纤维素制备水凝胶的研究

纤维素制备水凝胶的研究
纤维素制备水凝胶的研究

目录

摘要 (1)

引言 (1)

1 实验部分 (2)

1.1实验仪器 (2)

1.2实验试剂 (2)

1.3羧甲基纤维素水凝胶的制备 (2)

1.4水凝胶性能的测定 (3)

2 水凝胶的的结果分析 (3)

2.1水凝胶的吸水率曲线 (3)

2.2引发剂用量对水凝胶吸水性能的影响 (4)

2.3交联剂用量对水凝胶吸水性能的影响 (5)

2.4盐溶液浓度对水凝胶吸水性能的影响 (6)

2.5 P H对水凝胶吸水性能的影响 (7)

2.6水凝胶的保水性能曲线 (8)

3 结论 (8)

参考文献 (9)

致谢 (11)

纤维素制备水凝胶的研究

摘要:以纤维素为原料,对纤维素进行碱化、醚化处理,得到羧甲基纤维素。再以羧甲基纤维素(CMC)、丙烯酸(AA)、过硫酸铵、N,N-亚甲基双丙烯酰胺为原料,采用自由基聚合合成水凝胶。分别研究了交联剂用量、引发剂比例、盐浓度、pH对水凝胶吸水能力的影响,确定了最佳用量及条件。结果表明CMC与AA的质量比是1:9、交联剂用量是AA的0.6%、CMC与引发剂的比例是25、合成温度是80℃,是合成羧甲基纤维素水凝胶的最佳条件。

关键词:羧甲基纤维素;丙烯酸;N,N’-亚甲基双丙烯酰胺;吸水速率

Cellulose Hydrogel Preparation Research

Abstract: Cellulose as a raw material , the cellulose alkalization , etherification , to give carboxymethyl cellulose. Then carboxymethyl cellulose(CMC), acrylic acid(AA), ammonium persulfate , N, N- methylene- bis-acrylamide as a raw material , synthesized by free radical polymerization of a hydrogel. Investigated crosslinker , initiator ratio , salt concentration , pH on the absorption capacity of the hydrogel to determine the optimal dosage and conditions.Results showed that the CMC with AA quality ratio is 1:9, the dosage of crosslinking agent is 0.6% AA, CMC and the ratio of initiator is 25, the synthesis temperature is 80 ℃, is best conditions for the synthesis of carboxymethyl cellulose water gel.

Key Words: Carboxymethyl cellulose ;Acrylic acid; N,N’-methylene-bis-acrylamide; Ammonium persulfate; Water-absorption rate

引言

纤维素是一种储存量多且是可降解、可再生的绿色资源[1],属于多羟基化合物并

具有亲水性,其分子式是(C

6H10O

5

)n,天然的纤维素是无味、无臭的白色丝状物。纤维

素在水中的溶解性不好,在稀的碱溶液、酸溶液和有机溶剂中的溶解性也不好[2]。所以,纤维素在室温下是比较稳定的,是因为纤维素分子间存在氢键。纤维素是合成水凝胶的主要原料之一[3],来源丰富,价格低廉,因此有很大的发展前景。纤维素的

溶解情况将影响到制备的水凝胶的吸水性能。目前世界上各个国家对环境污染问题比较关注,大家将关注点放在了纤维素的可降解可再生方面。羧甲基纤维素是白色絮状的纤维粉末,无味、无毒性;易溶于水,能形成具有一定黏度的透明状的中性或者微碱性溶液。羧甲基纤维素俗称“工业味精[4]。”羧甲基纤维素溶解时应缓慢均匀地撒到盛有蒸馏水的烧杯中,不断地搅拌,使羧甲基纤维素与水完全接触,目的是使羧甲基纤维素能够溶解。溶解羧甲基纤维素时应不断搅拌并均匀撒放目的是为了防止羧甲基纤维素与蒸馏水发生结团,结块以致影响羧甲基纤维素的溶解量。羧甲基纤维素本身就具有吸水能力,当用它做成水凝胶时,含水量很高,而且具有生物可降解性。水凝胶作为一种高吸水性材料,由高分子组成的聚合网状结构,具有很强的吸水能力和保水能力,在水中能够溶胀吸收大量的水分而自身又不会溶解的亲水性高分子网络。水凝胶可应用在许多领域,如:日常用品、工业用品、化学化工、农业、建筑、生物医学等领域[2,5]。近几年来,我国对水凝胶的需求是越来越大,所以研究水凝胶对未来的发展有着重要的作用[6]。本文主要采用纤维素与丙烯酸为原料,以过硫酸铵为引发剂, N,N’-亚甲基双丙烯酰胺为交联剂,采用自由基聚合的方法合成水凝胶。

1 实验部分

1.1 实验仪器

集热式恒温加热磁力搅拌器,巩义市予华仪器有限责任公司;电子天平(AL-204),梅特勒---托利多仪器(上海)有限公司;电热鼓风干燥箱(DHC-9070A),上海精密仪器仪表有限公司。

1.2 实验试剂

纤维素;丙烯酸(AA),化学纯(CR),天津市科密欧化学试剂有限公司;N,N’-亚甲基双丙酰胺,化学纯(CR),上海展云化工有限公司;过硫酸铵,分析纯(AR),开封化学试剂总厂;盐酸,分析纯(AR),开封开化(集团)有限公司试剂厂;氯化钠,分析纯(AR),开封化学试剂总厂;氢氧化钠,分析纯(AR);天津市津北精细化工有限公司。

1.3羧甲基纤维素水凝胶的制备

1.3.1由纤维素先制备出羧甲基纤维素

第一步:称取一定量的纤维素,

第二步:碱化纤维素与氢氧化钠在30℃的条件下反应60min后生成碱纤维素,

碱化的目的主要是破坏纤维素的致密结构,使其能够进行醚化反应。

第三步:醚化碱纤维素与一氯乙酸在65℃的条件下反应120min后,将得到的产品用无水乙醇洗涤至中性。然后再抽滤、吸干,得到羧甲基纤维素[7-10]

1.3.2 羧甲基纤维素水凝胶的制备

称取一定量的羧甲基纤维素(CMC),将其缓慢均匀地加入到盛有蒸馏水的烧杯中,用磁力搅拌器搅拌至CMC溶解在水中,量取一定体积的CMC置于小烧杯中,然后再量取一定体积的丙烯酸(AA)缓慢地加入小烧杯中,称取一定量的N,N’-亚甲基双丙烯酰胺加入到盛有AA的小烧杯中,加入适量蒸馏水,搅拌至N,N’-亚甲基双丙烯酰胺完全溶解为止。把称取的一定量的过硫酸铵加入到小烧杯中,缓慢搅拌均匀后倒入反应容器中,用薄膜覆盖。把反应器放在80℃的恒温水浴锅中,反应一定时间后,可得到透明的有弹性的水凝胶。将水凝胶取出,放在另一个盛有蒸馏水的小烧杯中静置一天。目的是为了使制得的水凝胶中的杂质除去。纯化后将水凝胶放在设定温度为100℃的真空烘箱中直至恒重。

1.4 水凝胶性能的测定

1.4.1水凝胶吸水率的测定

准确称取一定质量的干燥的水凝胶放入盛有蒸馏水的烧杯中,放置一定的时间,至水凝胶达到吸水平衡,再称量吸水后水凝胶的质量。根据下面的公式计算吸水率:

Q=(m2-m1)/ m1

式中:Q:吸水率m1:干燥的水凝胶的质量,m2: 吸水平衡后水凝胶的质量。

1.4.2保水性能

将纯化后的水凝胶取出,称取相同质量的两块水凝胶置于表面皿上,分别在25℃、60℃的环境下,每隔2小时,称量一次水凝胶的质量,称重后立刻放回原处。画出保水率随时间变化的曲线图。根据下面的式子可以计算保水率:

W=(m4/m3)×100%

式中:W:保水率m4:干燥后水凝胶的质量,m3:干燥前水凝胶的质量。

2 水凝胶的的结果分析

2.1水凝胶的吸水率曲线

该水凝胶充分吸水后呈现透明的凝胶状,CMC-AA水凝胶是一种高分子电解质,主要通过渗透压来完成吸水过程。图1是该水凝胶的吸水率曲线,由图1可见,在

实验的时间范围内,随着吸水时间的增加,该水凝胶的吸水率先增加而后趋于水平,约12小时后吸水率曲线接近水平。随着吸水时间的延长,水凝胶的网络结构中接点数增加,孔隙减小,所以水凝胶的吸水率趋向平衡[11,12]。

220

240

260

280

300

320340

360

380

400

吸水率/%时间/h

图1 水凝胶的吸水率曲线

2.2引发剂用量对水凝胶吸水性能的影响

150

200

250

300

350

400

吸水率/%CMC与引发剂的比例

图2 引发剂用量对吸水率的影响

步骤:取五份相同质量0.3493g的CMC放入小烧杯中,分别溶于20mL的蒸馏水中,控制温度在55℃,搅拌至均匀,依次加入3mL的AA,再分别加入CMC与引发剂的比例为:40、35、30、25、20、15、10、5的过硫酸铵,最后加入0.0189g 的N,N’-亚甲基双丙烯酰胺,小烧杯用薄膜覆盖,在80℃的水浴锅中反应6h,得到有弹性的透明状水凝胶。将产物置于100℃的电热鼓风干燥箱中烘干至恒重。恒重后,纯化。测量每块水凝胶的吸水率,绘出图2。从图2可知,水凝胶的吸水率随着引发剂用量的减小先增加随后又减小,引发剂的用量有一个最适宜值,即:CMC与引发剂的比例在25 时可合成较高的吸水树脂。引发剂用量大时,反应速度快,可造成聚合的不均匀,使交联度增加,故吸水率降低;引发剂用量小时,在CMC上产生的接枝点较少,不利于聚合网状结构的形成,且反应速度较慢,交联度小,也可能导致不聚合,树脂可溶性增加,吸水率降低[12-13]。因此引发剂的用量直接影响到交联度的大小,从而影响吸水率的大小。

2.3 交联剂用量对水凝胶吸水性能的影响

步骤:取五份相同质量0.3493g的CMC放入小烧杯中,分别溶于20mL的蒸馏水中,控制温度在55℃,搅拌均匀,依次加入3mL的AA,再加入0.0140g的过硫酸铵,最后依次加入交联剂的用量是丙烯酸的0.2%、0.4%、0.6%、0.8%、1%的N,N’-亚甲基双丙烯酰胺,小烧杯用薄膜覆盖,在80℃的水浴锅中反应6h,得到有弹性的透明状水凝胶。将产物置于100℃的电热鼓风干燥箱中烘干至恒重。纯化后,测量每块水凝胶的吸水率,绘出如图3的曲线。

醋酸纤维素纳滤膜的制备方法

[54]发明名称 醋酸纤维素纳滤膜的制备方法 [57]摘要 本发明公开了一种醋酸纤维素纳滤膜的制备方法,包括以下步骤:1)将醋酸纤维素放入溶剂中搅拌,然后再加入非溶剂添加剂搅拌,最后静置,得铸膜液;2)将上述铸膜液刮制成250u m厚度的湿膜,然后静置在空气中;3)将上述步骤处理后的湿膜浸入蒸馏水中进行凝胶浴处理,得到不对称膜;4)将上述不对称膜依次经乙醇水溶液交换和纯环己 烷交换处理后,得醋酸纤维素纳滤膜。利用本发明方法所制得的纳滤膜通量大、分离效果明显。 权利要求书 第1/1页 1、一种醋酸纤维素纳滤膜的制备方法,其特征是包括以下步骤: 1)、将醋酸纤维素放入溶剂中搅拌22~26小时,然后再加入非溶剂添加剂搅拌2~5小时,最后静置65~75小时,得铸膜液; 2)、于10~30℃温度和50~75%相对湿度条件下,将上述铸膜液刮在洁净玻璃板或无纺布上制成250ltm厚度的湿膜,再使湿膜静置在空气中进行溶剂的挥发,静置时间为1~30分钟; 3)、将上述挥发处理后的湿膜浸入5~25℃蒸馏水中进行凝胶浴处理,直至湿膜充分凝胶;得到不对称膜; 4)、将上述不对称膜依次经体积浓度为30 --70%乙醇水溶液交换和纯环己烷交换处理后,得醋酸纤维素纳滤膜。 2、根据权利要求1所述的醋酸纤维素纳滤膜的制备方法,其特征是:所述步骤1)中溶剂与醋酸纤维素的用量比为100 ml:8~20g,溶剂与非溶剂添加剂的体积比为4~25:1。 3、根据权利要求2所述的醋酸纤维素纳滤膜的制备方法,其特征是:所述步骤1)中的溶剂为丙酮、1,4一二氧六环、四氢呋喃或氯仿。 4、根据权利要求3所述的醋酸纤维素纳滤膜的制备方法,其特征是:所述步骤1)中的非溶剂添加剂为水、甲醇或乙醇。 说明书 醋酸纤维素纳滤膜的制备方法 技术领域 本发明涉及一种醋酸纤维素纳滤膜的制备方法。 背景技术 膜分离技术是一项新兴的物质分离提纯和浓缩工艺,可在常温下连续操作,无相变;大规模生产中有节能、环保的优势;尤其适宜加热易变性的热敏性物质,因而在食品、医药、水处理等领域发展迅猛。膜技术在中药领域的应用主要是从中药中提取活性物质。中药中活

微晶纤维素制备、应用及市场前景的研究

微晶纤维素制备、应用及市场前景的研究 曲阜天利药用辅料有限公司生产技术部,山东曲阜273105 摘要:纤维素是自然界中最丰富的天然高分子材料。对解决目前世界面临的资源短缺、环境恶化、可持续发展等问题具有重要意义。纤维素在一定条件下进行酸水解,当聚合度下降到趋于平衡时所得到的产品称为微晶纤维素( micro.crystalline cellulose,MCC)。微晶纤维素为白色或类白色、无臭、无味的多孔性微晶状颗粒或粉末,具有高度可变形性,是可自由流动的纤维素晶体组成的天然聚合物,通常 MCC的粒径大小一般在20-80微米之间,它广泛用于食品、医药及其他工业领域。 关键词:微晶纤维素;MCC;制备;应用;市场前景。 Microcrystalline cellulose preparation, application and market prospect of research QuFuTianLi medicinal materials co., LTD., production technology department shandong qufu 273105 Abstract:Cellulose is the most abundant natural polymer materials in the nature。To solve the shortage of resources in the world, the problem such as environmental degradation, sustainable development is of great significance。Cellulose under certain conditions with acid hydrolysis,When the polymerization degree decline to tend to balance the resulting product is called the microcrystalline cellulose(micro.crystalline cellulose,MCC)。Microcrystalline cellulose is white or kind of white, odorless, tasteless porous micro crystalline granular or powder,With high deformability,Is the free flow of natural polymer composed of cellulose crystal,Usually the particle size of MCC generally between 20 to 80 microns,It is widely used in food, medicine and other industrial fields。 Key words: microcrystalline cellulose, MCC. Preparation; Application; Market prospect 正文:微晶纤维素[1]为白色或类白色无臭、无味的多孔性微晶状颗粒或粉末,具有高度可变形性 ,对主药具有较大的容纳性 ,可作为片剂的填充剂、干燥粘合剂 ,同时具有崩解作用 ,广泛应用于医药、食品、轻工业等国民经济各部门。 在生产微晶纤维素时国外主要采用木材为原材料[2],先收集木浆纤维素酸部分水解后的结晶部分,再经干燥粉碎而得到聚合度约200的结晶纤维素,我国棉花产量较高,成本较木材低,因此国内多以棉浆为原材料。决定微晶纤维素性能的主要因素[3]是制备方法和产品的质量控制标准。随着科技的发展,为了更大程

纤维素总结

一:纤维素的结构分类及应用: 1)纤维素的结构: 2)纤维素的分类: 根据其在特定条件下的溶解度,可以分级为:α—纤维素,β-纤维素,γ-纤维素,α—纤维素指的是聚合度大于200的纤维素,β-纤维素是指聚合度为10一200的纤维素,γ-纤维素是指聚合度小于10的纤维素。 3)纤维素的应用: 纤维素是一多羟基葡萄糖聚合物,经过特定的物理或化学改性后,具有不同的功能特性,可以粉状,片状,膜,纤维以及溶液等不同形式出现,因此用纤维素开发的功能材料极具灵活性及应用的广泛性。 3.1 高性能纤维材料: 纤维素纤维是现代纺织业的重要原料之一,同时也是纤维素化工和造纸业的重要原料,当前,纸己经成为社会发展的必需品,不仅大量应用于印刷,日用品及包装物,还可以用于绝缘材料,过滤材料以及复合材料等领域,具有广泛而重要的用途。 3.2 可生物降解材料

纤维素能够作为可降解材料的基材使用,因为纤维素具有很多独特的优点:(1)纤维素本身能够被微生物完全降解;(2)维素大分子链上有许多轻基,具有较强的反应性能和相互作用性能,使得材料便于加工,成本低,而且无污染;(3)纤维素具有很强的生物相容性;(4)纤维素本身无毒,可广泛使用,由于纤维素分子间存在很强的氢键,而且取向度和结晶度都很高,使得纤维素不溶于一般溶剂,高温下分解而不融,所以无法直接用来制作生物降解材料,必须对其进行改性,纤维素改性的方法主要有醋化,醚化以及氧化成醛,酮,酸等。纤维素生物降解材料应用广泛,例如园艺品,农,林,水产用品,医药用品,包装材料及光电子化学品等,这里要特别提出的是纤维素在医学,光电子化学,精细化工等高新技术领域应用的更好西川橡胶工业公司研制开发的纤维素,壳聚糖系发泡材料存在很好的应用前景,其特点是重量轻,绝热性好,透气,吸水等,这些特点使其广泛应用于农业,渔业,工业,包装,医疗等各个领域。 3.3 纤维素液晶材料: 天然纤维素及其衍生物液晶是一类新颖的液晶高分子材料,和其它的纤维素衍生物液晶相比,新型的复合型纤维素衍生物液晶在纤维素大分子链中引入了刚性介晶基元,使得控制其液晶性质能够成为现实"这同时就为开发具有特殊性能的液晶高分子提供了新的研究领域,并且其相应的理论基础研究对探索高分子液晶的形成也有十分重要的指导意义,另外,由于天然纤维素是自然界取之不尽,用之不竭的可再生天然高分子,那么在石油及能源日益枯竭的今天,我们就很有必

水凝胶的研究进展

水凝胶的研究进展 俊机哥哥07 (广西师范学院化学与生命科学学院09高分班) 摘要:本文对水凝胶的制备方法、性质及其应用进行了简单的介绍。关于水凝胶的制备,我们在文章的介绍了三种方法:单体聚合并交联、聚合物交联、载体的接枝共聚。 关键字: 水凝胶制备性质应用生物医学 前言 水凝胶这个词最早出现于1960年,当时是由捷克的Wicherle和Lim研制的聚强乙基丙烯酸甲酯。它本身是硬的高聚物,但它吸收水分后就变成具有弹性的凝胶,故称水凝胶。水凝胶是一类具有三维网络结构的聚合物,在水中能够吸收大量水分而溶胀,并在溶胀之后能够继续保持其原有结构而不被溶解。水凝胶可由不同的亲水单体和疏水单体聚合而成。由于其具有三维网络结构,故相对分子质量很高,其交联网络结构主要由化学键、氢键或范德华力等组成。溶胀时溶液可以扩散进入交联键之间的空间内,交联密度越大,三维网络间的空问就越小,水凝胶在溶胀时吸收的水分也就越少。由于水凝胶表面不易粘附蛋白质和细胞,故在与血液、体液及人体组织相接触时会表现出良好的生物相容性;另外,水凝胶由于含有大量的水分而非常柔软,并且类似于生物体组织,故作为人体植入物可以减少不良反应。因此,水凝胶被作为优良的生物医学材料得到广泛应用2。例如,PVP水凝胶可作为眼科手术中黏弹物质及人工玻璃体材料。PVA水凝胶可用于关节重建、人工软骨、人工喉及人工玻璃体。PVA 是第一个被广泛使用在移植方面的水凝胶。水凝胶已被用做鼻子、面部、缺唇修补、替

代耳鼓膜等方面。水凝胶用做人工软骨、腱以及主动脉接枝不久将被商业化。另外,水凝胶在日用品,工业用品,农业、土建等领域也有广泛应用。 1 水凝胶的制备 1. 1 单体聚合并交联 合成水凝胶的单体很多,大致分为中性、酸性、碱性3 种,表1 列出了部分单体及交联剂。 表1 水凝胶制备中常用的单体和交联剂 水凝胶可以由一种或多种单体采用电离辐射、紫外照射或化学引发聚合并交联而得。一般来说,在形成水凝胶过程中需要加入少量的交联剂。Nogaoka[12 ]及本文作者[13 ]等在不使用交联剂的情况下通过辐射引发使单体在水溶液中交联合成聚N2异丙基丙烯酰胺(polyNI2PAAm) 水凝胶,这种方法操作简单,交联度可通过改变单体浓度及辐射条件来控制,无任何添加成分,不会污染产品,可以一步完成产品的制备及消毒。与传统方法

纤维素复合气凝胶制备技术及其在生物医药领域的研究进展

第26卷第1期2018年3月 纤维素科学与技术 Journal of Cellulose Science and Technology V ol. 26 No. 1 Mar. 2018 文章编号:1004-8405(2018)01-0069-09 DOI: 10.16561/https://www.360docs.net/doc/b75581002.html,ki.xws.2018.01.02 纤维素复合气凝胶制备技术及其在生物医药领域的研究进展 付菁菁1,何春霞2,陈永生1,王思群3* (1. 农业部南京农业机械化研究所,江苏南京210014;2. 南京农业大学工学院,江苏南京210031; 3. 田纳西大学再生碳中心,美国诺克斯维尔TN37996) 摘要:新生代的纤维素气凝胶材料兼具传统气凝胶的优良特性及自身优良生物相容性和可降解性, 在生物医药等领域应用前景广阔。本研究简述了纤维素气凝胶的制备过程,综述了直接添加/生成法、 构建客体法和直接包覆法三种常见的纤维素复合气凝胶制备技术,列举了纤维素气凝胶在药物运载系 统、组织工程等生物医药领域的应用,最后对纤维素气凝胶材料的发展前景和研究方向进行了展望。 关键词:纤维素复合气凝胶;制备技术;生物医药;药物运载;组织工程 中图分类号:O636.1 文献标识码:A 气凝胶的概念首次是在1931年由Kistler教授提出的,这种低密度、高孔隙率、高比表面积、低导热系数、低介电常数以及独特结构的纳米材料使其具有广阔的发展前景[1]。在新一代气凝胶发展阶段,由于纤维素气凝胶兼具传统气凝胶的优良特性及自身优良生物相容性和可降解性而得到迅速发展[2]。纤维素及其制品的研究和应用已有将近150年的历史[3],而纤维素气凝胶仅在2001年首次合成[4],但纤维素气凝胶的优越特性和多功能性使其应用范围从药物载体、光催化、超级电容器[5-7],发展到燃料电池电极、相变储能材料[8-9]和废水处理、甲醛吸附[10-12]等。近年来关于纤维素气凝胶的研究方向主要是复合气凝胶的制备及其性能提高和新功能开发,从而拓宽纤维素气凝胶在更多领域的发展与应用。 已有文献对纤维素气凝胶在疏水吸油、电子等领域的应用进行了总结,本研究基于纤维素气凝胶功能性增强,系统地介绍和总结了纤维素复合气凝胶的制备技术及其在生物医药领域的研究进展,并对其发展前景进行了展望。 1 纤维素复合气凝胶的制备技术 1.1纤维素气凝胶的制备过程 目前已有很多技术开发用于制备具有纤维素网络结构的气凝胶:纤维粘接技术、冷冻干燥、超临界流体技术、模压和盐析法、气体发泡法、快速成型法和静电纺丝技术等[13-16],其中冷冻干燥和超临界干燥是较常选用的制备方法。纤维素气凝胶的制备过程可分为四个步骤:纤维素的溶解或分散,凝胶的形成及老化,溶剂置换和凝胶干燥。由于纤维素分子间及分子内极强的氢键作用、复杂的聚集结构和结晶区的存在,使得纤维素很难溶于水和普通有机溶剂[17]。目前,已有文献对纤维素气凝胶的制备进行了综述,可通过直 收稿日期:2017-09-27 基金项目:林业公益化行业科研专项(201504603);中国农科院农业科技创新工程项目“生物质转化利用装备创新团队”。作者简介:付菁菁(1989~),女,博士研究生;研究方向:生物质复合材料。 * 通讯作者:王思群(1959~),教授;研究方向:生物质复合材料。swang@https://www.360docs.net/doc/b75581002.html,

水凝胶的应用和研究进展

水凝胶的应用和研究进展 摘要:水凝胶是一类具有广泛应用前景的高分子材料,本文主要叙述了水凝胶在生物医学、记忆元件开关、生物酶的固定、农业中的保水抗旱等领域的应用及研究进展,简要介绍了水凝胶在国内外研究状况,最后对其发展趋势作了展望。关键词:高分子材料;水凝胶;应用;进展 前言 水凝胶可定义为在水中能够溶胀并保持大量水分而又不能溶解的交联聚合物。分子能够在水凝胶中扩散。水凝胶的网络结构如图1所示。水凝胶具有良好的生物相容性,它能够感知外界刺激的微小变化,如温度、pH值、离子强度、电场、磁场等,并能够对刺激发生敏感性的响应,常通过体积的溶胀或收缩来实现。水凝胶的这一特点使它在生物医学领域、记忆元件开关、生物酶的固定、农业中的保水抗旱等方面有广泛的应用前景[1]。 图一,水凝胶的三维网络结构和扫描电镜图片 水凝胶有各种分类方法,根据水凝胶网络键合的不同,可分为物理凝胶和化学凝胶。物理凝胶是通过物理作用力如静电作用、氢键、链的缠绕等形成的,这种凝胶是非永久性的,通过加热凝胶可转变为溶液,所以也被称为假凝胶或热可逆凝胶。许多天然高分子在常温下呈稳定的凝胶态,如k2型角叉菜胶、琼脂等[2];在合成聚合物中,聚乙烯醇(PVA)是一典型的例子,经过冰和融化处理,可得到在60℃以下稳定的水凝胶[3]。化学凝胶是由化学键交联形成的三维网络聚合物,是永久性的,又称为真凝胶。 根据水凝胶大小形状的不同,有宏观凝胶与微观凝胶(微球)之分,根据形状的不同宏观凝胶又可分为柱状、多孔海绵状、纤维状、膜状、球状等,目前制备的微球有微米级及纳米级之分。根据水凝胶对外界刺激的响应情况可分为传统

的水凝胶和环境敏感的水凝胶两大类。传统的水凝胶对环境的变化如温度或pH 等的变化不敏感,而环境敏感的水凝胶[4,5]是指自身能感知外界环境(如温度、pH、光、电、压力等)微小的变化或刺激,并能产生相应的物理结构和化学性质变化甚至突变的一类高分子凝胶。此类凝胶的突出特点是在对环境的响应过程中其溶胀行为有显著的变化,利用这种刺激响应特性可将其用做传感器、控释开关等,这是1985年以来研究者最感兴趣的课题之一。 根据合成材料的不同,水凝胶又分为合成高分子水凝胶和天然高分子水凝胶。天然高分子由于具有更好的生物相容性、对环境的敏感性以及丰富的来源、低廉的价格,因而正在引起越来越多学者的重视。但是天然高分子材料稳定性较差,易降解,近几年不少学者开始了天然高分子与合成高分子共混合成水凝胶的研究工作[6,7],这将是今后的一大重要课题。 1 聚合物交联 从聚合物出发制备水凝胶有物理交联和化学交联两种。物理交联通过物理作用力如静电作用、离子相互作用、氢键、链的缠绕等形成。化学交联是在聚合物水溶液中添加交联剂,如在PVA水溶液中加入戊二醛可发生醇醛缩合反应从而使PVA交联成网络聚合物水凝胶。从聚合物出发合成水凝胶的最好方法是辐射交联法,所谓辐射交联是指辐照聚合物使主链线性分子之间通过化学键相连接。许多水溶性聚合物可通过辐射法制备水凝胶[9],如PVA、polyNI2PAAm、聚乙烯基吡咯烷酮(PVP)、聚丙烯酸(PAAc)、聚丙烯酰胺(PAAm)、聚氧乙烯(PEO)、聚甲基丙烯酸羟乙酯(PHEMA)等。采用辐射法合成水凝胶无须添加引发剂,产物更纯净。 2 水凝胶的性质研究 2.1 溶胀-收缩行为 吸水溶胀是水凝胶的一个重要特征。在溶胀过程中,一方面水溶剂力图渗入高聚物内使其体积膨胀,另一方面由于交联聚合物体积膨胀,导致网络分子链向三维空间伸展,分子网络受到应力产生弹性收缩能而使分子网络收缩。当这两种相反的倾向相互抗衡时,达到了溶胀平衡。 2.2 力学性能 水凝胶不仅要求具有良好的溶胀性能,而且应具有理想的力学强度,以满足

纤维素气凝胶的研究和开发

郑州中天建筑节能有限公司 木质纤维素气凝胶的研究和开发 21 世纪,世界普遍关注的科学技术发展的重要焦点之一就是新型材料的创生。我国林木资源短缺,木质废弃物、木材加工剩余物、废旧木制品的高效再加工和循环利用,具有十分重要的意义,并且符合循环经济的发展趋势,即组成“资源-产品-再生资源”的物质反复和循环流动。 木质废弃物、木材加工剩余物、废旧木制品的高效再加工和循环利用不仅可以缓解木材供需矛盾,更重要的意义在于,将这些资源量巨大的废弃物通过科学的加工,形成新的产品或材料,有利于原本储存的碳素进一步重新固定、封存,以保持减排低碳,减少温室效应,保护人们赖以生存的生态环境。 木质纤维素气凝胶的研究和开发迈出了木材剩余物高效再加工和循环利用中关键的一步,它是将木材中所有组分包括纤维素、半纤维素和木质素等不需经过分离和化学处理,而通过溶解、冻融和干燥工艺制备的一种新型木质纤维素基材料。 通过长期大量的试验,本团队以木粉为原料,采用冻融法制备成功木质纤维素气凝胶,其工艺流程为:木质纤维素气凝胶材料不仅充分利用了生物质材料中的各种组分,而且依据气凝胶所具有的特殊性能,诸如极低的密度、极大的比表面积和极高的绝缘性等,可被广泛应用于组织工程、控释系统、血液净化、传感器、废水处理、色谱分析、生物医药等领域,还可在高效可充电电池、超级电容器、催化剂及载体、化妆品、气体过滤和超级高效隔热隔声材等有广阔的应用前景。 纳米纤丝化纤维素(nanofibrillatedcellulose)具有卓越的光学性能、机械性能和结构性能,在组织工程、纳米复合材料、纳米器件中有非常广泛的用途。事实上,木材细胞壁中的纤维素微纤丝(植物学术语)就是一种自然界中取之不尽的高性能纳米纤维化纤维素。木材中的纳米纤丝化纤维素,不但具有很高的长径比,还具有木材天然的可再生性、可循环性和可生物降解性。 20 世纪70 年代末,美国的Sandberg 等人使用高压匀质机从木材纸浆中分离出一种高长径比的纳米纤维素,其直径约为20nm,这是纳米纤丝化纤维素第一次正式露面。最初的研究者将纳米纤丝化纤维素称为微纤化纤维素(microfibrillated cellulose),直到现在许多学术文献和商业宣传仍在使用。但这让人感到困惑,因为这些纤丝的直径并不是微米级的。受此影响,许多文

用于染料吸附的甲基纤维素基气凝胶材料的制备及性能-2019年精选文档

用于染料吸附的甲基纤维素基气凝胶材料的制备及性能 Preparation and Adsorption Properties of Methylcellulose Aerogel Adsorbent for Dyes : In order to remove dyes from printing and dyeing effluent , a novel methylcellulose aerogel adsorbent based on methylcellulose (MC)and chitosan (CS)were developed. Discussion was made on the influence of ratio of methylcellulose and chitosan glutaraldehyde , concentration of cross-linking temperature , and aerogel density on the adsorption capacity and compression strength of aerogel , with congo red (CR) and methylene blue (MB) as target object. And then the preparation process was optimized , and the results show that the adsorption capacities of aerogel based on methylcellulose for the anionic dyes CR and cationic dyes MB are as high as 518.12 and 237.86 mg/g respectively with the ratio of MC/CS of 6 : 4, the glutaraldehyde concentration 5% cross- linking temperature 50 °C, and the aerogel density , the compression

纤维素醚的生产工艺及流程图解版

纤维素醚的生产工艺及流程图解版 注:根据以下文字描述来源做成的图解,仅代表个人理解,若有偏差,请多包涵。 设备生产工艺生产流程

纤维素醚的生产工艺及流程 传统的纤维素醚生产工艺是:将精制棉用氢氧化钠在一定的条件下进行碱化生成纤维素钠,再 由环氧丙烷、环氧乙烷、氯甲烷或氯乙酸等醚化剂进行醚化,在一定条件下反应生成不同类型 品种纤维素醚,再通过中和、回收溶剂、洗涤、干燥、粉碎最终得到粉末状的成品;因醚化剂 的不同,取代基就不同,所以纤维素醚的名称就不同,这种工艺存在的不足是:生产出来的纤 维素醚成本高,尤其是近几年棉花的价格不断上涨,导致了精制棉的价格飞速上涨,最终各种 纤维素醚产品成本价格也在提高,直接影响了销售及其推广。 1.一种纤维素醚的制备方法,其特征在于:包括如下反应步骤: 第一步:木浆的粉碎 首先利用木浆开松机,将木浆进行开松,开松后的木浆再经过开棉粉碎机进行粉碎,得到与精 制棉一样松密度(≥130g/L)的木浆粉,达到生产纤维素醚的指标要求; 第二步:木浆的碱化 将氢氧化钠800份投入反应釜内,升温至65℃,将碱溶解,然后降温至20℃,投入粉碎后的木浆850份,在22℃的条件下,碱化2.5小时,生成纤维素钠,反应过程中,每反应10分钟,静置15分钟; 第三步:纤维素钠的醚化 在碱化后生成的纤维素钠中加入醚化剂环氧丙烷400份、氯甲烷900份,在22℃的条件下恒 温反应20分钟,使其醚化剂充分搅拌均匀,然后升温至50±1℃,恒温反应1小时,然后立刻升温至90℃,恒温反应2小时反应结束,降温至40℃加入乙醇溶液中和洗涤,然后加入醋酸 中和调节PH值5-7之间,然后将物料压入回收釜,用100℃以上的软水将溶剂置换回收,回 收完后,通过离心机将物料与软水分离,然后物料再用无轴螺旋输送至闪蒸干燥机,干燥后得 到最终的产品,羟丙基甲基纤维素醚。 技术总结 本发明涉及一种木浆纤维素醚的制备方法,包括如下反应步骤:第一步:木浆的粉碎;第二步:木浆的碱化;第三步:纤维素钠的醚化。本发明工艺制备的羟丙基甲基纤维素醚与传统工艺用 精制棉制备生产的羟丙基甲基纤维素醚在同等条件下进行对比试验,发现本发明用木浆制备生 产的羟丙基甲基纤维素醚,质量高于用精制棉制备生产的羟丙基甲基纤维素醚质量,但成本价 格却要低40%以上;本发明采用氢氧化钠和水为反应介质,不添加任何惰性有机溶剂,显著降低了生产成本。

纤维素综合性应用与发展_卢华平

0引言 纤维素是自然界分布最广、含量最高的一种有机资源,从其来源可分为植物纤维素、海藻纤维素和细菌纤维素,另外纤维素还可通过人工合成的方法制备。纤维 素本身具有良好的性能,可用于纺织、 造纸、精细化工等生产领域,同时可生成许多种性能不同的纤维素衍生物材料。充分利用纤维素及衍生物对于社会的可持续发展具有十分重要的意义。合成纤维的主要原料石油是一次性资源,随着石油资源的日益枯竭,合成纤维的发展也必将受其制约;而天然纤维素则是来源丰富、可再生的,是自然界赐予人类最丰富的天然高分子资源。用天然纤维素制得的制品可生物降解,符合现代环保、绿色化学和可持续发展的要求,所以近年来对天然纤维素资源的开发与应用研究相当活跃[1]。随着科学技术的发展和人们生活水平的提高,人们对产品的性能要求也越来越高,单纯的纤维素加工已不能满足需要,而如何交叉结合化学、纳米科学、材料学、物理学、仿生学和生物学等学科进一步有效地利用纤维素,开拓纤维的新领域,也将成为国内外学者研究的重点。 1纤维素的结构 纤维素是1838年人们在木材中发现的一种化合物,当时认为它是植物细胞的基本物质,所以命名为“cellulose ”。纤维素分子的分子式为(C 6H 10O 5)n ,1842年Payen 首次发现纤维素为长链状β-(1,4)-D-脱水葡萄糖聚合物。纤维素的纯品无色、无嗅、无味,不溶于水和一般有机溶剂,且在自然水解的情况下产物为纤维二 糖。通过分析纤维二糖的结构,发现纤维素中葡萄糖单位是通过β-(1,4)-苷键连接的,同时也证明了纤维二糖是纤维素的重复结构单元。纤维素和纤维二糖的分子结构式如图1所示[2]。 纤维素大分子为无支链直线分子,分子链及分子内 存在大量的氢键,使大分子牢固地结合在一起,在结构上具有高度的规整性。由于敛集密度较高,使得纤维素不溶于水和有机溶剂,只能溶于铜铵等特殊溶液,水解过程中可以生产纤维四糖、纤维三糖、纤维二糖,最终水解产物为葡萄糖。 2纤维素的来源 纤维素主要来源于植物[3],一些细菌及被囊类动物也可合成纤维素,再者就是通过化学合成的方法制备人工合成纤维。 收稿日期:2013-03-10作者简介:卢华平,航天材料及工艺研究所技术人员。 纤维素综合性应用与发展 卢华平,李文帆 (航天材料及工艺研究所,北京100076) 【摘要】纤维素是一种应用领域极广的有机资源,具有良好的性能,可用于纺织、造纸和精细化工等生产领域,同时可生成许多种性能不同的纤维素衍生物材料。将纤维素与化学、纳米科学、材料学、物理学、仿生学和生物学等学科结合起来,能够有效地综合利用纤维素,同时又进一步开拓了纤维的应用领域。 【关键词】纤维素;交叉;综合利用;化石能源Doi:10.3969/j.issn.2095-0101.2013.03.027中图分类号:TQ352.72 文献标识码:A 文章编号:2095-0101(2013) 03-0074-03 图1纤维二糖及纤维素的分子结构式

水凝胶的制备及其研究进展

水凝胶的制备及其应用进展 摘要水凝胶是一类具有广泛应用的聚合物材料,它在水中能够吸收大量水分而溶胀,并在溶胀之后能够继续保持其原有结构而不被溶解。由于其特殊的结构和性能,水凝胶自人们发现以来,一直被人们广为研究。本文综述了近些年国内外在水凝胶制备和在生物医药、环境保护等方面的一些研究进展,并对水凝胶的应用前景做了一些展望。 关键词水凝胶药物释放壳聚糖染料吸附 凝胶按照分散相介质的不同而分为水凝胶(hydro-gel)、醇凝胶(alcogel)和气凝胶(aerogel)等。水凝胶的分散相介质是水,它是由水溶性分子经过交联后形成的,能够在水中溶胀并且保持大量水分而不溶解的胶态物质。它在水中能够吸收大量的水分显著溶胀,并在显著溶胀之后能够继续保持其原有结构而不被溶解。[1]正因为水凝胶的这种特性,水凝胶能够对外界环境,如温度、pH、电场、磁场等条件变化做出响应。近年来,对水凝胶的研究逐渐深入。水凝胶的应用也越来越广泛,不仅在载药缓释、环境保护方面有很大用途,而且在喷墨打印等方面也有越来越大的作用。 一、水凝胶的制备 (一)PVA水凝胶的制备 上世纪50年代,日本科学家曾根康夫最早注意到聚乙烯醇(PVA)水溶液的凝胶化现象。由于PVA水凝胶除了具备一般水凝胶的性能外,具有毒性低、机械性能优良(高弹性模量和高机械强度)、高吸水量和生物相容性好等优点,因而倍受青睐。PVA水凝胶在生物医学和工业方面的用途非常广泛[2]。 龚桂胜,钟玉鹏[3]等人利用冷冻-解冻法制备了不同类型高浓度聚乙烯醇(PVA)水凝胶,研究了PVA水凝胶的溶胀率、拉伸强度和流变特性。他们发现不同类型的高浓度 PVA 水凝胶的力学性能相差较大,高分子量的 PVA 水凝胶的拉伸强度较低;这与低浓度的水凝胶相反。徐冰函[4]首先制备PVA水凝胶,再以PVA 水凝胶作为载体利用反复冷冻的方法成功制备含有二甲基砜的PVA水凝胶。实验制备的MSM/PVA水凝胶具有优良的理化性能,并且可以用于人工敷料的制备。同时研究发现,二甲基矾在PVA水凝胶内缓慢释放,24h后释放量可达55%以上。体外细胞实验证明MSM/PVA水凝胶对细胞无毒副作用,对细胞增殖具有促进作用,其中以1%MSM用VA对细胞的增殖能力最强。

智能复合水凝胶材料研究进展

智能复合水凝胶材料研究进展 综述了近年来以无机增韧相(石墨烯、金、粘土和二氧化硅)和生物质增强相(纤维素和木质素)为基的智能水凝胶复合材料的研究进展;概括了其在增韧增强的同时带来的新功能,并对智能水凝胶复合材料的应用前景进行了展望。 标签:智能复合水凝胶材料;无机物;生物质;应用 智能水凝胶是能够对外界环境(如温度、pH、电场、光、磁场、特定生物分子等)微小的变化或刺激有显著响应的三维网络结构的亲水性聚合物。基于水凝胶的三维网络结构和环境敏感性,智能水凝胶广泛应用于记忆材料[1]、药物缓释[2~4]、敷料、组织工程[5]、智能纺丝、化学机械器件、物质分离、酶的固载等领域。由于水凝胶网络中缺少有效的能量耗散机制,积累的能量接近裂纹尖端不能在凝胶中消散,导致水凝胶存在易断裂、力学强度低、韧性差等缺点[6],从而限制了其在实际生活中的应用。为此,可以通过加入类似于陶瓷基复合相的增韧相或者生物质基增强相来吸收裂纹扩展释放的能量,从而达到增强水凝胶机械强度的目的。本文综述了利用无机物增韧相,生物质基增强相等复合材料改进智能水凝胶性能,实现增韧、增强作用,同时引进新的基团赋予其新功能,展望了智能复合水凝胶材料的应用前景。 1 智能复合水凝胶种类 1.1 无机物复合相 陶瓷基复合材料的增韧相是无机物复合相使用最为广泛的材料之一,如粘土、二氧化硅、石墨烯类、纳米金属等。无机增强相分散在连续相中,达到增强水凝胶的作用。 1.1.1 石墨烯类 石墨烯是目前自然界最薄、最强韧的材料,断裂强度比钢材的还要高200倍,它具有非常好的导热性、电导性、透光性和超大比表面积等特性,同时具有较好的弹性[7]。其独特的结构及性能可显著提高复合材料的机械性能与热稳定性。氧化石墨烯(GO)是石墨烯的一种重要衍生物,其表面有大量的羟基、环氧基及羧基,在水溶液和极性溶剂中有良好的分散性,可与亲水性聚合物形成纳米复合水凝胶材料。GO的亲水性基团增强了GO与基体材料间的界面相互作用,具有良好的相容性,能显著改善材料的力学性能。Shi等[8]将少量化学交联的小分子和物理交联的氧化石墨烯纳米粒子混合制备了新型近红外(NIR)光响应性的聚(N-异丙基丙烯酰胺)/氧化石墨烯(PNIPAM-GO)高拉伸性能的纳米复合水凝胶。 1.1.2 金

组织工程用水凝胶制备方法研究进展_宫政

2008年第27卷第11期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·1743· 化工进展 组织工程用水凝胶制备方法研究进展 宫政1,丁珊珊2,尹玉姬1,崔元璐2,姚康德1 (1天津大学材料科学与工程学院高分子材料科学与工程系,天津 300072; 2天津中医药大学中医药研究中心,天津 300193) 摘要:高分子水凝胶作为一类重要的生物材料被广泛应用于生物医药和组织工程领域。本文综述了基于化学交联和物理交联的有关组织工程用水凝胶的设计方法,重点介绍了通过自由基共聚、结构互补基团间的化学反应、高能辐射和酶交联的化学交联型水凝胶以及通过离子间的相互作用、结晶作用、氢键及疏水性相互作用形成的物理交联型水凝胶的研究进展,对比了各种交联机制的优缺点,并对水凝胶在组织工程领域中的进一步应用进行了展望。 关键词:水凝胶;组织工程;物理交联;化学交联;细胞 中图分类号:Q 81;R 318.08 文献标识码:A 文章编号:1000–6613(2008)11–1743–07 Optimized design of hydrogels for tissue engineering GONG Zheng1,DING Shanshan2,YIN Yuji1,CUI Yuanlu2,YAO Kangde1 (1 School of Materials Science and Engineering,Tianjin University,Tianjin 300072,China;2 Center of Traditional Chinese Medicine,Tianjin University of Traditional Chinese Medicine,Tianjin 300193,China) Abstract:Hydrogels are widely used in the fields of pharmacology and tissue engineering. In this article,the hydrogels design methods based on chemical and physical crosslinking are reviewed. Chemically crosslinked hydrogels are formed by radical polymerization,chemical reaction of complementary groups,high energy irradiation and enzymatic reactions,and physically crosslinked hydrogels are formed by ionic interactions,crystallization,hydrogen bonds and hydrophobic interactions. Key words:hydrogels;tissue engineering;physical crosslinking;chemical crosslinking;cells 水凝胶是由亲水性聚合物链构造的具有三维交联网络结构的高聚物和介质共同组成的多元体系[1],此网络因存在物理或化学交联结构而不溶于水,使其在溶液或生物体中保持了完整性。充斥于聚合物网络中的水分使交联的大分子链伸展,从而整个材料具备了流体的性质。同时,由于人体组织大多是由蛋白质和多糖网络组成的含有大量水的水凝胶材料[2],使得水凝胶材料在药物控释、软组织支架构建及活性细胞包载等生物医用材料方面得到了广泛的应用。自1960年Wichterle和Lim制备出聚(甲基丙烯酸-2-羟基乙酯)水凝胶以来[3],有关高分子水凝胶的设计与合成研究十分活跃。近年来,结构和性能各异的新型高分子水凝胶在组织工程中的应用引起了人们极大的兴趣。 组织工程的概念由美国的Langer与V acanti于1987年共同提出[4],其定义为应用细胞生物学和工程学的原理和方法,研究和开发能修复和改善损伤组织结构与功能的生物替代物的一门科学。 目前组织工程用水凝胶分为天然高分子水凝胶、合成高分子水凝胶和天然与合成高分子复合水凝胶三大类,既要求生物相容性又期望有细胞和分子响应性,这是目前面临的最大挑战。为了得到所需性能的水凝胶,其设计和合成应从物理性能、传质性能和生物相互作用等多方面综合考虑。迄今为止,水凝胶的设计与合成主要有物理交联和化学交联两种途径,如图1所示,其性能也因原料、交联密度和亲疏水性而各异[5]。物理交联型水凝胶的形 收稿日期:2008–02–05;修改稿日期:2008–05–14。 基金项目:国家自然科学基金资助项目(30670572)。 第一作者简介:宫政(1983—),男,硕士研究生。联系人:尹玉姬,博士,副教授,主要从事生物材料和功能材料的研究。电话 022–27401902;E–mail yinyuji@https://www.360docs.net/doc/b75581002.html,。

可注射改性羧甲基纤维素水凝胶的制备及性能

第35卷第8期高分子材料科学与工程 V o l .35,N o .8 2019年8月 P O L YM E R MA T E R I A L SS C I E N C E A N DE N G I N E E R I N G A u g .2019可注射改性羧甲基纤维素水凝胶的制备及性能 叶 旭,李 娴,申月琴,邓 双,张宇帆 (西南科技大学材料科学与工程学院,四川绵阳621010 )摘要:对羧甲基纤维素(C M C )进行巯基接枝改性,制备了羧甲基纤维素衍生物(C M C -S H ),采用溶解氧或H 2O 2氧化巯基(-S H )形成双硫键(-S -S -)的方法,化学交联制备了C M C -S H 10二C M C -S H 20和C M C -S H 30系列可注射羧甲基纤维素基水凝胶,并对水凝胶的流变学性能以及在37?的磷酸盐缓冲溶液(P B S )中的溶胀率二降解行为二体外药物释放行为进行了研究三结果表明,系列C M C -S H 水凝胶具有较好的流变学性能,C M C -S H 30水凝胶的储能模量(G ?)和屈服应力(τ)分别达到2873P a 和9328P a ;在37?的P B S 溶液中,系列水凝胶均能快速达到溶胀平衡,8h 溶胀率介于22~29之间;均具有较好的稳定性,13d 降解率为28%~48%;药物模型牛血清蛋白(B S A )5d 的累积释放率为45%~59%,对B S A 具有较好的控释能力三总体而言,前驱体浓度越高,C M C -S H 水凝胶的综合性能越好, 系列水凝胶均具有较好的综合性能,其中C M C -S H 30水凝胶的综合性能更好,有望应用于中短期蛋白类等大分子药物传输领域三关键词:可注射水凝胶;羧甲基纤维素;双硫键;药物释放 中图分类号:O 636.1+1 文献标识码:A 文章编号:1000-7555(2019)08-0075-07 d o i :10.16865/j .c n k i .1000-7555.2019.0193收稿日期:2018-08-07 基金项目:西南科技大学科研基金(17z x 7121);西南科技大学国家绝缘材料工程技术研究中心基金(16k f j c 02);西南科技大学龙山学术人才科研支持计划(18L Z X T 01 )通讯联系人:叶旭,主要从事生物医学工程二特种高分子等领域的研究,E -m a i l :y e x u @s w u s t .e d u .c n 天然高分子水凝胶特别是生物医学水凝胶,由于其亲水性二生物活性二生物相容性二生物安全性二可生物降解性二环境响应性等良好的生物学特性,近年来已被广泛应用于创伤敷料二止血剂二生物传感器二组织工程支架二组织填充材料二抗黏附材料二细胞封装材 料二人造组织和器官二药物传输载体等领域[ 1~3] 三可注射水凝胶可在环境刺激下原位形成,能避免阻塞注 射器针头,提高药物传输效率,并表现出温度二p H 值二离子二电场二磁场二光照等单一或多重响应,使用便捷二可用于微创治疗二避免手术创伤二减少手术并发症和不适二能够用于不规则部位的填充二减少埋植风险和病人痛苦二具有高的载药能力,在生物医学工程和组织工程领域已被广泛关注三许多可注射天然多糖 (如纤维素二壳聚糖二透明质酸二海藻酸钠等)基水凝胶 已成为被广泛关注的生物医用高分子材料[ 4~10] 三羧甲基纤维素(C M C ) 是一种多糖基水溶性纤维素醚,由于其良好的生物相容性二可生物降解性及黏 弹性而被作为药物载体二包覆材料二增稠剂等,广泛应用于生物医学二食品工业和化妆品等领域三利用 C M C 分子链上大量的羟基与羧基在一定条件下较好 的反应活性,通过接枝改性引入其他单体或环境刺激响应性基团,或引入交联剂,或利用C M C 阴离子聚电解质共性,通过物理或化学交联的方式可以制备用 途广泛的水凝胶[11] 三如S i v a k u m a r 等[1 2]以羧甲基纤维素和磁纳米粒为原料制备了多功能生物相容性磁纳米载体,应用于叶酸受体靶向化疗二影像二热疗和 抗癌诊断治疗系统三N a d a g o u d a 等[13] 合成了热稳定性羧甲基纤维素与金属纳米复合材料,并探索了其潜在的生物应用性能三 本文仅以羧甲基纤维素为改性天然高分子水凝胶基质,利用羧甲基纤维素的纤维素醚结构特点及羧基的反应活性,将巯基(-S H )封端柔性链成功接枝到C M C 链上,制备了改性羧甲基纤维素(C M C - S H ) 三在不额外引入其他任何交联剂的条件下,利用相同或不同C M C 链上的巯基(-S H )在氧化剂(溶解氧或H 2O 2等)作用下形成双硫键(-S -S -),通过化学交联方式制备了系列可注射C M C -S H 水凝胶,避免了引入交联剂时交联剂的量不易控制二过量

纤维素制备水凝胶的研究

目录 摘要 ........................................................................................ 错误!未定义书签。引言 ........................................................................................ 错误!未定义书签。 1 实验部分 ............................................................................ 错误!未定义书签。 1.1实验仪器.................................................................................. 错误!未定义书签。 1.2实验试剂.................................................................................. 错误!未定义书签。 1.3羧甲基纤?的制备................................................... 错误!未定义书签。 1.4?的测定.................................................................. 错误!未定义书签。 2 的的?结果分析 ....................................................... 错误!未定义书签。 2.1 的?............................................................... 错误!未定义书签。 2.2引发剂用? 的?影响 .................................. 错误!未定义书签。 2.3 剂用 ?? 的影?响.................................. 错误!未定义书签。 2.4?? 的影?响.................................. 错误!未定义书签。 2.5 P H?的影响 ................................................. 错误!未定义书签。 2.6 的?........................................................... 错误!未定义书签。 3 结论 ................................................................................... 错误!未定义书签。参考文献 ................................................................................... 错误!未定义书签。致谢............................................................................................. 错误!未定义书签。

相关文档
最新文档