正常塞曼效应与反常塞曼效应的比较

正常塞曼效应与反常塞曼效应的比较
正常塞曼效应与反常塞曼效应的比较

塞曼效应

1-3 塞曼效应 实验目的和要求: 了解塞曼效应的重要意义和原理;学习调节光路,学习使用高分辨气压扫描式法布里- 珀罗标准具(F-P)和光谱测量技术;观测和研究Hg 放电灯的546.1nm 光谱线在外磁场作用下的塞曼分裂现象和谱线的超精细结构;根据实验结果研究原子能级结构,获得有关分裂能级的参量。 教学内容: 1.计算Hg 灯546.1nm 光谱线在磁场作用下分裂的各子谱线的条数、偏振方向、波数变化,和相对强度,作出能级分裂图和光谱分裂示意图。 2.调节光路的准直和共轴,调节F-P 标准具的平行度;观察F-P 标准具产生的等倾干涉圆 环随F-P 内空气折射率的变化;通过气压扫描,用光电倍增管扫描测量546.1nm 光谱 线的强度随气压的变化,要求达到高分辨率,观测到超精细结构。 3.加垂直观测方向的磁场,观察F-P 后干涉圆环的分裂、分裂环的相对强度和偏振状态;用气压扫描测量546.1nm 谱线分裂出的9 条光谱,测量不同偏振状态下的光谱。4.分析塞曼分裂谱,计算各分裂子谱线的波数差和相对强度,并与理论值作比较,求荷质比;从塞曼分裂谱中分析得到原子能级的J 量子数和g 因子。 实验过程中可能涉及的问题(有的问题可用于检查学生的预习情况,有的可放在实验室说明牌上作提示,有的可在实验过程中予以引导,有的可安排为报告中要回答的问题,有的可作为进一步探索的问题。不同的学生可有不同的要求。) 塞曼效应是如何产生的?原子在外磁场下的能级分裂由哪些因素决定?根据你的理 论计算,在1T 磁场的作用下,Hg546.1nm光谱线分裂成几条谱线?分裂谱线的偏振态为什么不同?分裂谱线的相对强度是多少?分裂谱线的波数差为多少cm-1? 本实验通过什么方法分辨测量这么窄的光谱分裂?F-P 的自由光谱范围如何定义,在实验中有什么作用?用气压扫描式F-P 标准具实现高分辨光谱测量的实验条件有哪些(光路,平行度,准直,光电倍增管前加小孔光阑… )?随着F-P 内气压即空气折射率的变化,为什么可以观测到分 裂谱线重复出现?如何把实验测量结果中光强随气压的变化,标定转化为,光强随谱线波数的变化?此种标定的前提条件是什么?如何尽量减少相邻谱线的互相影响?如果谱线的裂距和强度与理论计算有偏差,可能是什么原因造成的? 实验装置说明: 1.光源及磁场:Hg 灯与电源(注意Hg 灯上高压的安全),电磁铁与电源(注意电磁铁发热效应,Hg 灯为何需置于磁场中心?) 2.光谱测量:透镜、偏振片和干涉滤光片(各起什么作用?);气压扫描式F-P 标准具、成像透镜和带小孔光阑的光电倍增管(各起什么作用,如何调节,观察到的光学 现象?) 3.控制和数据采集:气压扫描控制器(注意在升压状态下测量), 光电倍增管电源系统(注意屏蔽背景光后加高压使用),计算机数据采集(实验测量的是什么物理量?) 实验的主要内容和问题: 1.Hg 灯置于电磁铁中央,在垂直磁场方向观测光谱(平行磁场方向的塞曼分裂光谱会有什么不同?测量方案上有何不同?) 2.调节整体光路,使Hg 灯像、等倾干涉圆环的中心、以及观测点的中心达到准直、共心、共轴。(为什么有这些要求?如何逐步调节并判断?)

法拉第效应实验报告

法拉第效应 一.实验目的 1.初步了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二.实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度F θ与光波在介质中走过的路程l 及介质中的磁感应强度在光的传播方向上的分量H B 成正比,这个规律又叫法拉第一费尔得定律,即 F H VB l θ= ()1 比例系数V 由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得常数,它与光频和温度有关。几乎所有的物质都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(0V >)反之叫负旋(0V <)。 法拉第效应与自然旋光不同,在法拉第效应中,对于给定的物质,偏振面相对于实验室坐标的旋转方向,只由B 的方向决定和光的传播方向无关,这个光学过程是不可逆的。光线往返一周,旋光角将倍增。而自然旋光则是可逆的,光线往返一周,累积旋光角为零。与自然旋光类似,法拉第效应也有色散。含有三价稀土离子的玻璃,费尔德常数可近似表示为: ()1 22t V K λλ-=- ()2 这里K 是透射光波长t λ,有效的电偶极矩阵元,温度和浓度等物理量的函数,但是与入射波长λ无关。这种V 值随波长而变的现象称为旋光色散。 2.法拉第效应的经典理论 从光波在介质中传播的图像看,法拉第效应可以这样理解:一束平行于磁场方向传播的平面偏振光,可以看作是两柬等幅的左旋和右旋偏振光的叠加,左旋和右旋是相对于磁场方向而言的。介质中受原子核束缚的电子在人射光的两旋转电矢量作用下,作稳态的圆周运动。在与电子轨道平面相垂直的方向上加一个磁场B ,则在电子上将引起径向力M F ,力的方向决定于光的旋转方向和磁场方向。因此,电子所受的总径向力可以有两个不同的值。轨道半径

法拉第效应实验报告

法拉第效应 【摘要】实验利用励磁电流产生磁场,首先测量磁场和励磁电流之间的关系,利用磁 场和励磁电流之间的线性关系,用电流表征磁场的大小,用消光的方法测定ZF6样品的旋光角和磁场的关系,用倍频法测量MR3样品的旋光角和磁场的关系。最后让偏振光分别两次通过MR3样品,区分自然旋光和法拉第旋光,验证法拉第旋光的非互易性。 关键词:法拉第旋光、旋光角、倍频法、消光法。 引言 法拉第效应1845年由法拉第发现。法拉第效应可用于混合碳水化合物成分分析和分子结构研究。近年来在激光技术中这一效应被利用来制作光隔离器和红外调制器。由于法拉第效应的其他性质,他还有其他更多的应用。 法拉第效应可用来分析碳氢化合物,因每种碳氢化合物有各自的磁致旋光特性;在光谱研究中,可借以得到关于激发能级的有关知识;在激光技术中可用来隔离反射光,也可作为调制光波的手段。 法拉第旋光在强磁场下具有非互易性,这种非互易的本质在微波和光的通信中是很重要的。许多微波、光的隔离器、环行器、开关就是用旋转角大的磁性材料制作的。 原理 当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,这种磁致旋光现象是1845年由法拉第首先发现的,故称为法拉第效应。振动面转过的角度称为法拉第效应旋光角。实验发现 θ=VBL (1)其中θ为法拉第效应旋光角;L为介质的厚度;B为平行与光传播方向的磁感强度分量;V称为费尔德(Verdet)常数。 一般约定,当光的旋转方向与产生磁场的电流的方向一致时,称法拉第旋转是左旋,v>0;反之则叫右旋,v<0。 法拉第效应与自然旋光不一样,不具备一般的光学过程可逆,对于给定的物质,旋转 的方向只由磁场的方向决定,和光的传播方向无关,这叫做法拉第效应的“旋光非互易性”。 法拉第效应的原理 一束平行于磁场方向传播的平面偏振光(表示电场强度矢量),可以看着是两束等幅的左旋和右旋圆偏振光的叠加,不加外磁场时,他们通过距离为的介质后,由于介质 对他们具有相同的折射率和传播速度,所以他们产生的相位移相同,不发生偏转;当有外磁场时,由于磁场使物质的光学性质改变,这两束光具有不同的折射率和传播速度,产生不同的相位移: (2) (3)

塞曼效应实验

塞曼效应实验 作者杨桥英 指导老师杨建荣 绪论 塞曼效应实验是近代物理中的一个重要实验,它证实了原子具有磁矩和空间量子化,可由实验结果确定有关原子能级的几个量子数如M,J和g因子的值,有力地证明了电子自旋理论。对于教学和学习来说本文所讨论的实验方案的结合使用,不但可以使我们对塞曼实验的原理有更深层次的触动,加深我们对于塞曼效应原理的理解,而且可以使我们对计算机及相应的软件开发在实验中的应用有所了解。 塞曼效应是原子的光谱线在外磁场中出现分裂的现象。塞曼效应是1896年由荷兰物理学家塞曼发现的。他发现,原子光谱线在外磁场发生了分裂。随后洛仑兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量子力学、电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场[]1。 1.实验原理 1.1原子的总磁矩与总角动量的关系 原子的总磁矩由电子磁矩和核磁矩两部分组成,由于核磁矩比电子磁矩小三个数量级以上,所以可只考虑电子的磁矩这一部分。原子中的电子做轨道运动时产生轨道磁矩,做自旋运动时产生自旋磁矩。根据量子力学的结果,电子轨道角动量P L 和轨 道磁矩μ L 以及自旋角动量P S 和自旋磁矩μ S 在数值上有下列关系:

最新法拉第旋光效应实验报告资料

法拉第旋光效应实验报告 一.实验目的: 1.了解和掌握法拉第效应的原理; 2.了解和掌握法拉第效应的实验装置结构及实验原理; 3.测量法拉第效应偏振面旋转角与外加磁场电流I的关系曲线。二.实验仪器: LED 发光二极管(或白光光源和滤波片),偏振片,透镜,直流励磁电源,导轨,偏振片,集成霍尔元件,稳压电源等。三.实验原理和操作步骤: 天然旋光现象。 当线偏振光通过某些透明物质(如石英、糖溶液、酒石酸溶液等)后.其振动面将以光的传播方 向为轴旋转一定的角度,这种现象称为旋光现象。1811 年阿拉果首先发现石英有旋光现象,以后 毕奥(J. B. Biot)和其他人又发现许多有机液体和有机物溶液也具有旋光现象。凡能使线偏振光 振动面发生旋转的物质称为旋光物质,或称该物质具有旋光性。 图3.1 石英的旋光现象 如图3.1 所示,1P 和2P 分别为起偏器和检偏器(正交)。显然,在没有旋光物质时,2P 后面的视场是暗的。当在1P 和2P 之间加入旋光物质后2P 后的视场将变亮,将2P 旋转某一角度后,视场又将变暗。这说明线偏振光透过旋光物质后仍然是线偏振光,只是其振动面旋转了一个角度。 振动面旋转的角度称为旋光度,用?表示。 线偏振光通过旋光晶体时,旋光度?和晶体厚度 d 成正比,即 d α ? = (3.1)式中,α是比例系数,与旋光晶体的性质、温度以及光的频率有关,称为该晶体的旋光率。 不同的旋光物质可以使线偏振光的振动面向不同的方向旋转.人们对旋光方

向作下述约定: 迎着光传播方向观察,若出射光振动面相对于入射光扳动面沿顺时针方向旋转为右旋;沿逆时针方向旋转称为左旋.在图 3.1 中,若在1P 前加一个白色光源,由于不同波长的光旋转角度不同,因此到达2P 时有一部分光能透过去,有些光透不过去,有些能部分透过去,所以2P 后的视场是彩色的,旋转2P 其法拉第旋光效应25色彩会发生变化,这种现象叫做旋光色散。 2. 旋光现象的菲涅耳解释。 菲涅耳提出了一种唯象理论来解释物质的旋光性质。线偏振光可以分解为左旋圆偏振光和右旋圆偏振光。左旋圆偏振光和右旋圆偏振光以相同的角速度沿相反方向旋转,它们合成为在一直线上振动的线偏振光。在旋光物质中左旋圆偏振光和右旋圆偏振光传播的相速度不相同。假定右旋圆偏振光在某旋光物质中传播速度比左旋圆偏振光的速度快,在旋光物质出射面处观察,于右旋圆偏振光速度快,因此右旋圆偏振光振幅旋转过的角度较大,在出射面处,两圆偏光合成的线偏振光PE 的振动方向比起原来(进入旋光物质前)的振动方向0 PE 来,顺时针方向转过角度θ,这就是右旋。当材料中左旋圆偏振光的相速度较大时.就是左旋光材料。 3. 磁致旋光。 前面介绍的是物质的天然旋光性,实际上,有些物质本身不具有旋光性,但在磁场作用下就有旋光性了,就是前面介绍的法拉第旋光效应,也叫磁致旋光效应。磁致旋光中振动面的旋转角?和样品长度L 及磁感应强度B 成正比,即有VLB = ?(3.2)式中V 是—个与物质的性质、光的频率有关的常数,称为维尔德(Verdet)常数。某些物质的维尔德磁致旋光也有左右之分.我们规定:当光的传播方向和磁场方向平行时迎着光的方向观察,光的振动面向左旋转(逆时针),则维尔德常数为正。旋光现象的唯象解释 近代物理实验讲义 4. 磁致旋光的经典唯象解释。 可以用唯象模型来说明磁致旋光效应。电子在左旋圆偏振光和右旋圆偏振光的电场作用下作左旋和右旋圆周运动,电子运动平面与磁场垂直。电子在磁场中受到洛仑兹力,其方向向着电子轨道中心或背着轨道中心,视速度的方向而定注意:电子本身带负电荷。在洛仑兹力向着轨道中心的情况中,电子受到的向心力增加,电子旋转速率增大。在洛仑兹力背向轨道中心的情况中,电子旋转变慢。电子旋转快慢的变化影响了圆偏振光电场矢量旋转角速度。当光从磁光媒质出射时重新合成线偏振光。由于在媒质中左旋和右旋的速率不同,合成偏振光的振动面转过了一个角度。从图上可以看出,电子旋转速率变化只决定于磁场方向与电子旋转方向,而与光的传播方向无关。值得注意的是,天然旋光的旋转方向与光的传播方向有关,而磁致旋光的旋转方向与光的传播方向无关,而决定于外加磁场的方向。如图 3.5 所示,若将出射光再反射回晶体,则通过天然旋光晶体的线偏光沿原路返回后振动面将回复原位,而通过磁致旋光晶体的线偏光将继续旋光,其振动面与原振动面夹角更大。磁致旋转现象是由于外磁场存在时物质的原子或分子中的电子进动而引起的。这种进动的结果,使物体对顺时针与逆时针的圆偏振光产生不同的折射率。因此方向不同的圆偏振光的传播速度不同,引起了振动面的旋转。 四.

塞曼效应

塞曼效应 摘要:本实验使用微机化的塞曼效应实验仪观察了汞光灯谱线在外加磁场时产生的分裂,即其塞曼效应,并由此计算了电子的荷质比。 关键词:塞曼效应;法布里-珀罗标准具;荷质比 1. 引言 19世纪伟大的物理学家法拉第研究电磁场对光的影响时,发现了磁场能够改变偏振光的偏振方向。1896年荷兰物理学家塞曼(Pieter Zeeman)根据法拉第的想法,探测磁场对谱线的影响,发现钠双线在强磁场中的分裂。洛伦兹根据经典电子论解释了分裂为三条谱线的正常塞曼效应。由于研究这个效应,塞曼和洛伦兹共同获得了1902年的诺贝尔物理学奖。他们这一重要研究成就,有力地支持了光的电磁理论,使我们对物质的光谱、原子和分子的结构有了更多的了解。 2. 实验目的 1.掌握塞曼效应理论,测定电子的荷质比,确定能级的量子数和朗德因子,绘出跃迁的能级图。 2.掌握法布里—珀罗标准具的原理和使用。 3.观察塞曼效应现象,并把实验结果和理论结果进行比较,同时了解使用CCD及多媒体计算进行实验图像测量的方法。 3.实验原理 3.1 塞曼效应简介 当光源放在足够强的磁场中时,所发出的光谱线都分裂成几条,条数随能级的类别而不同,而分裂后的谱线是偏振的,这种现象被称为塞曼效应。塞曼效应证实了原子具有磁距和空间取向量子化的现象。 塞曼效应分为正常塞曼效应和反常塞曼效应。正常塞曼效应是指那些谱线分裂为三条,

而且两边的两条与中间的频率差正好等于 4eB mc π,对于这种现象,经典理论可以给予很好的解释。但实际上大多数谱线的分裂多于三条,谱线的裂距是4eB mc π的简单分数倍,这种 现象被称为反常塞曼效应。下面具体讨论塞曼效应中外磁场对原子能级的作用。 3.2原子的总磁矩与总动量矩的关系 因为原子中的电子同时具有轨道角动量P L 和自旋角动量P S 。相应的,它也同时具有轨道磁矩轨道微矩 L μ和自旋磁矩S μ,并且它们有如下关系。 2L L S s e P m e P m μμ?=??? ?=?? (1) 其中 L s P P ? =??? ?=?? (2) (2)式中 L,S 分别表示轨道量子数和自旋量子数。 原子核也有磁矩,但它比一个电子的磁矩要小三个数量级,故在计算单电子原子的磁矩时可以把原予核的磁矩忽略,只计算电子的磁矩。 对于多电子原,考虑到原子总角动量和总磁矩为零,故只对其原子外层价电子进行累加。磁矩的计算可用图1的矢量图来进行。 图1电子磁矩与角动量关系 由于μS 与Ps 的比值比μL 与P L 的比值大一倍,所以合成的原子总磁矩不在总动量矩P J 的方向上。但由于μ绕P J 运动,只有μ在P J 方向的投影μJ 对外平均效果不为零。根据图5-2可计算出有μJ 与 P J 的关系如下。 2J J e g P m μ= (3) 上式中的g 就是郎德因子。它表征了原子的总磁矩与总角动量的关系,而且决定了能级在磁场中分裂的大小。在考虑LS 耦合的情况下,郎德因子可按下式计算。

法拉第效应与磁光调制实验

法拉第效应与磁光调制实验 1845年,法拉第(M.Faraday)在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。 法拉第效应有许多重要的应用,尤其在激光技术发展后,其应用价值越来越受到重视。如用于光纤通讯中的磁光隔离器,是应用法拉第效应中偏振面的旋转只取决于磁场的方向,而与光的传播方向无关,这样使光沿规定的方向通过同时阻挡反方向传播的光,从而减少光 于激光多级放大和高分辨率的纤中器件表面反射光对光源的干扰;磁光隔离器也被广泛应用Array激光光谱,激光选模等技术中。在磁场测量方面,利用法拉第 效应驰豫时间短的特点制成的磁光效应磁强计可以测量脉冲 强磁场、交变强磁场。在电流测量方面,利用电流的磁效应和 光纤材料的法拉第效应,可以测量几千安培的大电流和几兆伏 的高压电流。 磁光调制主要应用于光偏振微小旋转角的测量技术,它是 通过测量光束经过某种物质时偏振面的旋转角度来测量物质 的活性,这种测量旋光的技术在科学研究、工业和医疗中有广 泛的用途,在生物和化学领域以及新兴的生命科学领域中也是 重要的测量手段。如物质的纯度控制、糖分测定;不对称合成 M.Faraday(1791-1876) 化合物的纯度测定;制药业中的产物分析和纯度检测;医疗和 生化中酶作用的研究;生命科学中研究核糖和核酸以及生命物质中左旋氨基酸的测量;人体血液中或尿液中糖份的测定等。 一、实验目的 1. 用特斯拉计测量电磁铁磁头中心的磁感应强度,分析线性范围。 2. 法拉第效应实验:正交消光法检测法拉第磁光玻璃的费尔德常数。 3. 磁光调制实验:熟悉磁光调制的原理,用倍频法精确测定消光位置;精确测量不同样品 的费尔德常数。 二、实验原理 1、法拉第效应 实验表明,在磁场不是非常强时,如图1所示,偏振面旋转的角度θ与光波在介质中走 d B成正比,即: 过的路程及介质中的磁感应强度在光的传播方向上的分量 θ (1) = VBd 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔德(Verdet)常数。附录中,表1为几种物质的费尔德常数。几乎所有物质(包括气体、液体、固体)都

塞曼效应偏振解

4、塞曼效应的偏振特性 (1)沿Z 方向传播的电磁波(横波)的电场矢量必定在xy 平面(横波特性),并可分解为: ???-==)cos(cos αωωt B E t A E y x 当0α=,电场矢量在某一方向做周期变化,为线偏振,又称平面偏振 当2απ=,A =B 时,合成的电场矢量的大小为常数,方向做周期性变化。矢量箭头绕圆周运动,此即圆偏振。 (2)定义右旋偏振和左旋偏振 定义:沿z 轴逆光观察,电矢量顺时针转动,称为右旋(圆)偏振,反之称为左旋(圆)偏振。 圆偏振光具有角动量,且光的角动量方向与电矢量旋转方向成右手螺旋关系。 沿着Z 方向对准光传播方向观察(逆着光传播方向), 电矢量作顺时针转动,称为右旋偏振, 角动量方向与传播方向相反 光的传播方向Z 向右 光的角动量方向L 向左

沿着Z方向对准光传播方向观察(逆着光传播方向), 电矢量作逆时针转动,称为左旋偏振, 角动量方向与传播方向相同 光的传播方向Z向右 光的角动量方向L向右 (3)塞曼效应 211 Δm m m =-=(以正常塞曼效应为例) 原子在磁场方向(Z方向)的角动量减少了1,原子和发出的光子作为一个整体,角动量必须守恒,因此,所发光子必定在磁场方向(Z方向)具有角动量。 //B,B指向观察者时,光的角动量方向与传播方向一致,看到σ+左旋偏振。 对于 211 Δm m m =-=-, 原子在磁场方向(Z方向)的角动量增加了1,原子和发出的光子作为一个整体,角动量必须守恒,因此,所发光子必定在磁场相反的方向具有角动量。 //B,B指向观察者时,光的角动量方向与传播方向相反,看到σ-右旋偏振。 B ⊥观察(如X方向),只能看到Ey分量(横波特性),能观察到于B垂直的线偏振σ成分。 (4) 210 Δm m m =-= 原子在磁场方向(Z方向)的角动量不变,但光子具有角动量。 原子发射光子时,为了保持角动量守恒,光子的角动量一定垂直于磁场。 与光相应的电矢量必定在yz平面(去光的角动量方向为X),可以有Ey,Ez分量。 但是,实际上,角动量在xy平面上所有的光子都满足0 Δm=的条件,因此,平均效果使得Ey=0。 于是,在//B,B指向观察者时,既观察不到Ey分量,也不会有Ez分量(横波特性),见不到与0 Δm=相应的π成分。 B ⊥观察,只能见到Ez分量,能观察到与磁场B平行的线偏振π成分。 注:电磁波的横波特性,沿X方向传播的光,电矢量不会在X方向。

塞曼效应实验

塞曼效应实验 【实验目的】 1.掌握观测塞曼效应的方法,加深对原子磁矩及空间量子化等原子物理学概念的理解。 2.观察汞原子546.1nm 谱线的分裂现象及它们偏振状态,由塞曼裂距计算电子荷质比。 3.学习法布里-珀罗标准具的调节方法。 4.学习CCD 器件在光谱测量中的应用以及通过计算机自动处理光谱数据的实验方法。 【实验原理】 1.背景简介 1896年,荷兰物理学家塞曼(P.Zeeman(1865-1943))发现当光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同,后人称此现象为塞曼效应。塞曼效应是继英国物理学家法拉第(M.Faraday(1791-1863))1845年发现磁致旋光效应,克尔(John Kerr)1876年发现磁光克尔效应之后,发现的又一个磁光效应。 法拉第旋光效应和克尔效应的发现在当时引起了众多物理学家的兴趣。1862年法拉第出于"磁力和光波彼此有联系"的信念,曾试图探测磁场对钠黄光的作用,但因仪器精度欠佳未果。 塞曼在法拉第的信念的激励下,经过多次的失败,最后用当时分辨本领最高的罗兰凹面光栅和强大的电磁铁,终于在1896年发现了钠黄线在磁场中变宽的现 象,后来又观察到了镉蓝线在磁场中的分裂。 塞曼在洛仑兹的指点及其经典电子论的指导下,解释了正常塞曼 效应和分裂后的谱线的偏振特性,并且估算出的电子的荷质比与几个 月后汤姆逊从阴极射线得到的电子荷质比相同。 塞曼效应不仅证实了洛仑兹电子论的准确性,而且为汤姆逊发现 电子提供了证据。还证实了原子具有磁矩并且空间取向是量子化的。 1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖。直到 今日,塞曼效应仍旧是研究原子能级结构的重要方法。 早年把那些谱线分裂为三条,而裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位mc eB L π4/=)。正常塞曼效应用经典理论就能给予解释。实际上 P.Zeeman(1865-1943)

法拉第效应

法拉第效应 1845年8月,英国科学家法拉第发现原来没有旋光性的重玻璃在强磁场作用下产生旋光性,使偏振光的偏振面发生偏转。磁致旋光效应后来称为法拉第效应。法拉第效应有许多应用,特别是在激光技术中制造光调制器、光隔离器和光频环行器,在半导体物理中测量有效质量、迁移率等。 一、实验目的 1. 了解法拉第效应的原理; 2. 观察线偏振光在磁场中偏振面旋转的现象,确定维尔德(Verdet )常数; 3. 验证偏振面旋转角度、光波波长和磁场强度间的关系。 二、实验器材 12v/100w 卤素灯、法拉第效应实验仪、光电器件及平衡指示仪、 三、实验原理 介质因外加磁场而改变其光学性质的现象称之为磁光效应。其中,光通过处于磁场中的物质时偏振面发生旋转的效应较为重要,我们称这种偏振面的磁致旋转效应为法拉第效应(Faraday effect )。它与克尔效应一起揭示了光的电磁本质,是光的电磁理论的实验基础。法拉第在寻找磁与光现象的联系时首先发现了线偏振光在通过处于磁场当中的各向同性介质时其偏振面发生旋转的现象。在磁场不是非常强时,偏振面的旋转角度?? 与介质的厚度S 及磁感应强度在光的传播方向上的分量B 成正比 VBS =?? (1) 比例系数V 成为维尔德(Verdet )常数,它取决于光的波长和色散关系,一般物质的维尔德常数比较小,表1给出了几种材料的维尔德常数V 。 法拉第效应与自然旋光不同。在法拉第效应中对于给定的物质,光矢量的旋转方向只由磁场的方向决定,而与光的传播方向无关,即当光线经样品物质往返一周时,旋光角将倍增。 线偏振光可看作两个相反偏振量σ+和σ –的圆偏振光的相干叠加,从原子物理知识可知,磁场将使原子中的振荡电荷产生旋进运动,旋进的频率等于拉莫尔频率,即ωL =B m e ?,这里e 和m 分别为振荡粒子的电荷和质量,B 为磁场强度。线偏振光的σ+和σ –分量有不同的旋进频率,分别为L ωω- 和L ωω+,相应的折射率n +和n -,相速度v +和v - 都不同,而在 表1.几种材料的维尔德常数V

塞曼效应实验讲义

塞曼效应讲义 教学方式及时间安排 讲解与实际操作,讲解35-45分钟,操作指导20分钟,学生动手操作120分钟,共200 分钟,4个学时。 一、实验的目的: 1.过观查塞曼效应现象,了解塞曼效应是由于电子的轨道磁矩与自旋磁矩共同受到外磁 场作用而产生的。证实了原子具有磁矩和空间取向量子化的现象,进一步认识原子的内部结 构。并把实验结果和理论进行比较。 2.掌握法布里—珀罗标准具的原理和使用,了解使用CCD 及多媒体计算机进行实验图 象测量的方法。 19世纪伟大的物理学家法拉第研究电磁场对光的影响,发现了磁场能改变偏振光的偏 振方向。1896年荷兰物理学家塞曼(Pieter Zeeman )根据法拉第的想法,探测磁场对谱线 的影响,发现钠双线在磁场中的分裂。 洛仑兹跟据经典电子论解释了分裂为三条的正常塞 曼效应。由于研究这个效应,塞曼和洛仑兹共同获得了1902年的诺贝尔物理学奖。他们这 一重要研究成就,有力的支持了光的电磁理论,使我们对物质的光谱、原子和分子的结构有 了更多的了解。至今塞曼效应仍是研究能级结构的重要方法之一。 一、塞曼效应的原理 当发光的光源置于足够强的外磁场中时,由于磁场的作用,使每条光谱线分裂成波长很 靠近的几条偏振化的谱线,分裂的条数随能级的类别而不同,这种现象称为塞曼效应。 正常塞曼效应谱线分裂为三条,而且两边的两条与中间的频率差正好等于eB/4πmc ,可用经 典理论给予很好的解释。但实际上大多数谱线的分裂多于三条,谱线的裂矩是eB/4πmc 的 简单分数倍,称反常塞曼效应,它不能用经典理论解释,只有量子理论才能得到满意的解释。 1.原子的总磁矩与总动量距的关系 塞曼效应的产生是由于原子的总磁矩(轨道磁矩和自旋磁矩)受外磁场作用的结果。在 忽略核磁矩的情况下,原子中电子的轨道磁矩μL 和自旋磁矩μS 合成原子的总磁矩μ,与电子 的轨道角动量P L ,自旋角动量P S 合成总角动量P J 之间的关系,可用矢量图1来计算。 已知: μL =(e /2m )P L P L = π 2h )1(+L L (1) μS =(e/m )p s P S =π2h )1(+S S (2) 式中L, S 分别表示轨道量子数和自旋量子数,e, m 分别为电子的电荷和质量。 由于μL 和P L 的比值不同于μS 和P S 的比值,因此,原子的总磁矩μ不在总角动量P J 的延 长线上,因此μ绕P J 的延线旋进。μ只在P J 方向上分量μJ 对外的平均效果不为零,在进行矢 量迭加运算后,得到有效μJ 为: J μ=g m e 2P J (3) 其中g 为朗德因子,对于LS 耦合情况下 g=1+ )1(2)1()1()1(++++-+J J S S L L J J (4)

塞曼效应(含思考题答案)

课程: 专业班号: 姓名: 学号: 同组者: 塞曼效应 一、实验目的 1、学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2、观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3、 利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二、实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为 )(010201~E E hc -=γ (3) 式中 h 为普朗克常数;c 为光速。 而当光源处于外磁场中时,这条光谱线就会分裂成为若干条分线,每条分线波数为别为 hc B g M g M E E hc B μγγγγγ)()(112201200~1 ~~~~-+=?-?+=?+= L g M g M )(1 1220~-+=γ 所以,分裂后谱线与原谱线的频率差(波数形式)为 mc Be g M g M L g M g M πγγγ4~~~1 12211220)()(-=-=-=? (4) 式中脚标1、2分别表示原子跃迁后和跃迁前所处在的能级,L 为洛伦兹单位 (B L 7.46=),外磁场的单位为T (特斯拉),波数L 的单位为 [] 1 1--特斯拉 米。 1 2M M 、的选择定则是:0=?M 时为π 成分,是振动方向平行于磁场的线偏振光,只能在垂直于

塞曼效应实验报告

近代物理实验报告 塞曼效应实验 学院 班级 姓名 学号 时间 2014年3月16日

塞曼效应实验实验报告 【摘要】: 本实验通过塞曼效应仪与一些观察装置观察汞(Hg)546.1nm谱线(3S1→3P2跃迁)的塞曼分裂,从理论上解释、分析实验现象,而后给出横效应塞满分裂线的波数增量,最后得出荷质比。 【关键词】:塞曼效应、汞546.1nm、横效应、塞满分裂线、荷质比 【引言】: 塞曼效应是原子的光谱线在外磁场中出现分裂的现象,是1896年由荷兰物理学家塞曼发现的。首先他发现,原子光谱线在外磁场发生了分裂;随后洛仑兹在理论上解释了谱线分裂成3条的原因,这种现象称为“塞曼效应”。在后来进一步研究发现,很多原子的光谱在磁场中的分裂情况有别于前面的分裂情况,更为复杂,称为反常塞曼效应。 塞曼效应的发现使人们对物质光谱、原子、分子有更多了解,塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。本实验采取Fabry-Perot(以下简称F-P)标准具观察Hg的546.1nm谱线的塞曼效应,同时利用塞满效应测量电子的荷质比。 【正文】: 一、塞曼分裂谱线与原谱线关系 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(P J)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能:

由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下: 其中: L为总轨道角动量量子数 S为总自旋角动量量子数 J为总角动量量子数 M只能取J,J-1,J-2 …… -J(共2J+1)个值,即ΔE有(2J+1)个可能值。 无外磁场时的一个能级,在外磁场作用下将分裂成(2J+1)个能级,其分裂的能级是等间隔的,且能级间隔 2、塞曼分裂谱线与原谱线关系: (1) 基本出发点:

法拉第效应实验

法拉第效应初探 (顾从真 复旦大学物理系06级) 摘要 本文简要概括了法拉第效应的历史、原理、步骤以及不同条件下的现象的记录分析和数据处理。 关键词 法拉第效应,磁光效应,旋光介质,偏振 引言 1845年,法拉第(Michael Faraday )在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。之后费尔德(V erdet )对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。 实验部分 实验目的 了解法拉第效应经典理论,初步掌握进行磁光测量的基本方法,对法拉第效应的现象和成因进行分析。 实验原理 一束平面波穿过介质,如果介质中沿光的传播方向加一个磁场,会观察到光经过样品后偏振面转过一个角度,符合公式, VBL θ= θ为法拉第效应旋光角;L 为穿过介质的厚度;B 为平行与光传播方向的磁感强度分量;V 是比例系数,由工作物质和波长决定,表征物质磁光特性,称为费尔德(Verdet)常数。 几乎所有物质都有法拉第效应,但一般都不显著,规定V>0为正旋,方向与产生磁场的螺线管中的电流方向一致。V<0为负旋。 我们可以这样解释法拉第效应。 如图,我们把偏振光分成左旋和右旋部分,通过厚l 的介质会产生不同相位差, 1()()2R L R L n n l π θ??λ =-=-

由量子理论,在B 场作用下,介质轨道电子磁矩具有势能 2B eB B L m μψ=-= B L 是轨道角动量在B 方向上的分量。 用能量为ω 的左旋圆偏振光子激发电子,电子在磁场中能级结构与用能量为 ()L ωφ-? 的光子激发电子,电子在无磁场时能级结构相同。推出, ()()L L n n ωωφ=-? ,2L eB m φ?= 进一步可得, ()()2L dn eB n n d m ωωω=-? ()()2R dn eB n n d m ωωω=+? 带入θ的关系式,有 ()2e dn V mc d λλλ=-? 的关系,所以可以由V 和色散关系来验证荷质比的数值。

法拉第磁旋光效应

VBd =θ专业物理实验 法拉第磁旋光效应 一、 实验目的. 1. 通过对重火石玻璃磁光效应的测量,加深磁场对光学介质物性常数影响的理解; 2. 了解光波隔离器的工作原理。 二、 实验原理. 1845年,法拉第发现,当一束平面偏振光沿着磁场方向通过受磁场作用的物质,如玻璃、二硫化碳、汽油等时,透射光的偏振面会转过一个角度。这种磁致旋光现象称为法拉第效应。它和发生于糖溶液中的自然旋光效应是不同的。在法拉第效应中,对于给定的物质,偏振面的旋转方向相对于实验室坐标只由磁场B 的方向决定,和光的传播方向无关,是不可逆的光 一周,累积旋光角倍增。而自然旋光效应是可逆的,光线往返一周,累积旋光角为零。利用法拉第效应的这一特性,可制造一种不可逆的光学仪器:光波隔离器或单通器。此外,法拉第效应还可用于物质结构和半导体物理方面的研究。 当磁场不是非常强时,法拉第效应中偏振面转过的角度θ,与沿介质厚度方向所加磁场的磁感应强度B 及介质厚度d 成正比,即 (1) 式中比例常数V 叫做费尔德常数。 几乎所有的物质都存在法拉第效应。不同的物质偏振面旋转的方向可能不同。设想磁场B 是由绕在样品上的螺旋线圈产生的。习惯上规定:振动面的旋转方向和螺旋线圈中电流方向一致,称为正旋(V >0);反之,叫做负旋(V < 0);V 由物质和工作波长决定,它表征物质的磁光特性。 根据自然旋光的菲涅耳唯象描述,对于法拉第效应可作这样的经典解释:一束平行于磁场方向传播的平面偏振光可看作两束等幅的左旋和右旋圆偏振 光的叠加,进入介质后由于磁场的作用使得它们以稍微不同的速度??? ? ?l r n c n c ,向前传播,从介质出射后,合成线偏振光,偏振面相对于入射光转过了一定的角度。 图1 线偏振光沿磁场方向传播

法拉第效应(教学指导书)

法拉第效应(教案指导书) 法拉第效应是一种磁光效应。在现代光学技术特别是激光技术中,法拉第效应获得了非常重要的应用,例如,作光调制器件、光开关,进行光信息处理等。 一、教案目的 1.了解法拉第效应原理 2.学会测量法拉第效应旋光角。 二、教案要求 1、实验两小时完成。 2、了解法拉第效应实验装置的结构、原理。 3、根据励磁电流,查图得出磁感强度,计算费尔德常数。 4、根据波长一鼓轮读数对照表,查出波长;求出λ(A),作λ—V(A)曲线。 三、教案重点和难点 1、重点:掌握法拉第效应的原理。 2、难点:法拉第效应旋光角的测量。 四、讲授内容(约20分钟) 1、什么是法拉第效应? 当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,这种磁致旋光现象是1845年由法拉第首先发现的,故称为法拉第效应。振动面转过的角度称为法拉第效应旋光角。实验发现 θ=VBL 式中:θ为法拉第效应旋光角; L为介质的厚度; B为平行与光传播方向的磁感强度分量; V称为费尔德(Verdet)常数。 2、法拉第效应测试仪结构如何? 结合仪器,从结构示意图从左向右介绍: 光源→单色仪→起偏镜→电磁铁(中间有样品ZF6)→检偏镜→光倍管→数显表。

3、实验主要步骤? 1.实验准备(已由实验室完成) 将白炽灯电源线捅人电源变压器后,接通电源,开启单色仪入射狭缝。 将光源、单色仪与电磁铁配合衔接起来(即把偏振片座套插入电磁铁之圆凹槽里),从电磁铁另一磁极圆孔中,用30×读数显微镜观察,调整单色仪与电磁铁的配合,使光束位于圆孔中心.然后将光电接收部分的连接罩插人到电磁铁的圆凹槽中。将玻璃样品用弹性固定圈固定在电磁铁磁极中间。 2.仪器调节 (1)接通电源,预热5min,使单色仪输出某一波长的单色光。 (2)将检偏器手柄上的红点与连接座的标记及电磁铁一端的标记(均为红色)三点调成一直线。 (3)调数显表灵敏度旋钮在合适位置。灵敏度的高低,直接反映在数显表数值跳动的快慢上。顺时针为增加灵敏度,逆时针为降低灵敏度。注意:在同一波长的情况下,一经调定,在测量过程中应固定不动。 (4)将检偏镜测角手轮顺时针旋到头后,再逆时针旋转两周,按一下角度数显表的清零按钮,使角度显示值为零。 (5)微动光电流数显表的调零旋钮,使其示值为零。 3.测量法拉第效应旋光角 (1)将励磁电流由零增加到1A,观察数显表示值的变化。 (2)调节检偏器手轮,使数显表的示值逐渐变化到零。记下角度表的读数口。 (3)将励磁电流分别调到2A、3A、4A,重复过程(2)。 4、数显表和角度表为零时,检偏镜和起偏镜的夹角是多少? 答:900 5、灵敏度旋钮的旋转方向与灵敏度的关系如何? 答:顺时针为增加灵敏度,逆时针为降低灵敏度。 6、实验注意事项: 1.认清单色仪狭缝开启方向,切勿使其关闭过零。 2.数显表溢出时,可关小单色仪人射狭缝或调整放大倍率。 3.数显表未与整机相连时,切勿接通电源,以免烧坏仪器。

塞曼效应参考版

塞曼效应 学号:********* 姓名:*** 实验日期:2010/10/18 指导老师:*** 【摘要】本实验采用光栅摄谱仪摄谱的方法,观察了汞原子光谱在磁场中分裂情况和分 裂后各分支谱线的偏振特性,测量了各分支谱分裂前后的波长差,与理论值做比较,从而验证了塞曼效应。 【关键词】塞曼效应选择定则洛伦兹常量光栅摄谱仪 1.引言 1896年,荷兰物理学家塞曼(Peter Zeeman)发现,当把光源放在足够强的磁场内时,光源发出的光谱线变宽了。再仔细观察后才发现,每一条谱线分裂成几条谱线,而不是任何谱线的变宽,分裂的条数随能级的类别而不同。这种现象被称为塞曼效应。 塞曼效应一被发现,洛伦兹即根据“电子论”的半经典理论对此进行了解释,他认为这是由于原子内带电粒子在外磁场中受磁场力的作用,使粒子的振荡频率发生变化。这种变化取决于相对磁场的取向,而使辐射谱线分裂成三条线(横向塞曼效应)或二条线(纵向塞曼效应)。洛伦兹的这种理论很好的解释了这种后来被称为“正常塞曼效应”的现象。因此两人在1902年获得了诺贝尔物理学奖。 随着对塞曼效应更进一步研究,1898年普列斯顿提出谱线还可为4重分裂和6重分裂这样反常塞曼效应,洛伦兹的半经典理论此时无法完全解释这些分裂了。以后,很多物理学家纷纷试图创立新的理论来解释这个问题。直到1916年索未非与德拜应用玻尔的量子理论对正常的塞曼效应作出了解释。1921年,朗德在他的《论反常塞曼效应》一文中,首次引人了著名的朗德g因子,用于表示原子总磁矩与原子总角动量的比值,来反映原子能级在磁场作用下的能量改变。1925年乌伦贝克和古兹米特提出了电子自旋的概念,说明了在外磁场作用下,电子自旋同轨道运动相互作用引起旋进运动,产生附加能量,使谱线分裂,而反常塞曼效应则恰是从实验上证实了电子自旋的存在。至此,塞曼效应才有了一个完满的理论解释。1926年,海森堡和约旦引进电子自旋S,从量子力学的角度对反常塞曼效应作出了正确的定量计算。 本实验采用光栅摄谱仪的方法来研究塞曼效应。

塞曼效应

SUES大学物理选择性实验讲义磁学 塞曼效应? 塞曼效应实验是物理学史上?个著名的实验。1896年,塞曼(Zeeman)发现,把产?光谱的光源置于?够强的磁场中,磁场作?于发光体,使其光谱发?变化,?条谱线会分裂成?条偏振化的谱线,这种现象称为塞曼效应。塞曼效应实验证实了原?具有磁矩和空间取向的量?化,并得到洛伦兹(H.A.Lorentz)理论的解释。1902年塞曼因这?发现与洛伦兹共享诺贝尔物理学奖。现在,塞曼效应仍然是研究原?内部能级结构的重要?法。 ?实验?的 1、掌握观察塞曼效应的?法,加深对原?磁矩及空间取向量?化等原?物理学 概念的理解; 2、观察汞原?546.1nm谱线的分裂现象及其偏振状态,由塞曼裂距计算电? 的荷质?; 3、理解法布?—珀罗标准具在观察塞曼效应中的作?,学习它的调节?法;学 习CCD摄像器件在光谱测量中的应?。 ?实验设备 FD-ZM-A型永磁塞曼效应实验仪,包括: 1、控制主机(提供电源及毫特斯拉计的读数显?); 2、笔形汞灯; 3、毫特斯拉计探头(测量磁场??); 4、永磁铁(提供实验所需磁场); 5、会聚透镜(将汞灯发出的光变为平?光束); ?修订于2011年9?28?

6、?涉滤波?(选出汞的546.1nm谱线); 7、法布?—珀罗标准具(产??涉图样,?以测量波长差); 8、成像透镜; 9、偏振?(垂直于磁场?向观察时,?于滤去σ成分的光,只让π成分的光 通过;沿磁场?向观察时,?以鉴别偏振?向); 10、导轨及六个滑块; 11、CCD摄像器件(含镜头)、USB接?外置图像采集盒以及塞曼效应实验分 析软件(采集塞曼效应产?的?涉图样,测量?涉圆环直径)。 三实验原理 1原?的总磁矩和总?动量的关系 严格来说,原?的总磁矩包括电?磁矩和核磁矩两部分。但是由于后者?前者?三个数量级以上,所以在本实验中可只考虑电?磁矩。原?中的电?由于作轨道运动产?轨道磁矩,电?还具有?旋运动产?的?旋磁矩,根据量??学理论,电?的轨道磁矩?μL和轨道?动量?P L在数值上有如下关系: μL=? e 2m P L,P L= √ L(L+1) (1) ?旋磁矩?μS和?旋?动量?P S有如下关系: μS=?e m P S,P S= √ S(S+1) (2) 式中e,m分别表?电?的电荷和电?质量,L,S分别表?电?的轨道?动量量?数和?旋?动量量?数。在LS耦合情况下,轨道?动量和?旋?动量合成原?的总?动量?P J,轨道磁矩和?旋磁矩合成原?的总磁矩?μ,由于?μ绕?P J运动,只有?μ在?P J?向的投影?μJ对外的平均效果不为零,?μJ与?P J在数值上有 如下关系: μJ=?g e 2m P J(3) 其中 g=1+J(J+1)?L(L+1)+S(S+1) 2J(J+1) (4) J为总?动量量?数,g为朗德(Lande)因?,它表征原?的总磁矩与总?动量的关系,?且决定了能级在磁场中分裂的??。

相关文档
最新文档