非线性元件伏安特性的测量_实验报告

非线性元件伏安特性的测量_实验报告

非线性元件伏安特性的测量_实验报告

【目的要求】

1、学习测量非线性元件的伏安特性,了解进行伏安法测量时两种电表的连接方法和接入误差;

2、学习用数字万用电表测量二极管,学习测量二极管的伏安特性;

3、了解二极管的单向导电性和稳压二极管的稳压特性;

4、了解白炽灯的伏安特性。

【实验原理】

1、测量元件的伏安特性

给一个电学元件通电,用电压表测出元件两端的电压,用电流表测出通过元件的电流,作出电压—电流的关系曲线,称作该元件的伏安特性曲线,这种研究元件特性的方法叫做伏安法。

2、测量元件特性时的注意事项

(1)要了解元件的有关参数、性能及特点,实验中应保证元件安全使用,正常工作。加在元件上的电压以及通过的电流都应小于其额定数值;

(2)选择变阻器电路时应考虑到调节方便,能满足测量范围的要求。实验中经常采用分压电路,如细调程度不够,可以采用两个变阻器组成二级分压(或制流)细调电路;

(3)确定测量范围时,既要保证元件的安全,又要覆盖其正常工作范围,以反映元件特性。应根据测量范围选定电源电压;

(4)合理地选取测量点,可以减小测量值的相对误差。测量非线性元件时,选择变化较大的物理量作为自变量较为方便,可以等间隔取测量点;在测量值变化时,可适当增加测量点;

(5)在正式测量之前,应先对被测元件进行粗测,以大致了解被测元件特性、物理规律及变化范围,然后再逐点测量。

【实验内容】

1、用数字万用电表测量二极管;

2、用伏安法测量稳压二极管的伏安特性;

3、测量二极管的伏安特性曲线;

4、数据处理。

【仪器用具】

序号

仪器名称

型号/规格

单价(元)

备注

1

伏安特性实验仪

DH6102

2500

含直流稳压电源、2个4位半数字电压表、二极管、稳压二极管、白炽灯泡、电阻、导线等

三极管伏安特性测量实验报告

三极管伏安特性测量实验报告

实验报告 课程名称:__电路与模拟电子技术实验_______指导老师:_____干于_______成绩:__________________ 实验名称:_______三极管伏安特性测量______实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1. 深入理解三极管直流偏置电路的结构和工作原理 2. 深入理解和掌握三极管输入、输出伏安特性 二、实验原理 三极管的伏安特性曲线可全面反映各电极的电压和电流之间的关系,这些特性曲线实际上就是PN结性能的外部表现。从使用的角度来看,可把三极管当做一个非线性电阻来研究它的伏安特性,而不必涉及它的内部结构。其中最常用的是输入输出特性。 1)输入特性曲线 输入特性曲线是指在输入回路中,Uce 为不同常数 专业:___ _________ 姓名:___

值时的Ib~Ube曲线。分两种情形来讨论。 (1)从图(a)来看,Uce=0,即c、e间短路。 此时Ib与Ube间的关系就是两个正向二极管并 联的伏安特性。每改变一次Ube,就可读到一组 数据(Ube,Ib),用所得数据在坐标纸上作图, 就得到图(b)中Uce=0时的输入特性曲线。 2)输出特性曲线 输出特性曲线是指在Ib为不同常量时输出回路中的Ic~Uce曲线。测试时,先固定一个Ib,改变Uce,测得相应的Ic值,从而可在Ic~Uce直角坐标系中画出一条曲线。Ib取不同常量值时,即可测得一系列Ic~Uce曲线,形成曲线族,如图所示。 三、实验仪器 三极管,HY3003D-3型可调式直流稳压电源,万用表、

《电学元件伏安特性的测量》实验报告附页

《电学元件伏安特性的测量》实验报告 (数据附页) 一、半定量观察分压电路的调节特点 变阻器R=470Ω 二、用两种线路测电阻的对比研究 电流表准确度等级1.5,量程I m =5mA,R I =8.38±0.13Ω 电压表准确度等级1.5,量程U m =0.75V,R V =2.52±0.04kΩ; 量程U m =3V,R V =10.02±0.15kΩ

三、测定半导体二极管正反向伏安特性 由于正向二极管的电阻很小,采用外接法的数据;反向电阻很大,采用内接法的数据。 四、戴维南定理的实验验证 1.将9V电源的输出端接到四端网络的输入端上,组成一个有源二端网络,求出等效 电动势E e 和等效内阻R e 。(外接法)

取第二组和第七组数据计算得到: E e =2.15V R e =319.5Ω 由作图可得: E e =2.3V R e =352.8Ω 2. 用原电路和等效电路分别加在相同负载上,测量外电路的电压和电流值。 3. 理论计算。 % 6.17% 7.10.30034.2951.14917.19932.6162 12132 12321的相对误差为 的相对误差为与实验值比较e e e e R E R R R R R R V R R ER E V E R R R Ω =++ ==+= =Ω=Ω=Ω= 4.讨论。 等效电动势的误差不是很大,而等效电阻却很大。原因是多方面的。但我认为最大的原因应该是作图本身。所有数据的点都集中在一个很小的区域,点很难描精确,直线的绘制也显得过于粗糙,人为的误差很大。 如果对数据进行拟合,可以得到I=-3.298U+6.836,于是得到E e =2.07V ,R e =303.2Ω,前者误差为11.5%,后者误差为1.1%,效果比直接读图好,因为消除了读图时人为的误差。 另外一点,仪表读数也是造成误差大的一个原因。比如电流表没有完全指向0,电压表不足一格的部分读得很不准等等。

非线性电阻的伏安特性曲线实验

线性电阻和非线性电阻的伏安特性曲线 【教学目的】 1、测绘电阻的伏安特性曲线,学会用图线表示实验结果。 2、了解晶体二极管的单向导电特性。 【教学重点】 1、测绘电阻的伏安特性曲线; 2、了解二极管的单向导电特性。 【教学难点】 非线性电阻的导电性质。 【课程讲授】 提问:1.如何测绘伏安特性曲线? 2.二极管导电有何特点? 一、实验原理 常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。下面对它的结构和电学性能作一简单介绍。 图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。半导体的导电性能介于导体和绝缘体之间。如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。 晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。p-n结具有单向导电的特性,常用图2(b)所示的符号表示。

关于p-n结的形成和导电性能可作如下解释。 图3 p-n结的形成和单向导电特性 如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。随着扩散的进行,p区空穴减少,出现 了一层带负电的粒子区(以?表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表 示)。结果在p型与n型半导体交界面的两侧附近,形成了带正、负电的薄层,称为p-n结。这个带电薄层内的正、负电荷产生了一个电场,其方向恰好与载流子(电子、空穴)扩散运动的方向相反,使载流子的扩散受到内电场的阻力作用,所以这个带电薄层又称为阻挡层。当扩散作用与内电场作用相等时,p区的空穴和n区的电子不再减少,阻挡层也不再增加,达到动态平衡,这时二极管中没有电流。 如图3(b)所示,当p-n结加上正向电压(p区接正,n区接负)时,外电场与内电场方向相反,因而削弱了内电场,使阻挡层变薄。这样,载流子就能顺利地通过p-n结,形成比较大的电流。所以,p-n结在正向导电时电阻很小。 如图3(c)所示,当p-n结加上反向电压(p区接负,n区接正)时,外加电场与内场方向相同,因而加强了内电场的作用,使阻挡层变厚。这样,只有极少数载流子能够通过p-n 结,形成很小的反向电流。所以p-n结的反向电阻很大。 晶体二极管的正、反向特性曲线如图12-4所示。从图上看出,电流和电压不是线性关系,各点的电阻都不相同。凡具有这种性质的电阻,就称为非线性电阻。 图4晶体二极管的伏安特性图5测电阻伏安特性的电路 二、实验仪器 直流稳压电源,万用表(2台),电阻,白炽灯泡,灯座,短接桥和连接导线,实验用九孔插件方板。

伏安特性曲线实验报告

《描绘小灯泡的伏安特性曲线》的实验报告 一、实验目的 描绘小灯泡的伏安特性曲线,并对其变化规律进行分析。 二、实验原理 1。金属导体的电阻率随温度的升高而增大,导致金属导体的电阻随温度的升高而增大。以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I—U图像。 2。小灯泡电阻极小,所以电流表应采用外接法连入电路;电压应从0开始变化,所以滑动变阻器采用分压式接法,并且应将滑动变阻器阻值调到最大。 三、实验器材 小灯泡一盏,电源一个,滑动变阻器一个,电压表、电流表各一台,开关一个,导线若干,直尺一把。 四、实验电路 五、实验步骤 1。按照电路图连接电路,并将滑动变阻器的滑片P移至A端,如图: 2。闭合开关S,将滑片P逐渐向B端移动,观察电流表和电压表的示数,并且注意电压表示数不能超过小灯泡额定电压,取8组,记录数据,整理分析。 3。拆除电路,整理桌面,将器材整齐地放回原位。以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I—U图像。

六、实验结论 1。小灯泡的伏安特性曲线不是一条直线 2。曲线原因的分析:根据欧姆定理,R U应该是一条直线,但是那仅仅是理想IU来说,RI电阻,R是恒定不变的但是在现实的试验中,电阻R是会受到温度的影响的,此时随着电阻本身通过电流,温度就会增加,R自然上升,对于R代表图线中的斜率,当R不变时,图像是直线,当变化时,自然就是曲线。 七、误差分析 1。测量时未考虑电压表的分流,造成电流I的实际值大于理论值。 2。读数时没有读准确,在估读的时候出现误差。 3。描绘图像时没有描绘准确造成误差。

描绘小灯泡的伏安特性曲线 《测量小灯泡伏安特性曲线》实验课题任务是:电学知识告诉我们当电压一定时电流I与电阻R成反比,但小灯炮的电阻会随温度的改变而变化,小灯泡(6。3V、0。15A)在一定电流范围内其电压 与电流的关系为UKIn,K和n是与灯泡有关的系数。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《测量小灯泡伏安特性曲线》的整体方案,内容包括:(写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤),然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按书写科学论文的要求写出完整的实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方 法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出测量小灯泡伏安曲线的电路和实验步骤,要具有可操作性。 ⑶验证公式UKIn; ⑷求系数K和n;(建议用最小二乘法处理数据)

模拟电路实验报告,实验三 二极管的伏安特性

电子实验报告 实验名称二极管的伏安特性日期2014/3/30 一、实验目的 1、了解二极管的相关特性 2、学会在面包板上搭接测量电路。 3、学会正确使用示波器测量二极管的输入输出波形 4、学习使用excel画出二极管的伏安特性曲线 5、学会正确使用函数信号发生器、数字交流毫伏表。 6、学习使用 Multisim 电子电路仿真软件。 二.实验仪器设备 示波器、函数发生器、面包板、二极管、电阻、万用表,实验箱等。 三、实验内容 1、准备一个测量二极管伏安特性的电路。 2、在面包板上搭接二极管伏安特性的测量电路,给电路加入可调的正向和反向的输入电压,分别测量不同电压下流经二极管的电流,记录数据,用excel 画出二极管的伏安特性曲线。 正向输入测量8组数据,反向测量6组。 3、给二极管的测量电路加入正弦波,用示波器分别测量二极管的输入输出波形,解释输出波形的特征。 4,利用二极管和电阻画出或门和与门,并连接电路,测量检验。 四、实验原理

示波器工作原理是利用显示在示波器上的波形幅度的相对大小来反映加在示波器Y偏转极板上的电压最大值的相对大小, 二极管是最常用的电子元件之一,它最大的特性就是单向导电,也就是电流 只可以从二极管的一个方向流过 电路图: 其伏安特性图为: 电路图为: 动态电路: 正向,二极管两端:

电阻两端: 反向:二极管两端

电阻两端 2)与门,或门可以通过二极管和电阻来实现。

五、实验数据 上述实验图分别对应的波形图及实验数据如下: 正向,二极管两端: 信号类型Vpp:V Vmax:V Vmin:V T:ms 输入信号 5.1 2.43 -2.71 1.9986 输出信号 3.4 0.7 -2.67 1.9997 电阻两端:

非线性元件伏安特性的测量

电阻是导体材料和半导体材料的重要特性参数,在电学实验中经常要对电阻进行测量。测量电阻的方法有多种,伏安法是常用的基本方法之一。 【实验目的】 1. 学习常用电磁学仪器仪表的正确使用及简单电路的联接。 2. 掌握用伏安法测量电阻的基本方法及其误差的分析。 3. 测定线性电阻和非线性电阻的伏安特性。【实验原理】 【实验原理】 所谓伏安法,就是运用欧姆定律,测出电阻两端的电压和其上通过的电流,根据 R = V / I 即可求得阻值R。也可运用作图法,作出伏安特性曲线,从曲线上求得电阻的阻值。对有些电阻,其伏安特性曲线为直线,称为线性电阻,如常用的碳膜电阻、线绕电阻、金属膜电阻等。有些元件,如灯泡、晶体二极管、稳压管、热敏电阻等,伏安特性曲线不是直线,称为非线性电阻元件,可通过作图法反映它的特性。 用伏安法测电阻,原理简单,测量方便,但由于电表内阻接入的影响,给测量带来一定系统误差。在电流表内接法中,由于电压表测出的电压值V包括了电流表两端的电压,因此,测量值要大于被测电阻的实际值。由 可见,由于电流表内阻不可忽略,故产生一定的误差。 在电流表外接法中,由于电流表测出的电流I包括了流过电压表的电流,因此,测量值要小于实际值。由可见,由于电压表内阻不是无穷大,故给测量带来一定的误差。 上述两种联接电路的方法,都给测量带来一定的系统误差,即测量方法误差。为此,必须对测量结果进行修正。其修正值为 其中R为测量值,Rx为实际值。 为了减小上述误差,必须根据待测阻值的大小和电表内阻的不同,正确选择测量电路。 经过以上处理,可以减小和消除由于电表接入带来的系统误差,但电表本身的仪器误差仍然存在,它决定于电表的准确度等级和量程,其相对误差为 图16-1 电流表内接图16-2 电流表外接 式中和为电流表和电压表允许的最大示值误差。 【实验仪器】 电阻元件伏安特性实验仪,待测金属膜电阻、待测稳压管、待测小灯炮、待测二极管等。 【实验步骤】 1.测定金属膜电阻的伏安特性 (1)根据图16-1联接好电路。金属膜电阻Rx为240W,每改变一次电压V,读出相应的I值,并填入下表中,作伏安特性曲线,再从曲线上求得电阻值。 电压(V)

三极管伏安特性测量实验报告

实验报告 课程名称:__电路与模拟电子技术实验 _______指导老师:_____干于_______成绩:__________________ 实验名称:_______三极管伏安特性测量______实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1. 深入理解三极管直流偏置电路的结构和工作原理 2. 深入理解和掌握三极管输入、输出伏安特性 二、实验原理 三极管的伏安特性曲线可全面反映各电极的电压和电流之间的关系,这些特性曲线实际上就是PN结性能的外部表现。从使用的角度来看,可把三极管当做一个非线性电阻来研究它的伏安特性,而不必涉及它的内部结构。其中最常用的是输入输出特性。 1)输入特性曲线 输入特性曲线是指在输入回路中,Uce 为不同常数值时的Ib ~Ube 曲线。分两种情形来讨论。 (1) 从图(a)来看,Uce =0,即c、e间短路。此时Ib 与Ube 间的关系就是两个正向二极 管并联的伏安特性。每改变一次Ube ,就可读到一组数据(Ube ,Ib ),用所得数据在坐标纸上作图,就得到图(b)中Uce =0时的输入特性曲线。 2)输出特性曲线 输出特性曲线是指在Ib 为不同常量时输出回路中的Ic ~Uce 曲线。测试时,先固定一个Ib ,改变Uce ,测得相应的Ic 值,从而可在Ic ~Uce 直角坐标系中画出一条曲线。Ib 取不同常量值时,即可测得一系列Ic ~Uce 曲线,形成曲线族,如图所示。 专业:___ _________ 姓名:___ _________ 学号: ______ 日期:_____ ______ 地点:_____ ___

线性与非线性元件伏安特性的测定

1.线性与非线性元件伏安特性的测定 一.实验目的 1.学习直读式仪表和直流稳压电源等仪器的使用方法 2.掌握线性电阻元件、非线性电阻元件的伏安特性的测试技能 3.加深对线性电阻元件、非线性电阻元件伏安特性的理解.验证欧姆定律 二.实验原理 电阻元件是一种对电流呈现阻力的元件,有阻碍电流流动的性能。当电流通过电阻元件时,电阻元件将电能转换成其它形式的能量.并沿着电流流动的方向产生电压降。电压降的大小等于电流的大小与电阻的乘积。电压降和电流及电阻的这一关系称为欧姆定律。 U=IR 上式的前提条件是电压U和电流I的参考方向相关联.亦即参考方向一致。如果参考方向相反.则欧姆定律的形式应为 U=-IR 电阻上的电压和流过它的电流是同时并存的.也就是说,任何时刻电阻两端的电压降只由该时刻流过电阻的电流所确定,与该时刻前的电流的大小无关,因此,电阻元件又被称为“无记忆”元件。 当电阻元件R的值不随电压或电流大小的变化而改变时,则电阻R两端的电压与流过它的电流成正比例。我们把符合这种条件的元件称为线性电阻元件。反之.不符合上述条件的电阻元件被叫做非线性电阻元件。 电阻元件的特性除了用电压和电流的方程式表示外,还可以用其电流和电压的关系图形来表示,该图形称为此元件的伏安特性曲线。线性电阻的伏安特性曲线为一条通过坐标原点的直线,该直线的斜率即为电阻值,它是一个常数。如图1-1所示。 半导体二极管是一种非线性电阻元件。它的电阻值随着流过它的电流的大小而变化。半 导体二极管的电路符号用表示.其伏安特性如图1-2所示。由此可见半导体二极管的伏安特性为非对称曲线。

图1-1线性电阻的伏安特性图l-2半导体二极管伏安特性 对比图1-l和图1-2可以发现,线性电阻的伏安特性对称于坐标原点。这种性质称为双向性,为所有线性电阻元件所具备。半导体二极管的伏安特性不但是非线性的.而且对于坐标原点来说是非对称性的,又称非双向性。这种性质为多数非线性电阻元件所具备。半导体二极管的电阻随着其端电压的大小和极性的不同而不同,当外加电压的极性和二极管的极性相同时,其电阻值很小,反之二极管的电阻很大。半导体二极管的这一性能称为单向导电性,利用单向导电性可以把交流电变换成为直流电。 三.实验内容和步骤 1.测定线性电阻的伏安特性 本实验在九孔实验方板上进行。分立元件R=200Ω和R=2000Ω电阻作为被测元件.井按图1-3接好线路。经检查无误后.打开直流稳压电源开关。依次调节直流稳压电源的输出电压为表1-1l中所列数值。并将相对应的电流值记录在表1-l中。 图1-3 测量电阻的伏安特性电路图 表1-1 测定线性电阻的伏安特性 U(V) 0 2 4 6 8 10 R=200ΩI(mA) R=2000ΩI(mA) 2 测量半导体二极管 (1) 正向特性 图1-4(a) 测量半导体二极管正向伏安特性电路图 按图1-4(a)接好线路。经检查无误后,开启稳压电源.输山电压调至2v。调节电位器R,使电压表读数分别为表1-2中数值,井将相对应的电流表读数记于表1-2中,为了便于

电路实验四实验报告_二极管伏安特性曲线测量

电路实验四实验报告 实验题目:二极管伏安特性曲线测量 实验内容: 1.先搭接一个调压电路,实现电压1-5V连续可调; 2.在面包板上搭接一个测量二极管伏安特性曲线的电路; 3.测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好; 4.给二极管测试电路的输入端加Vp-p=3V、f=100Hz的正弦波,用示波器观察该电路的输 入输出波形; 5.用excel或matlab画二极管的伏安特性曲线。 实验环境: 数字万用表、学生实验箱(直流稳压电源)、电位器、整流二极管、色环电阻、示波器DS1052E,函数发生器EE1641D、面包板。 实验原理: 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 为了测量二极管的伏安特性曲线,我们用直流电源和电位器搭接一个调压电路,实现电压1-5V连续可调。调节电位器的阻值,可使二极管两端的电压变化,用万用表测出若干组二极管的电压和电流值,最后绘制出伏安特性曲线。电路图如下所示: 用函数发生器EE1641D给二极管施加Vp-p=3V、f=100Hz的交流电源,再用示波器观察二极管的输入信号波形和输出信号波形。电路图如下:

实验记录及结果分析: 得到二极管的伏安特性曲线如下: 结论:符合二极管的特性,即开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 2. 示波器显示二极管的输入输出波形如下图(通道1为输入波形,通道2为输出波形):

非线性元件伏安特性实验

非线性元件伏安特性的测量 【目的要求】 1.掌握非线性元件伏安特性的测量方法、基本电路。 2.掌握二极管、稳压二极管、发光二极管的基本特性。准确测量其正向导通阈值电压。 3.画出以上三种元件的伏安特性曲线。 【实验仪器】 非线性元件伏安特性实验仪。仪器由直流稳压电源、数字电压表、数字电流表、多圈可变电阻器、普通二极管、稳压二极管、发光二极管、钨丝灯泡等组成。 【实验原理】 1.伏安特性 给一个元件通以直流电,用电压表测出元件两端的电压,用电流表测出通过元器件的电流。通常以电压为横坐标、电流为纵坐标,画出该元件电流和电压的关系曲线,称为该元件的伏安特性曲线。这种研究元件电学特性的方法称为伏安法。伏安特性曲线为直线的元件称为线性元件,如电阻;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管等。伏安法的主要用途是测量研究线性和非线性元件的电特性。有些元件伏安特性除了与电压、电流有关,还与某一物理量的变化呈规律性变化,例如温度、光照度、磁场强度等,这就是各种物理量的传感元件,本实验不研究此类变化。 根据欧姆定律,电阻R、电压U、电流I,有如下关系: R (1) U I 由电压表和电流表的示值U和I计算可得到待测元件Rx的阻值。但非线性元件的R是一个变量,因此分析它的阻值必须指出其工作电压(或电流)。非线性元件的电阻有两种方法表示,一种称为静态电阻(或称为直流电阻),用R D表示;另一种称为动态电阻用r D表示,它等于工作点附近的电压改变量与电流改变量之比。动态电阻可通过伏安曲线求出,如图1所示,图中Q点的静态电阻R D=U Q/I Q,动态电阻r D=dU Q/dI Q

电路元件伏安特性的测绘实验报告

广东第二师范学院学生实验报告 院(系)名称班 别 姓名 专业名称学号 实验课程名称电路与电子线路实验 实验项目名称电路元件伏安特性的测绘 实验时间实验地点 实验成绩指导老师签名 一、实验目的: (1)学会识别常用电路元件的方法; (2)掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; (3)掌握实验台上直流电工仪表和设备的使用方法。 二、实验仪器: (1)电路实验箱一台 (2)万用表一块,2AP9二极管一个,2CW51稳压管一个,不同阻值线性电阻器若干。 三、实验内容及步骤: 1.测定线性电阻器的伏安特性 按图3-3接线,调节稳压电源的输出电压U,从0V开始缓慢地增加,一直到10V,在表3-1记下相应的电压表和电流表的读数U R和I。 表3-1 测定线性电阻的伏安特性 U R/V012345678910 I/mA0 2.测定半导体二极管的伏安特性 按图3-4接线,R为限流电阻器。测二极管的正向特性时,其正向电流不得超过25mA,二极管D的正向压降U D+可在0~之间取值。在~之间应多取几个测量点。做反向特性实验的时候,只需将图1-3中的二极管D反接,且其反向电压可加到30V左右。 表3-2 测定二极管的正向特性 U D+/V0 I/mA00 图3-4 二极管伏安特性测试 图3-3 线性电阻伏安特性测

表3-3 测定二极管的反向特性 U D-/V0-5-10-15-20-25-30 I/mA000 3.测定稳压二极管的伏安特性 (1)正向特性实验? 将图3-4中的二极管1N4007换成稳压二极管2CW51,重复实验内容2中的正向测量。UD+为正向施压,数据记入表3-4。 表3-4 测定稳压管的正向特性 U Z-/V0 I/mA00000 (2)反向特性实验 将稳压二极管2CW51反接,重复实验内容2中的反向测量。UD+为反向施压,数据记入表3-5。 表3-5 测定稳压管的反向特性 U/V012345810121820 U Z-/V0 I/mA0-42 四、实验结果: 电阻器的伏安特性曲线 半导体二极管的正向伏安特性曲线

伏安特性曲线的测量实验报告

竭诚为您提供优质文档/双击可除伏安特性曲线的测量实验报告 篇一:电路元件伏安特性的测量(实验报告答案) 实验一电路元件伏安特性的测量 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流I之间的函数关系式I=f(u)来表示,即用I-u平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常

数,与元件两端的电压u和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。在图1-1中,u>0的部分为正向特性,u<0的部分为反向特性。 (a)线性电阻(b)白炽灯丝 绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压u作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(u),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源1台 2.直流电压表1块 3.直流电流表1块 4.万用表1块 5.白炽灯泡1只 6.二极管1只 7.稳压二极管1只 8.电阻元件2只 四、实验内容 1.测定线性电阻的伏安特性按图1-2接线。调节直流稳压电源的输出电压u,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。 2 将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯

描绘小灯泡伏安特性曲线实验报告单

描绘小灯泡的伏安特性曲线 班别: 姓名: 一、实验目的: 通过实验来描绘小灯泡的伏安特性曲线,并分析曲线的变化规律 二、实验原理: 金属物质的电阻率随温度升高而增大,从而使得一段金属导体的电阻随温度变化发生相应的变化。对一只灯泡来说,不正常发光和正常发光时灯丝的电阻值可以相差几倍到几十倍。它的伏安特性曲线并不是一条直线,即灯丝的电阻是非线性的。本实验通过描绘伏安特性曲线的方法来研究钨丝灯泡在某一电压变化范围内,其阻值变化,从而了解它的导电特性。 三、实验器材 小灯泡、电压表、电流表、4V ~6V 学生电源、滑动变阻 器、导线若干、电健等 四、实验电路图; 1、线路原理图 1.用________测出流过小灯泡的电流,用________测出小灯泡两端的电压,测出多组(U ,I)值,在U -I 坐标系中描出各对应点,用________的曲线将这些点连接起来. 2.电路的选择:本实验用伏安法测量在不同电压下灯丝的 电流和电压,描绘出伏安特性曲线.由于使用的小灯泡是“3.8 V ,0.3 A ”的,正常发光时灯丝电阻约为13 Ω,阻值较小,因此应该用电流表________电路;由于要测小灯泡在不同电压下的电流、电压,电压取值范围要尽量大,因此滑动变阻器应该用________接法电路. 2、实物接线图 (1)先连好电源、电键、滑动变阻器所组成的串联电路(滑动变阻接下面两个接线柱) (2)将小灯泡、电流表串联好,再接到滑动变阻器的两个接线柱上(一上一下) (3)最后将伏特表并接在小灯泡的两端。 (4)注意滑动变阻器的滑动触头实验初应在使小灯泡短路的位置。 (5)注意安培表、伏特表的量程和正负接线柱(若选用的是标有“3.8V 0.3A ”的小灯泡,电流表应选用0-0.6A 量程;电压表应选用0-3V 量程。 五、实验步骤: 1.按图连接好电路。 2.检查无误后,将滑片调节至最左边附近、闭合电键,读出一组U 、I 值,记录于表格。 3.再调节滑线变阻器的滑片到不同位置,读出十二组不同的U 、I 值,记录于表格。

伏安特性实验报告

伏安特性实验报告 篇一:电路元件伏安特性的测量(实验报告答案) 实验一电路元件伏安特性的测量 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。 (a)线性电阻 (b)白炽灯丝 绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(U),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流电压表1 块 3.直流电流表1 块 4.万用表 1 块 5.白炽灯泡 1 只 6. 二极管1 只 7.稳压二极管1 只 8.电阻元件 2 只 四、实验内容 1.测定线性电阻的伏安特性按图1-2接线。调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。 2 将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤, 在表1-2中记下相应的电压表和电流表的读数。 3 按图1-3接线,R为限流电阻,取200Ω,二极管的型号为1N4007。测二极

电学元件伏安特性的测量实验报告

电学元件伏安特性的测量实验报告 篇一:电路分析实验报告(电阻元件伏安特性的测量) 电力分析实验报告 实验一电阻元件伏安特性的测量 一、实验目的: (1)学习线性电阻元件和非线性电阻元件伏安特性的测试方式。 (2)学习直流稳压电源、万用表、电压表的使用方法。 二、实验原理及说明 (1)元件的伏安特性。如果把电阻元件的电压取为横坐标,电流取为纵坐标,画出电压与电流的关系曲线,这条曲线称为该电阻元件的伏安特性。 (2)线性电阻元件的伏安特性在u-i平面上是通过坐标原点的直线,与元件电压和电流方向无关,是双向性的元件。元件的电阻值可由下式确定:R=u/i=(mu/mi)tgα,期中mu和mi分别是电压和电流在u-i平 面坐标上的比例。 三、实验原件 Us是接电源端口,R1=120Ω,R2=51Ω,二极管D3为IN5404,电位器Rw 四、实验内容 (1)线性电阻元件的正向特性测量。

(2)反向特性测量。 (3)计算阻值,将结果记入表中 (4)测试非线性电阻元件D3的伏安特性 (5)测试非线性电阻元件的反向特性。 表1-1 线性电阻元件正(反)向特性测量 表1-5二极管IN4007正(反)向特性测量 五、实验心得 (1)每次测量或测量后都要将稳压电源的输出电压跳回到零值 (2)接线时一定要考虑正确使用导线 篇二:电学元件的伏安特性实验报告v1 预习报告 【实验目的】 l.学习使用基本电学仪器及线路连接方法。 2.掌握测量电学元件伏安特性曲线的基本方法及一种消除线路误差的方法。 3.学习根据仪表等级正确记录有效数字及计算仪表误差。准确度等级见书66页。 100mA量程,0.5级电流表最大允许误差?xm?100mA?0.5%?0.5mA,应读到小数点后1位,如42.3(mA) 3V量程,0.5级电压表最大允许误差?Vm?3V?0.5%?0.015V,应读到小数点后2位,如2.36(V) 【仪器用具】 直流稳压电源,电流表,电压表,滑线变阻器,小白炽

实验一线性与非线性元件伏安特性的测绘

图 1-2 实验一 线性与非线性元件伏安特性的测绘 一.实验目的 1.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法。 2.学习恒电源、直流电压表、电流表的使用方法。 二.原理说明 任一二端电阻元件的特性可用该元件上的端电压U 与通过该元件的电流I 之间的函数关系U =f(I )来表示,即用U -I 平面上的一条曲线来表征,这条曲线称为该电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1中(a )所示,该直线的斜率只由电阻元件的电阻值R 决定,其阻值为常数,与元件两端的电压U 和通过该元件的电流I 无 关;非线性电阻元件的伏安特性是一条经过坐标原点的曲线,其阻值R 不是常数,即在不同的电压作用下,电阻值是不同的,常见的非线性电阻如白炽 灯丝、普通二极管、稳压二极管等,它们的伏安特性如图5-1中(b )、(c )、(d )。在图1-1中,U 〉0的部分为正向特性,U 〈 0的部分为反向特性。 绘制伏安特性曲线通 常采用逐点测试法,即在 不同的端电压作用下,测 量出相应的电流,然后逐点绘制出伏安特性曲线,根据伏安特性曲线便可计算其电阻值。 三.实验设备 1.直流电压、电流表; 2.电压源(双路0~30V 可调); 3.MEEL -04组件、MEEL -05组件。 四.实验内容 1.测定线性电阻的伏安特性 按图1-2接线,图中的电源U 选用恒压源的可调稳压输出端,通过直流数字毫安表与1kΩ(d) (b)(c) U U U I I I (a) U I 00 00图1-1

电路元件特性曲线的伏安测量法 实验报告

课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:__________________实验名称:电路元件特性曲线的伏安测量法实验类型:电路实验同组学生姓名:__________一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.熟悉电路元件的特性曲线; 2.学习非线性电阻元件特性曲线的伏安测量方法; 3掌握伏安测量法中测量样点的选择和绘制曲线的方法; 4.学习非线性电阻元件特性曲线的示波器观测方法。 二、实验内容和原理 1、电阻元件、电容元件、电感元件的特性曲线 在电路原理中,元件特性曲线是指特定平面上定义的一条曲线。例如,白炽灯泡在工作时,灯丝处于高温状态,其灯丝电阻随着温度的改变而改变,并且具有一定的惯性;又因为温度的改变与流过灯泡的电流有关,所以它的伏安特性为一条曲线。电流越大、温度越高,对应的灯丝电阻也越大。一般灯泡的“冷电阻”与“热电阻”可相差几倍至十几倍。该曲线的函数关系式称为电阻元件的伏安特性,电阻元件的特性曲线就是在平面上的一条曲线。当曲线变为直线时,与其相对应的元件即为线性电阻器,直线的斜率为该电阻器的电阻值。电容和电感的特性曲线分别为库伏特性和韦安特性,与电阻的伏安特性类似。 线性电阻元件的伏安特性符合欧姆定律,它在u-i 平面上是一条通过原点的直线。该特性曲线各点斜率与元件电压、电流的大小和方向无关,所以线性电阻元件是双向性元件。非线性电阻的伏安特性在u-i平面上是一条曲线。 普通晶体二极管的特点是正向电阻和反向电阻区别很大。正向压降很小正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。可见,二极管具有单向导电性,如果反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性则与普通二极管不同,在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。 上述两种二极管的伏安特性均具属于单调型。电压与电流之间是单调函数。二极管的特性参数主要有开启电压V th,导通电压V on,反向电流I R,反向击穿电压V BR以及最大整流电流I F。 2、非线性电阻元件特性曲线的逐点伏安测量法 元件的伏安特性可以用直流电压表、电流表测定,称为逐点伏安测量法。伏安法原理简单,测量方便,但由于仪表内阻会影响测量的结果,因此必须注意仪表的合理接法。 采用伏安法测量二极管特性时,限流电阻以及直流稳压源的变化范围与特性曲线的测量范围是有关系的,要根据实验室设备的具体要求来确定。在综合考虑测量效率和获得良好曲线效果的前提下,测量点的选择十分关键,由于二极管的特性曲线在不同的电压的区间具有不同的性状,因此测量时需要合理采用调电压或调电阻的方式来有效控制测量样点。 3、元件特性曲线的示波器观测法 正弦波信号发生器提供的输出电压,R是被测电阻元件,r为电流取样电阻。示波器置于X—Y 工

实验七_线性和非线性电学元件伏安特性的测量

实验七线性电阻和非线性电阻的伏安特性曲线 电阻是电学中常用的物理量。利用欧姆定律求导体电阻的方法称为伏安法,它是测量电阻的基本方法之一。 为了研究材料的导电性,通常作出其伏安特性曲线,了解它的电压与电流的关系。伏安特性曲线是直线的元件称为线性元件,伏安特性曲线不是直线的元件称为非线性元件。这两种元件的电阻都可用伏安法测量。但由于测量时电表被引入测量线路,电表内阻必然会影响测量结果,因而应考虑对测量结果进行必要的修正,以减少系统误差。 【实验目的】 1.通过对线性电阻伏安特性的测量,学习正确选择和使用伏安法测电阻的两种线路。 2.通过对二极管伏安特性的测量,了解非线性电学元件的导电特性。 3.习按电路图正确地接线,掌握限流电路和分压电路的主要特点。 4.学会用作图法处理实验数据。 【实验仪器】 欧姆定律实验盒直流稳压电源滑线变阻器(2个)单刀开关数字电流表 数字电压表保护电阻 【实验原理】 当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻。若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。 一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图1),从图上看出,直线通过一、三象限。它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数R =V/I。 常用的半导体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。为了了解半导体二极管的导电特性,下面对它的结构和电学性能作一简单介绍。 图1 线性电阻的伏安特性图2 半导体二极管的p-n结和表示符号半导体二极管又叫晶体二极管。半导体的导电性能介于导体和绝缘体之间。如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体(也叫N型半导体);另一种杂质加到半导体中会产生许多缺少电

非线性元件伏安特性的测量实验报告

非线性元件伏安特性的 测量实验报告 Document number:BGCG-0857-BTDO-0089-2022

实验报告 姓名:汤博班级:F0703028 学号:28 实验成绩: 同组姓名:无实验日期:2008-3-4 指导老师:助教19 批阅日期: 非线性元件伏安特性的测量 【实验目的】 1.学习测量非线性元件的伏安特性,针对所给各种非线性元件的特点,选择一定的实验方法,援用配套的实验仪器,测绘出它们的伏安特性曲线。 2. 学习从实验曲线获取有关信息的方法。 【实验原理】 1、非线性元件的阻值用微分电阻表示,定义为 R = dU/dI。 2、如下图所示,为一般二极管伏安特性曲线 3、测量检波和整流二极管,稳压二极管,发光二极管的伏安特性曲线,电路示意图如下

(1)检波和整流二极管 检波二极管和整流二极管都具有单向导电作用,他们的差别在于允许 通过电流的大小和使用频率范围的高低。 (2)稳压二极管 稳压二极管的特点是反向击穿具有可逆性,反向击穿后,稳压二极管 两端的电压保持恒定,这个电压叫稳压二极管的工作电压。 (3)发光二极管 发光二极管当两端的电压小于开启电压时不会发光,也没有电流流 过。电压一旦超过开启电压,电流急剧上升,二极管发光,电流与电压 呈线性关系,直线与电压坐标的交点可以认为是开启电压. 计算光的波长。 使用公式eU=hc λ 【实验数据记录、实验结果计算】 1、检波二极管 正向: 表一测量检波二极管的正向伏安特性数据 编号12345678910 U(V) I(mA) 编号11121314151617181920 U(V) I(mA)

三极管伏安特性测量实验报告

课程名称:__电路与模拟电子技术实验_______指导老师:_____干于_______成绩:__________________ 实验名称:_______三极管伏安特性测量______实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.深入理解三极管直流偏置电路的结构和工作原理 2.深入理解和掌握三极管输入、输出伏安特性 二、实验原理 三极管的伏安特性曲线可全面反映各电极的电压和电流之间的关系,这些特性曲线实际上就是PN结性能的外部表现。从使用的角度来看,可把三极管当做一个非线性电阻来研究它的伏安特性,而不必涉及它的内部结构。其中最常用的是输入输出特性。 1)输入特性曲线 输入特性曲线是指在输入回路中,Uce为不同常数值时的Ib~Ube曲线。分两种情形来讨论。 (1)从图(a)来看,Uce=0,即c、e间短路。此时Ib与Ube间的关系就是两个正向二极管并联的伏安特性。每改变一次Ube,就可读到一组数据(Ube,Ib),用所得数据在坐标 纸上作图,就得到图(b)中Uce=0时的输入特性曲线。 2)输出特性曲线 输出特性曲线是指在Ib为不同常量时输出回路中的Ic~Uce曲线。测试时,先固定一个Ib, 改变Uce,测得相应的Ic值,从而可在Ic~Uce直角坐标系中画出一条曲线。Ib取不同常量值时,即 可测得一系列Ic~Uce曲线,形成曲线族,如图所示。

三、实验仪器 三极管,HY3003D-3型可调式直流稳压电源,万用表、电子技术实验箱。 四、实验步骤 1.输入特性的测量 Rb=100KΩ。取Vcc=0以及5V,输入不同的Vbb,测出Vbe以及V Rb,间接测出i b。将所得的数据写入表格并画出图线。 2.输出特性的测量 Vbb=5V,Rc=470Ω。取Rb=100KΩ和400KΩ。输入不同的Vcc,测量Vce和V Rc,间接测量出i c。将所得的数据写入表格并画出图线。 五、数据记录与处理

相关文档
最新文档