解-沉淀传质过程采用中心距缩短的双球模型。 原因:蒸发—冷凝:压力差ΔP;扩散传质:空位浓度差ΔC;流动传质:应力—应变; 溶解—沉淀:溶解度ΔC(大、小晶粒溶解度不同;自由表面与点接触溶解度)。 2、试述烧结的推动力和晶粒生长的推动力。并比较两者的大小。 答:烧结推动力是粉状物料的表面能(γsv)大于多晶烧结体的晶界能(γgb),即γsv>γgb。 晶粒生长的推动力是晶界两侧物质的自由焓差,使界面向晶界曲率半径小的晶粒中心推进。 烧结的推动力较大,约为4~20J/g。晶粒生长的推动力较小,约为0.4~2J/g,因而烧结推动力比晶粒生长推动力约大十倍。 3、在制造透明Al2O3材料时,原始粉料粒度为2μm,烧结至最高温度保温0.5h,测得晶粒尺寸为10μm,试问保温2h,晶粒尺寸多大?为抑制晶粒生长加入0.1%MgO,此时若保温2h,晶粒尺寸又有多大? 解:1、G 2-G02 = kt = 2 μm, G = 10 μm, t = 0.5 h,得 代入数据:G

无机材料科学基础复习重点

第二章、晶体结构缺陷 1、缺陷的概念 2、热缺陷(弗伦克尔缺陷、肖特基缺陷) 热缺陷是一种本征缺陷、高于0K就存在,热缺陷浓度的计算 影响热缺陷浓度的因数:温度和热缺陷形成能(晶体结构) 弗伦克尔缺陷肖特基缺陷 3、杂质缺陷、固溶体 4、非化学计量化合物结构缺陷(半导体) 种类、形成条件、缺陷的计算等 5、连续置换型固溶体的形成条件 6、影响形成间隙型固溶体的因素 7、组分缺陷(补偿缺陷):不等价离子取代 形成条件、特点(浓度取决于掺杂量和固溶度) 缺陷浓度的计算、与热缺陷的比较 幻灯片6 8、缺陷反应方程和固溶式 9、固溶体的研究与计算 写出缺陷反应方程→固溶式、算出晶胞的体积和重量→理论密度(间隙型、置换型)→和实测密度比较 10、位错概念 刃位错:滑移方向与位错线垂直,伯格斯矢量b与位错线垂直 螺位错:滑移方向与位错线平行,伯格斯矢量b与位错线平行 混合位错:滑移方向与位错线既不平行,又不垂直。 幻灯片7 第三章、非晶态固体 1、熔体的结构:不同聚合程度的各种聚合物的混合物 硅酸盐熔体的粘度与组成的关系 2、非晶态物质的特点 3、玻璃的通性 4、 Tg 、Tf ,相对应的粘度和特点 5、网络形成体、网络改变(变性)体、网络中间体 玻璃形成的结晶化学观点:键强,键能 6、玻璃形成的动力学条件 (相变),3T图 7、玻璃的结构学说(二种玻璃结构学说的共同之处和不同之处) 8、玻璃的结构参数 Z可根据玻璃类型定,先计算R,再计算X、Y 注意网络中间体在其中的作用。 9、硅酸盐晶体与硅酸盐玻璃的区别 10、硼的反常现象 幻灯片8 第四章、表面与界面 1、表面能和表面张力,表面的特征 2、润湿的概念、定义、计算;槽角、二面角的计算 改善润湿的方法:去除表面吸附膜(提高固体表面能)、

无机材料科学基础答案第六,七,九,十章习题答案

6-1 略。 6-2 什么是吉布斯相律?它有什么实际意义? 解:相律是吉布斯根据热力学原理得出的相平衡基本定律,又称吉布斯相律,用于描述达到相平衡时系统中自由度数与组分数和相数之间的关系。一般形式的数学表达式为F=C-P+2。其中F为自由度数,C为组分数,P为相数,2代表温度和压力两个变量。应用相率可以很方便地确定平衡体系的自由度数。 6-3 固体硫有两种晶型,即单斜硫、斜方硫,因此,硫系统可能有四个相,如果某人实验得到这四个相平衡共存,试判断这个实验有无问题? 解:有问题,根据相律,F=C-P+2=1-P+2=3-P,系统平衡时,F=0 ,则P=3 ,硫系统只能是三相平衡系统。 图 6-1 图6-2 6-4 如图6-1是钙长石(CaAl2Si2O)的单元系统相图,请根据相图回解:(1)六方、正交和三斜钙长石的熔点各是多少?(2)三斜和六方晶型的转变是可逆的还是不可逆的?你是如何判断出来的?(3)正交晶型是热力学稳定态?还是介稳态? 解:(1)六方钙长石熔点约1300℃(B点),正钙长石熔点约1180℃(C点),三斜钙长石的熔点约为1750℃(A点)。 (2)三斜与六方晶型的转变是可逆的。因为六方晶型加热到转变温度会转变成三斜晶型,而高温稳定的三斜晶型冷却到转变温度又会转变成六方晶型。 (3)正交晶型是介稳态。

6-5 图6-2是具有多晶转变的某物质的相图,其中DEF线是熔体的蒸发曲线。 KE是晶型 I的升华曲线;GF是晶型II的升华曲线;JG是晶型III的升华曲线,回答下列问题:(1)在图中标明各相的相区,并写出图中各无变量点的相平衡关系;(2)系统中哪种晶型为稳定相?哪种晶型为介稳相?(3)各晶型之间的转变是可逆转变还是不可逆转变? 解:(1)KEC为晶型Ⅰ的相区,EFBC 过冷液体的介稳区,AGFB晶型Ⅱ的介稳区, JGA晶型Ⅲ的介稳区,CED是液相区,KED是气相区; (2)晶型Ⅰ为稳定相,晶型Ⅱ、Ⅲ为介稳相;因为晶型Ⅱ、Ⅲ的蒸汽压高于晶型Ⅰ的,即它们的自由能较高,有自发转变为自由能较低的晶型Ⅰ的趋势; (3)晶型Ⅰ转变为晶型Ⅱ、Ⅲ是单向的,不可逆的,多晶转变点的温度高于两种晶型的熔点;晶型Ⅱ、Ⅲ之间的转变是可逆的,双向的,多晶转变点温度低于Ⅱ、Ⅲ的熔点。 6-6 在SiO2系统相图中,找出两个可逆多晶转变和两个不可逆多晶转变的例子。 解:可逆多晶转变:β-石英←→α-石英α-石英←→α-鳞石英 不可逆多晶转变:β-方石英←→β-石英γ-鳞石英←→β-石英 6-7 C2S有哪几种晶型?在加热和冷却过程中它们如何转变?β-C2S为什么能自发地转变成γ-C2S?在生产中如何防止β-C2S 转变为γ-C2S? 解:C2S有、、、四种晶型,它们之间的转变如右图所示。由于β-C2S 是一种热力学非平衡态,没有能稳定存在的温度区间,因而在相图上没有出现β-C2S的相区。C3S和β-C2S 是硅酸盐水泥中含量最高的两种水硬性矿物,但当水泥熟料缓慢冷却时,C3S将会分解,β-C2S将转变为无水硬活性的γ-C2S。为了避免这种情况的发生,生产上采取急冷措施,将C3S和β-C2S迅速越过分解温度或晶型转变温度,在低温下以介稳态保存下来。

无机材料科学基础试卷资料

1. 不一致熔融化合物,连线规则 答:不一致熔化合物是一种不稳定的化合物,加热到一定温度会发生分解,分解产物是一种液相和一种固相,液相和固相的组成与化合物组成都不相同。(2.5分) 连线规则:将一界线(或其延长线)与相应的连线(或其延长线)相交,其交点是该界线上的温度最高点。(2.5分) 2. 非本征扩散,稳定扩散 非本征扩散:受固溶引入的杂质离子的电价和浓度等外界因素所控制的扩散。或由不等价杂质离子取代造成晶格空位,由此而引起的质点迁移。(2.5) 稳定扩散:若扩散物质在扩散层dx内各处的浓度不随时间而变化,即dc/dt=0。这种扩散称稳定扩散。(2.5分) 3. 非均匀成核, 一级相变 非均匀成核:是指借助于表面、界面、微粒裂纹器壁以及各种催化位置等而形成晶核的过程一级相变:体系由一相变为另一相时,如两相的化学势相等但化学势的一级偏微商(一级导数)不相等的称为一级相变。(2.5) 4. 晶粒生长,二次再结晶 晶粒生长:平衡晶粒尺寸在不改变其分布的情况下,连续增大的过程。(2.5分) 二次再结晶:是少数巨大晶粒在细晶消耗时成核长大的过程。(2.5分) 5. 一致熔融化合物,三角形规则 答:一致熔融化合物是一种稳定的化合物,与正常的纯物质一样具有固定的熔点,熔化时,产生的液相与化合物组成相同。(2.5分) 三角形规则:原始熔体组成点所在副三角形的三个顶点表示的物质即为其结晶产物;与这三个物质相应的初初晶区所包围的三元无变量点是其结晶结束点。(2.5分) 6. 晶粒生长,二次再结晶 晶粒生长:平衡晶粒尺寸在不改变其分布的情况下,连续增大的过程。(2.5分) 二次再结晶:是少数巨大晶粒在细晶消耗时成核长大的过程。(2.5分) 7.液相独立析晶,切线规则 答:液相独立析晶:是在转熔过程中发生的,由于冷却速度较快,被回收的晶相有可能会被新析出的固相包裹起来,使转熔过程不能继续进行,从而使液相进行另一个单独的析晶过程,就是液相独立析晶。(2.5) 切线规则:将界线上某一点所作的切线与相应的连线相交,如交点在连线上,则表示界线上该处具有共熔性质;如交点在连线的延长线上,则表示界线上该处具有转熔性质,远离交点的晶相被回吸。 8.本征扩散,不稳定扩散, .答:本征扩散:空位来源于晶体结构中本征热缺陷,由此而引起的质点迁移。(2.5)不稳定扩散:扩散物质在扩散层dx内的浓度随时间而变化,即dc/dt≠0。这种扩散称为不稳定扩散。(2.5分) 9.均匀成核,二级相变, 答:均匀成核是晶核从均匀的单相熔体中产生的过程。(2.5分) 相变时两相化学势相等,其一级偏微商也相等,但二级偏微商不等的相变。(2.5分)10.烧结,泰曼温度 答:烧结:由于固态中分子(或原子)的相互吸引,通过加热,使粉末体产生颗粒粘结,经过物质迁移使粉末体产生强度并导致致密化和再结晶的过程。(2.5) 泰曼温度:反应物开始呈现显著扩散作用的温度。(2.5)

无机材料科学基础题库_选择题

选择题 1.NaCl 型结构中,Cl - 按立方最紧密方式堆积,Na +充填于( B )之中。 A 、全部四面体空隙 B 、全部八面体空隙 C 、1/2四面体空隙 D 、1/2八面体空隙 2.在析晶过程中,若?T 较大,则获得的晶粒为( A ) A 、数目多而尺寸小的细晶 B 、数目少而尺寸大的粗晶 C 、数目多且尺寸大的粗晶 D 、数目少且尺寸小的细晶 3.在熔体中加入网络变性体会使得熔体的析晶能力( c ): a.不变 b. 减弱 c. 增大 4.在烧结过程的传质方式中,不会使坯体致密的是( a ) a. 扩散传质 b. 溶解-沉淀传质 c. 蒸发-凝聚传质 d. 流动传质 5.过冷度愈大,临界晶核半径( c )相应的相变( e ) a. 不变 b. 愈大 c. 愈小 d. 愈难进行 e. 愈易进行 f. 不受影响 6.从防止二次再结晶的角度考虑,起始粒径必须( c ) a. 细 b. 粗 c. 细而均匀 d. 粗但均匀 7.根据晶界两边原子排列的连贯性来划分,在多晶体材料中主要是( B ) A 、共格晶界 B 、非共格晶界 C 、半共格晶界 8.玻璃结构参数中的Z 一般是已知的,请问硼酸盐玻璃的Z =( B ) A 、2 B 、3 C 、4 D 、5 9.石英晶体结构属于( d ) a. 岛状结构 b. 链状结构 c. 层状结构 d. 架状结构 10. 在离子型化合物中,晶粒内部扩散系数D b ,晶界区域扩散系数D g 和表面区域扩散系数D s 三者中( C )最大 A 、D b B 、D g C 、 D s 11. 系统2222CaO + SiO 2CaO SiO + CaO SiO + 3CaO 2SiO →???中的独立组分数为( d ) a. 5 b. 4 c. 3 d. 2 12. 熔体系统中组成越简单,则熔体析晶( B ) A 、不受影响 B 、越容易 C 、越难 13. 过冷度越大,相应的成核位垒( b ),临界晶核半径( b ),析晶能力( a ) a. 越大 b. 越小 c. 不变 14. 下列选项中不属于马氏体相变的特征的是( B ) A 、相变后存在习性平面 B 、属扩散型相变 C 、新相与母相间有严格的取向关系 D 、在一个温度范围内进行 E 、速度很快 15. 颗粒不同部位的空位浓度存在差异,下列区域中( b )处的空位浓度最大 A 、晶粒内部 B 、颈部表面张应力区 C 、受压应力的颗粒接触中心 16. 塑性泥团中颗粒之间最主要的吸力为( B ) A 、范德华力 B 、毛细管力 C 、局部边-面静电引力 17. CaTiO 3(钛酸钙)型结构中,Ca 2+和O 2-共同组成立方紧密堆积,Ca 2+占据立方面心的角顶位置,O 2-占据立方面

无机材料科学基础复习资料_百度文库

第三章练习题 一、填空题 1.玻璃具有下列通性:、态转化时物理、化学性能随温度变化的连续性。 2.在硅酸盐熔体中,当以低聚物为主时,体系的粘度 3.物质在熔点时的粘度越越容易形成玻璃,大于,等于,小于)时容易形成玻璃。 4.熔体是物质在液相温度以上存在的一种高能量状态,在冷却的过程中可以出现和分相三种不同的相变过程。 5.当SiO2含量比较高时,碱金属氧化物降低熔体粘度的能力是Li2Na22O。 6. 2Na2O·CaO·Al2O3·2SiO2的玻璃中,结构参数Y为 3 。 7. 从三T曲线可以求出为避免析出10-6分数的晶体所需的临界冷却速率,该速率越小,越容易形成玻璃。 8.NaCl和SiO2两种物质中SiO2 容易形成玻璃,因其具有极性共价键结构。 9.在Na2O-SiO2熔体中,当Na2O/Al2O3<1时,加入Al2O3使熔体粘度降低。 10. 硅酸盐熔体中聚合物种类,数量与熔体组成(O/Si)有关,O/Si比值增大,则熔体中的高聚体[SiO4]数量减少。 11. 硅酸盐熔体中同时存在许多聚合程度不等的负离子团,其种类、大小和复杂程度随熔体的组成和温度而变。当温度不变时,熔体中碱性氧化物含量增加, O/Si比值增大,这时熔体中高聚体数量减少。 二、问答题 1.试述熔体粘度对玻璃形成的影响?在硅酸盐熔体中,分析加入—价碱金属氧化物、二价金属氧化物或B2O3后熔体粘度的变化?为什么? 答:1) 熔体粘度对玻璃形成具有决定性作用。熔体在熔点时具有很大粘度,并且粘度随温度降低而剧烈地升高时,容易形成玻璃。 2) 在硅酸盐熔体中,加入R2O,随着O/Si比增加,提供游离氧,桥氧数减小,硅氧网络断裂,使熔体粘度显著减小。加入RO,提供游离氧,使硅氧网络断裂,熔体粘度降低,但是由于R的场强较大,有一定的集聚作用,降低的幅度较小。加入B2O3,加入量少时,B2O3处于三度空间连接的[BO4]四面体中,使结构网络聚集紧密,粘度上升。随着B2O3含量增加,B开始处于[BO3]三角形中使结构网络疏松,粘度下降。 3+2+ 1当我排队等着站上小便池的时候有人已经在大便池先尿了■■■■■■■■■■■■张为政整理■■■■■■■■■■■■勿删■■■■■■■■■■■■ 2.试阐述网络形成体和网络变性体。 玻璃网络形成体:其单键强度>335KJ/MOL。这类氧化物能单独形成玻璃。 网络变性体:其单键强度<250KJ/MOL。这类氧化物不能形成玻璃,但能改变网络结构,从而使玻璃性质改变。

无机材料科学基础期末试题及答案

无机材料科学基础试卷六 一、名词解释(20分) 1、反萤石结构、晶胞; 2、肖特基缺陷、弗伦克尔缺陷; 3、网络形成体、网络改变体; 4、触变性、硼反常现象; 二、选择题(8分) 1、粘土泥浆胶溶必须使介质呈() A、酸性 B、碱性 C、中性 2、硅酸盐玻璃的结构是以硅氧四面体为结构单元形成的()的聚集体。 A、近程有序,远程无序 B、近程无序,远程无序 C、近程无序,远程有序 3、依据等径球体的堆积原理得出,六方密堆积的堆积系数()体心立方堆积的堆积系数。 A、大于 B、小于 C、等于 D、不确定 4、某晶体AB,A—的电荷数为1,A—B键的S=1/6,则A+的配位数为()。 A、4 B、12 C、8 D、6 5、在单位晶胞的CaF2晶体中,其八面体空隙和四面体空隙的数量分别为()。 A、4,8 B、8,4 C、1,2 D、2,4 6、点群L6PC属()晶族()晶系。 A、高级等轴 B、低级正交 C、中级六方 D、高级六方 7、下列性质中()不是晶体的基本性质。 A、自限性 B、最小内能性 C、有限性 D、各向异性 8、晶体在三结晶轴上的截距分别为1/2a、1/3b、1/6c。该晶面的晶面指数为()。 A、(236) B、(326) C、(321) D、(123) 9、非化学计量化合物Cd1+xO中存在()型晶格缺陷 A、阴离子空位 B、阳离子空位 C、阴离子填隙 D、阳离子填隙 10、可以根据3T曲线求出熔体的临界冷却速率。熔体的临界冷却速率越大,就()形成玻璃。 A、越难 B、越容易 C、很快 D、缓慢 11、晶体结构中一切对称要素的集合称为()。 A、对称型 B、点群 C、微观对称的要素的集合 D、空间群 12、在ABO3(钙钛矿)型结构中,B离子占有()。 A、四面体空隙 B、八面体空隙 C、立方体空隙 D、三方柱空隙晶体 三、填空(17分) 1、在玻璃形成过程中,为避免析晶所必须的冷却速率的确定采用()的方法。 2、a=b≠c α=β=γ=900的晶体属()晶系。 3、六方紧密堆积的原子密排面是晶体中的()面,立方紧密堆积的原子密排面是晶体中的

无机材料科学基础课后习题答案(6)

6-1 说明熔体中聚合物形成过程? 答:聚合物的形成是以硅氧四面体为基础单位,组成大小不同的聚合体。 可分为三个阶段初期:石英的分化; 中期:缩聚并伴随变形; 后期:在一定时间和一定温度下,聚合和解聚达到平衡。6-2 简述影响熔体粘度的因素? 答:影响熔体粘度的主要因素:温度和熔体的组成。 碱性氧化物含量增加,剧烈降低粘度。 随温度降低,熔体粘度按指数关系递增。 6-3 名词解释(并比较其异同) ⑴晶子学说和无规则网络学说 ⑵单键强 ⑶分化和缩聚 ⑷网络形成剂和网络变性剂

答:⑴晶子学说:玻璃内部是由无数“晶子”组成,微晶子是带有晶格变形的有序区域。它们分散在无定形介中质,晶子向无 定形部分过渡是逐渐完成时,二者没有明显界限。 无规则网络学说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度空间网络所构成。这种网络是由离子 多面体(三角体或四面体)构筑起来的。晶体结构网 是由多面体无数次有规律重复构成,而玻璃中结构多 面体的重复没有规律性。 ⑵单键强:单键强即为各种化合物分解能与该种化合物配位数的商。 ⑶分化过程:架状[SiO4]断裂称为熔融石英的分化过程。 缩聚过程:分化过程产生的低聚化合物相互发生作用,形成级次较高的聚合物,次过程为缩聚过程。 ⑷网络形成剂:正离子是网络形成离子,对应氧化物能单独形成玻 璃。即凡氧化物的单键能/熔点﹥0.74kJ/mol.k 者称为网 络形成剂。 网络变性剂:这类氧化物不能形成玻璃,但能改变网络结构,从而使玻璃性质改变,即单键强/熔点﹤0.125kJ/mol.k者称 为网络变形剂。

6-4 试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体。它们的结构有什么不同? 答:利用X—射线检测。 晶体SiO2—质点在三维空间做有规律的排列,各向异性。 SiO2熔体—内部结构为架状,近程有序,远程无序。 SiO2玻璃—各向同性。 硅胶—疏松多孔。 6-5 玻璃的组成是13wt%Na2O、13wt%CaO、74wt%SiO2,计算桥氧分数? 解: Na2O CaO SiO2 wt% 13 13 74 mol 0.21 0.23 1.23 mol% 12.6 13.8 73.6 R=(12.6+13.8+73.6 ×2)/ 73.6=2.39 ∵Z=4 ∴X=2R﹣Z=2.39×2﹣4=0.72 Y=Z﹣X= 4﹣0.72=3.28 氧桥%=3.28/(3.28×0.5+0.72) =69.5%

无机材料科学基础课后习题答案(6)

6-1 说明熔体中聚合物形成过程?答:聚合物的形成是以硅氧四面体为基础单位,组成大小不同的聚合体。 可分为三个阶段初期:石英的分化; 中期:缩聚并伴随变形; 后期:在一定时间和一定温度下,聚合和解聚达到平衡。 6-2 简述影响熔体粘度的因素? 答:影响熔体粘度的主要因素:温度和熔体的组成。 碱性氧化物含量增加,剧烈降低粘度。 随温度降低,熔体粘度按指数关系递增。 6-3 名词解释(并比较其异同) ⑴ 晶子学说和无规则网络学说 ⑵ 单键强 ⑶ 分化和缩聚 ⑷ 网络形成剂和网络变性剂答:⑴晶子学说:玻璃内部是由无数“晶子”组成,微晶子是带有晶

格变形的有序区域。它们分散在无定形介中质,晶子向无定形部 分过渡是逐渐完成时,二者没有明显界限。 无规则网络学说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由 一个三度空间网络所构成。这种网络是由离子多面体(三 角体或四面体)构筑起来的。晶体结构网是由多面体无数次 有规律重复构成,而玻璃中结构多面体的重复没有规律 性。 ⑵单键强:单键强即为各种化合物分解能与该种化合物配位数的商。 ⑶分化过程:架状[SQ4]断裂称为熔融石英的分化过程。 缩聚过程:分化过程产生的低聚化合物相互发生作用,形成级次较 高的聚合物,次过程为缩聚过程。 ⑷网络形成剂:正离子是网络形成离子,对应氧化物能单独形成玻 璃。即凡氧化物的单键能/熔点〉0.74kJ/molk者称为网 络形成剂。 网络变性剂:这类氧化物不能形成玻璃,但能改变网络结构,从而 使玻璃性质改变,即单键强/熔点< 0.125kJ/molk者称 为网络变形剂。 6-4试用实验方法鉴别晶体 Si。?、SQ2玻璃、硅胶和SiO2熔体。它们的 结构有什么不同?

2015-2016学年无机材料科学基础试题.docx

2015-2016学年无机材料科学基础试题名词解释() 1.晶体: 2.固溶体: 3.粘度: 4.热缺陷: 5.对称:物体中相同部分之间的有规律重复。P3 6.木征扩散 7.非木征扩散 &马氏体相变 二?填空题()为填空所填 0.硅酸盐种类繁多,是水泥,(),(),耐火材料。 1晶体的基本性质有;结晶均一性,(),(),(),最小内能性。P3 2晶体结构的基木特征,包括()种晶系,()种不拉维格了。P15 3.热缺陷有两种基木形式:()缺陷和()缺陷P59 4.哥尔徳希密特定律:一个晶体的结构,取决于其组成单位的数目,()以及() 5.硅酸盐晶体结构:岛状结构,组群状结构,(),(),() 6.玻璃的通性:(),(,熔融态向玻璃态转化的可逆与渐变性,和熔融态向玻璃态转化时物理化学性质随温度变化的连续性 7.晶体的微观对称要素有:(),像移面和()P18 )的宏观规律9.引起扩散的推动&菲克第一定律与第二定律分别描述了()和( 力是(),()是扩散的驱动力 10.原了或离了的迁移机构分()和() 11.影响扩散的因素有()()()、() 12.析晶过稈是由()过稈和()过程所共同构成的。 13.由相变过稈屮质点的迁移请况,可以将相变分为()和()两大类。 14.影响村「晶能力的因素侑熔体组成,(),()和外加剂。 三.简答 1简述鲍林规则P26 2影响置换固体中溶质原子溶解度的因素是什么?P67 3聚合物形成过程

4?浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么? 四,将题 1 ?假定碳在a -Fe(体心立方)和Y -Fe (面心立方)屮的扩散系数分别为:D a 二0. 0079exp[-83600 (J/mol/RT)cm2/sec; D Y二0. 21exp[-141284(J/mol/RT)cm2/sec HW-800o C时备白的扩散系数并解释其差别 T二800+273二1073K Da 二0. 0079exp[-83600/RT]=6. 77*1 (T (-7)cm2/s D Y二0. 21exp[-141284/RT]二2.1*1(T (-8) cm2/s Da >D Y 扩散介质结构对扩散有很大的煤响,结构疏松,扩散阻力小而扩散系数犬,体心较血心疏松; a -Fe体心立方Y _Fe面心立方 3朴也比帀、址珂并s眸(吉“疾埒理用字珞^J z 土却 W勿柯*)-債你j线屈歸社.cq 3绘煲应八&冋糾七折j甘门巧折禺i步角晚旳彳-.e他0筑遥力2qZ人禺知 4 % p仙兰W今%Z 岔c,氽乙和琢智,在纽乙、冬陀龙少、十H 究唸声歹 爪辰-蒂可j翌仏氏了狂i略心r,从、衣丙国屮、十柿力*)羽斗侈壤:和声-?讨■円■域二界忌/,-打>

陆佩文-无机材料科学基础-习题

第七章 扩散与固相反应 1、名词解释: 非稳定扩散:扩散过程中任一点浓度随时间变化; 稳定扩散:扩散质点浓度分布不随时间变化。 无序扩散:无化学位梯度、浓度梯度、无外场推动力,由热起伏引起的扩散。 质点的扩散是无序的、随机的。 本征扩散:主要出现了肖特基和弗兰克尔点缺陷,由此点缺陷引起的扩散为 本征扩散(空位来源于晶体结构中本征热缺陷而引起的质点迁 移); 非本征扩散:空位来源于掺杂而引起的质点迁移。 正扩散和逆扩散: 正扩散:当热力学因子时,物质由高浓度处流向低浓度处,扩散结果使溶质 趋于均匀化,D i >0。 逆扩散:当热力学因子 时,物质由低浓度处流向高浓度处,扩散结果使溶质 偏聚或分相,D i <0。 2、简述固体内粒子的迁移方式有几种? 答 易位,环转位,空位扩散,间隙扩散,推填式。 3、说明影响扩散的因素? 化学键:共价键方向性限制不利间隙扩散,空位扩散为主。金属键离子键以 空位扩散为主,间隙离子较小时以间隙扩散为主。 缺陷:缺陷部位会成为质点扩散的快速通道,有利扩散。 温度:D=D 0exp (-Q/RT )Q 不变,温度升高扩散系数增大有利扩散。Q 越大 温度变化对扩散系数越敏感。 杂质:杂质与介质形成化合物降低扩散速度;杂质与空位缔合有利扩散;杂 质含量大本征扩散和非本征扩散的温度转折点升高。 扩散物质的性质:扩散质点和介质的性质差异大利于扩散; 扩散介质的结构:结构紧密不利扩散。 4、在KCl 晶体中掺入10-5mo1%CaCl 2,低温时KCl 中的K +离子扩散以非本征 扩散为主,试回答在多高温度以上,K +离子扩散以热缺陷控制的本征扩散为主?(KCl 的肖特基缺陷形成能ΔH s =251kJ/mol ,R=8.314J/mo1·K ) 解:在KCl 晶体中掺入10-5mo1%CaCl 2,缺陷方程为: 则掺杂引起的空位浓度为'710K V -??=?? 欲使扩散以热缺陷为主,则''K K V V ????>????肖 即7exp()102s H RT -?->

无机材料科学基础答案第十章

10-1 名词解释:烧结烧结温度泰曼温度液相烧结固相烧结初次再结晶晶粒长大二次再结晶 (1)烧结:粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。 (2)烧结温度:坯体在高温作用下,发生一系列物理化学反应,最后显气孔率接近于零,达到致密程度最大值时,工艺上称此种状态为"烧结",达到烧结时相应的温度,称为"烧结温度"。 (3)泰曼温度:固体晶格开始明显流动的温度,一般在固体熔点(绝对温度)的2/3处的温度。在煅烧时,固体粒子在塔曼温度之前主要是离子或分子沿晶体表面迁移,在晶格内部空间扩散(容积扩散)和再结晶。而在塔曼温度以上,主要为烧结,结晶黏结长大。 (4)液相烧结:烧结温度高于被烧结体中熔点低的组分从而有液相出现的烧结。 (5)固相烧结:在固态状态下进行的烧结。 (6)初次再结晶:初次再结晶是在已发生塑性变形的基质中出现新生的无应变晶粒的成核和长大过程。 (7)晶粒长大:是指多晶体材料在高温保温过程中系统平均晶粒尺寸逐步上升的现象. (8)二次再结晶:再结晶结束后正常长大被抑制而发生的少数晶粒异常长大的现象。 10-2 烧结推动力是什么?它可凭哪些方式推动物质的迁移,各适用于何种烧结机理? 解:推动力有:(1)粉状物料的表面能与多晶烧结体的晶界能的差值, 烧结推动力与相变和化学反应的能量相比很小,因而不能自发进行,必须加热!! (2)颗粒堆积后,有很多细小气孔弯曲表面由于表面张力而产生压力差, (3)表面能与颗粒之间形成的毛细管力。 传质方式:(1)扩散(表面扩散、界面扩散、体积扩散);(2)蒸发与凝聚;(3)溶解与沉淀;(4)黏滞流动和塑性流动等,一般烧结过程中各不同阶段有不同的传质机理,即烧结过程中往往有几种传质机理在起作用。 10-3 下列过程中,哪一个能使烧结体强度增大,而不产生坯体宏观上的收缩? 试说明理由。 (1)蒸发-冷凝;(2)体积扩散;(3)粘性流动;(4)晶界扩散;(5)表面扩散;(6)溶解-沉淀

无机材料科学基础教程考试题库

无机材料科学基础试卷7 一、名词解释(20分) 1、正尖晶石、反尖晶石; 2、线缺陷、面缺陷; 3、晶子学说、无规则网络学说; 4、可塑性、晶胞参数; 二、选择题(10分) 1、下列性质中()不是晶体的基本性质。 A、自限性 B、最小内能性 C、有限性 D、各向异性 2、晶体在三结晶轴上的截距分别为2a、3b、6c。该晶面的晶面指数为()。 A、(236) B、(326) C、(321) D、(123) 3、依据等径球体的堆积原理得出,六方密堆积的堆积系数()立方密堆积的堆积系数。 A、大于 B、小于 C、等于 D、不确定 4、某晶体AB,A—的电荷数为1,A—B键的S=1/6,则A+的配位数为()。 A、4 B、12 C、8 D、6 5、在单位晶胞的CaF2晶体中,其八面体空隙和四面体空隙的数量分别为 ()。 A、4,8 B、8,4 C、1,2 D、2,4 6、在ABO3(钙钛矿)型结构中,B离子占有()。 A、四面体空隙 B、八面体空隙 C、立方体空隙 D、三方柱空隙晶体 7、在硅酸盐熔体中,当R=O/Si减小时,相应熔体组成和性质发生变化,熔体析晶能力(),熔体的黏度(),低聚物数量()。 A、增大 B、减小 C、不变 D、不确定 8、当固体表面能为1.2J/m2,液体表面能为0.9 J/m2,液固界面能为1.1 J/m2时, 降低固体表面粗糙度,()润湿性能。 A、降低 B、改善 C、不影响 9、一种玻璃的组成为32.8%CaO,6.0 Al2O3%,61.2 SiO2%,此玻璃中的Al3+可视为网络(),玻璃结构参数Y=()。 A、变性离子,3.26 B、形成离子,3.26 C、变性离子,2.34 D、形成离子,2.34 10、黏土泥浆胶溶必须使介质呈()。 A、酸性 B、碱性 C、中性 11、可以根据3T曲线求出熔体的临界冷却速率。熔体的临界冷却速率越小,就 ()形成玻璃。 A、越难 B、越容易 C、很快 D、缓慢

无机材料科学基础答案..

1、熔体的概念:不同聚合程度的各种聚合物的混合物 硅酸盐熔体的粘度与组成的关系(决定硅酸盐熔体粘度大小的主要因素是硅氧四面体网络连接程度) 在熔体中加入LiO2、Na2O 、K2O 和BaO 、PbO 等,随加入量增加,粘度显著下降。 在含碱金属的硅酸盐熔体中,当Al2O3/Na2O ≤1时,用Al2O3代替SiO2可以起“补 网”作用,从而提高粘度。一般加入 Al2O3、SiO2和ZrO2有类似的效果。流动度为粘度的倒数,Φ=粘度的理论解释:绝对速度理论 η=η0exp(ΔE/kT) 自由体积理论 =B exp []=Aexp( ) 过剩熵理论=Cexp []=Cexp ()2、非晶态物质的特点 :近程有序,远程无序3、玻璃的通性 (1)各向同性(若有应力,为各向异性) (2)介稳性 (3)熔融态向玻璃态转化的可逆与渐变性 (4)、熔融态向玻璃态转化时其物化性质随温度变化的连续性 4、Tg 、Tf , 相对应的粘度和特点 钠钙硅酸盐熔体粘度与温度关系表明:熔融温度范围内,粘度为 50~500dPa ·s 。工作温度范围粘度较高,约103~107dPa ·s 。退火温度范围粘度更高,约 1012.5~1013.5 dPa ·s 。 Tg-脆性温度、退火温度,Tf-软化温度、可拉丝的最低温度5、 单键强度 > 335 kJ/mol(或80 kcal/mol)的氧化物——网络形成体。单键强度< 250 kJ/mol(或60 kcal/mol)的氧化物——网络变性体。 在250~335 kJ/mol 为——中间体,其作用介于玻璃的网络形成体和网络变性体之间。 6、玻璃形成的热力学观点: 熔体是物质在 TM 以上存在的一种高能状态。据随温度降低,熔体释放能量大小不同,冷却途径分为结晶化,玻璃化,分相 ΔGv 越大析晶动力越大,越不容易形成玻璃。 ΔGv 越小析晶动力越小,越容易形成玻璃。 玻璃形成的动力学观点:=单键强度正离子的配位数 氧化物分解能 )(00T T KV 0T T B )(0T T C D P 0 T T B 1

相关文档
最新文档