第 29 讲 不等式的证明(第2课时-分析法反证法与数学归纳法)

第 29 讲 不等式的证明(第2课时-分析法反证法与数学归纳法)
第 29 讲 不等式的证明(第2课时-分析法反证法与数学归纳法)

第 29 讲 不等式的证明-分析法、反证法与数学归纳法

(第2课时)

3.分析法

所谓分析法,就是从结论入手进行变形,最后推出与条件相符。注意推导的每步必须可逆。 例.已知 0>>b a ,求证:333b a b a -<- 。

证明:要证 333b a b a -<- ,由于 0>>b a ,不等式两边都是正数,所以两边同时立方,只要证 33333)()(b a b a -<- ,即只要证 b a b ab b a a -<-+-323233 ,即只要证 3232ab b a < ,

∵ 0>>b a ,∴ 两边同时除以3ab ,只要证 33a b < , ∵ 0>>b a ,∴ 33a b < 成立, 上述每步可逆,故原不等式成立。

点评:本题使用分析法,利用了不等式的性质。

例.已知 c b a >> ,求证:

c

a c

b b a -≥

-+-4

11 。 证明: 设 x b a =- ,y c b =- ,两式相加得 y x c a +=- ,

则原不等式可化为 y

x y x +≥+4

11 ,

∵ c b a >> ,∴ 0>-b a ,0>-c b ,即 0>x ,0>y ,∴ 0>+y x ,

即只要证 4))(1

1(≥++y x y x ,即只要证 42≥++y x x y ,即只要证 2≥+y

x x y ,

根据倒数不等式可知 2≥+y

x

x y 成立,上述每步可逆,故原不等式成立。

点评:本题使用分析法,利用了换元技巧和倒数不等式。换元的目的在于简化原不等式的结构。本题换元后,减少了一个参数。

4.反证法(备用)

例.证明:2

242)1()1(3a a a a ++≥++ 。

假设 2242)1()1(3a a a a ++<++ ,则有 2

2222)1()1)(1(3a a a a a a ++<+-++ ,

∵ 2

1a a ++ 的0

>++a a ,∴ 2

21)1(3a a a a ++<+- , 整理得 0212

<+-a a ,∴ 0)1(2

<-a ,这显然不成立,

∴ 2

242)1()1(3a a a a ++≥++ 。

点评:有时需要对二次三项式的正负进行判别。 例.已知 1

b

a 。

证明:假设

11≥++ab b

a ,那么 ∵ 01>+a

b ,∴ ab b a +≥+1 ,

即 0)()1(22≤+-+b a ab ,即 0)1)(1(2

2≤--b a ,

∴ ???≤-≥-010122b a 或 ???≥-≤-010

12

2b a ,∴ ???≥≤11b a 或 ?

??≤≥11b a ,而这都与已知条件矛盾, ∴ 原不等式成立。

点评:本题是含绝对值的不等式证明,关键在于去掉绝对值符号。本题使用两边平方的方法去绝对值符号,在去分母时要注意排除 01=+ab 的可能性。

5.数学归纳法(备用)

例.求证:!)2

1(

n n n

>+ (2≥n )。 证明:⑴ 当 2=n 时,左边4

1

2=,右边2= ,结论成立;

⑵ 假设当 k n = 时,结论成立,即 !)2

1(k k k

>+ (2≥k ), 那么当 1+=k n 时, +?++++=++=+++++21)21)(1()21()2121(]21)1([(111k k k k k k k k k (展开)

k k k k k )2

1)(21()21(1++++>+ (上式只留下两项)

!)1()2

1)(1(k k k k k

+>++= (根据归纳假设)

)!1(+=k

∴ 1+=k n 时,结论也成立;

综上所述,命题成立。

DS 23 02,03 不等式证明 1 2 3 4 5

6 7 分析法 √ √ √ √ 反证法

√ 数学归纳法 √ 技巧 放缩 换元 配方 √ √ 拆项

利用基本 不等式 一式的平方不小于零

√ √ 均值不等式 倒数的和不小于2 利用不等式的性质 √ 利用函数值域

利用函数的增减性

1.若 a 、b 、c 为不等正数,试证:abc ac c a bc c b ab b a 62

2

2

2

2

2

>+++++ 。

证明: abc ac c a bc c b ab b a 62

2

2

2

2

2

>+++++

? 06222222>-+++++abc ac c a bc c b ab b a

? 0)2()2()2(222222>+-++-++-c a abc c b ac abc ab bc abc b a ? 0)()()(222>-+-+-a b c c b a c a b ∵ a 、b 、c 为不等正数,∴ 上式成立,

∴ 原不等式成立 。

点评:本题使用分析法,利用了配方技巧。

2.求证:ca bc ab c b a ++≥++2

22 ,当且仅当 c b a == 时,等号成立。

证明:要证 ca bc ab c b a ++≥++2

22 ,两边同乘

2,只要证

022*******≥---++ca bc ab c b a ,即只要证 0)()()(222≥-+-+-a c c b b a 。

上式显然成立,当且仅当 c b a == 时,等号成立。

点评:本题利用了配方、不等式的性质“一式平方不小于零”。

3. 若 0>a ,0>b ,求证:b a a b b a b a +≥+1

)(2 。

证明: ∵ 0>a ,0>b ,∴ ab b

a ≥+2

, 要证 b a a b b a b a +≥+1)(2

,只要证 b

a a

b b a ab +≥1

)( ,

)(2)

(2)

(21)()

(b a b

a b a a b b a b a b

a a

b b

a

b

a

b a ab +-+-+-+== , 不论 b a ≥ 或 b a < ,都有 1)()(2≥+-b a b

a b

a

∴ b

a a

b b a ab +≥1

)( ,∴ b a a b b a b a +≥+1)(2

解题错误:自己给题目增加条件“b a ≥”。

点评:本题使用分析法。 4*

.求证:n n n >

! (2>n ,N n ∈)

。 证明:要证 n n n >

! ,∵ 两边均大于零,∴ 两边平方,只要证 n n n >2)!( ,

即只要证 ????

???????≥?≥?-≥-?≥-?≥?n

n n n n

n n n n n 12)1()2(3)1(21 且上述各式不同时取等号,

不论n 为何大于2的自然数,上述各式中总有一个不取等号,不妨设j n =时不取等号,即从上往下数第1-j 个式子不取等号,证明如下:

第1-j 个式子为 ]}1)1[(){1(----j n j ,即 n j n j ≥=--)2)(1( ,

当 j n = 时,上式变为 02≥-j ,∵ 2>j ,∴ 从上往下数第1-j 个式子不可能取

等号。

故只要证 n k n k ≥+-)1( (n k ≤≤1) ,

即只要证 )1()1(-≤-k n k k (n k ≤≤1) , 上式显然成立, ∴ n n n >

!

5.已知函数 )11lg()(-=x

x f ,)2

1,0(∈x ,若 21x x ≠ ,求证:

)2

()]()([21

2121x x f x f x f +>+ 。 证明:∵ 原不等式化为 )12

1

lg()]11lg()11[lg(21212

1-+>-+-x x x x ,

即 )12lg(2)11)(

11lg(2121-+>--x x x x ,即 22

121)12

lg()11)(11lg(-+>--x x x x , 要证原不等式成立,只要证 22

121)12

()11)(

11(-+>--x x x x , ∵ )21,0(∈x ,∴ 01>x ,21

2

∴ 2

12212121221214

)(4111)12()11)(11(x x x x x x x x x x x x +++---=-+---

0)

()

1()(2

212121221>+---=

x x x x x x x x

∴ 22

121)12()11)(11(

-+>--x x x x , ∴ 原不等式成立。

6. 设a 、b 、c 、d 是正数,求证:下列三个不等式

d c b a +<+ ① cd ab d c b a +<++))(( ② )()(d c ab cd b a +<+ ③

中至少有一个不成立。

证明:假设不等式①②③都成立,∵ a 、b 、c 、d 是正数, 那么 ①×② 得 cd ab b a +<+2)( ④,

由③可得 )()2

()()(2

d c b a d c ab cd b a ++≤+<+ ,

∵ 0>+b a ,∴ ))((4d c b a cd ++< ,

结合②可得 cd ab cd +<4 ,即 ab cd <3 ,即 3

ab

cd < ,

由④可得 34)(2ab b a <+ ,即 3

222ab

b a -<+ ,

但 a 、b 是正数,∴ 3

222ab

b a -<+ 不可能,

∴ 不等式①②③中至少有一个不成立。

7.用数学归纳法证明:nx x n

+≥+1)1( 。其中 1->x ,N n ∈ 。

提示:只要由 kx x k +≥+1)1( 推出 x k x k )1(1)

1(1

++≥++ 即可,∵ 1->x ,即

01>+x ,∴ 把 kx x k +≥+1)1( 两边同乘 x +1 得 )1)(1()1(1x kx x k ++≥++ ,故只要证 x k x kx )1(1)1)(1(++>++ ,两边展开后显然成立。

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

高中数学数学归纳法教案新人教A版选修

第一课时 4.1 数学归纳法 教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写. 教学重点:能用数学归纳法证明一些简单的数学命题. 教学难点:数学归纳法中递推思想的理解. 教学过程: 一、复习准备: 1. 分析:多米诺骨牌游戏. 成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒. 回顾:数学归纳法两大步:(i )归纳奠基:证明当n 取第一个值n 0时命题成立;(ii )归纳递推:假设n =k (k ≥n 0, k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 2. 练习:已知()*()13521,f n n n N =++++-∈L ,猜想()f n 的表达式,并给出证明? 过程:试值(1)1f =,(2)4f =,…,→ 猜想2()f n n = → 用数学归纳法证明. 3. 练习:是否存在常数a 、b 、c 使得等式132435......(2)n n ?+?+?+++= 21()6 n an bn c ++对一切自然数n 都成立,试证明你的结论. 二、讲授新课: 1. 教学数学归纳法的应用: ① 出示例1:求证*111111111,234212122n N n n n n n - +-+???+-=++??+∈-++ 分析:第1步如何写?n =k 的假设如何写? 待证的目标式是什么?如何从假设出发? 关键:在假设n =k 的式子上,如何同补? 小结:证n =k +1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形. ② 出示例2:求证:n 为奇数时,x n +y n 能被x +y 整除. 分析要点:(凑配)x k +2+y k +2=x 2·x k +y 2·y k =x 2(x k +y k )+y 2·y k -x 2·y k =x 2(x k +y k )+y k (y 2-x 2)=x 2(x k +y k )+y k ·(y +x )(y -x ). ③ 出示例3:平面内有n 个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点, 求证这n 个圆将平面分成f (n )=n 2-n +2个部分. 分析要点:n =k +1时,在k +1个圆中任取一个圆C ,剩下的k 个圆将平面分成f (k )个部分,而圆C 与k 个圆有2k 个交点,这2k 个交点将圆C 分成2k 段弧,每段弧将它所在的平 面部分一分为二,故共增加了2k 个平面部分.因此,f (k +1)=f (k )+2k =k 2-k +2+2k =(k +1)2- (k +1)+2. 2. 练习: ① 求证: 11(11)(1)(1)321 n ++???+-g g n ∈N *). ② 用数学归纳法证明: (Ⅰ)2274297n n --能被264整除; (Ⅱ)121(1)n n a a +-++能被21a a ++整除(其中n ,a 为正整数) ③ 是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意正整数n 都能被m 整除?若存在, 求出最大的m 值,并证明你的结论;若不存在,请说明理由. 3. 小结:两个步骤与一个结论,“递推基础不可少,归纳假设要用到,结论写明莫忘掉”;从n =k 到n =k +1时,变形方法有乘法公式、因式分解、添拆项、配方等. 三、巩固练习: 1. 练习:教材50 1、2、5题 2. 作业:教材50 3、4、6题.

专题12数列极限数学归纳法

专题三 函数 不等式 数列 极限 数学归纳法 一能力培养 1,归纳猜想证明 2,转化能力 3,运算能力 4,反思能力 二问题探讨 1 冋题1数列{ a n }满足3] , a i a 2 2 问题2已知定义在R 上的函数f(x)和数列{ a n }满足下列条件: a 1 a , a . f (a n 1) (n =2,3,4, ),a 2 印, f (a n ) f (a n 1) = k(a n a n 1) (n =2,3,4,),其中 a 为常数,k 为非零常数 (I) 令b n a n 1 a n ( n N ),证明数列{b n }是等比数列; (II) 求数列{ a n }的通项公式;(III)当k 1时,求 lim a n . n umv uuuv uuuv uuuv uuuiv uuv 问题3已知两点M ( 1,0) ,N (1,0),且点P 使MP MN , PM PN , NM NP 成公差小 于零的等差数列? uuuv uuuv (I)点P 的轨迹是什么曲线? (II)若点P 坐标为(X g , y 。),记 为PM 与PN 的夹角,求tan 2 a n n a n ,(n N ). (I)求{a n }的通项公式 (II)求丄 100n 的最小值; a n (III)设函数 f(n)是— 100n 与n 的最大者,求 f (n)的最小值.

三习题探讨 选择题 2 1数列{a n }的通项公式a n n kn ,若此数列满足a n a n ,(n N ),则k 的取值范围是 A, k 2 B, k 2 C,k 3 D, k 3 2等差数列{ a n },{ b n }的前n 项和分别为S n ,T n ,若」 --- ,贝V —= T n 3n 1 b n 2 2n 1 2n 1 2n 1 A,— B,- C,- D,- 3 3n 1 3n 1 3n 4 3已知三角形的三边构成等比数列 ,它们的公比为q ,则q 的取值范围是 若AF , BF , CF 成等差数列,则有 1 6在 ABC 中,ta nA 是以4为第三项,4为第七项的等差数列的公差,ta nB 是以-为 3 第三项,9为第六项的等比数列的公比,则这个三角形是 A,钝角三角形 B,锐角三角形 C,等腰直角三角形 D,以上都不对 填空 2m 项之和S 2m ___________________________________ 11等差数列{a n }中,S n 是它的前n 项和且S 6 S 7,S 7 S 8,则①此数列的公差 d 0, 1苗 A, (0, 丁) B,(1 5 1 、5 1 、、 5 c,[1, 丁) D,( 1_5) 2 4在等差数列{a n }中,a 1 8 B ,75 1 ,第10项开始比1大,记 25 t 色 25 4 C , 75 [ im A (a n n n _3 50 S n ) t ,则t 的取值范围是 4 D ,75 t 5o 5 设 A (x i , y i ),B (X 2, y 2),C (X 3, y 3)是椭圆 2 y b 2 1(a 0)上三个点 ,F 为焦点, A, 2X 2 X ] x 3 B,2y 2 y 1 y 3 2 C,— X 2 2 D, X X 1 X 3 X 1 X 3 7等差数列{a n }前n (n 6)项和& 324,且前6项和为36,后6项和为180,则n 22 32 23 33 62 63 {a n }中』m(a 1 a ? 10 一个数列{a n },当n 为奇数时,a . 9在等比数列 2n 3n 6n ,则 lim S n 1 a n ) ,则a 1的取值范围是 ________________ 15 n 5n 1 ;当n 为偶数时,a n 22 .则这个数列的前

不等式证明的基本方法

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1

推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证:

证明基本不等式的方法

2.2 证明不等式的基本方法——分析法与综合法 ●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点. 2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与步骤. ●教学重点:综合法与分析法证明不等式的方法与步骤 ●教学难点:综合法与分析法证明不等式基本原理的理 ●教学过程: 一、复习引入: 1、复习比较法证明不等式的依据和步骤? 2、今天学习证明不等式的基本方法——分析法与综合法 二、讲授新课: 1、综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法综合法又叫顺推证法或由因导果法。 用综合法证明不等式的逻辑关系是:例1、已知a,b,c是不全相等的正数,求证: . 分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明) 解:∵a>0,b2+c2≥2bc∴由不等式的性质定理4,得a(b2+c2)≥2abc.① 同理b(c2+a2)≥2abc,②c(a2+b2)≥2abc.③ 因为a,b,c为不全相等的正数,所以以上三式不能全取“=”号,从而①,②,③三式也不能全取“=”号. 由不等式的性质定理3的推论,①,②,③三式相加得:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc. 点评:(1)综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。基本不等式以及一些已经得证的不等式往往与待证的不等式有着这样或那样的联系,作由此及彼的联想往往能启发我们证明的方向.尝试时贵在联想,浮想联翩,思潮如涌。 (2)在利用综合法进行不等式证明时,要善于直接运用或创设条件运用基本不等式,其中拆项、并项、分解、组合是变形的重要技巧. 变式训练:已知a,b,c是不全相等的正数,求证:例2、已知且,求证:分析:观察要证明的结论,左边是个因式的乘积,右边是2的次方,再结合,发现如果能将左边转化为的乘积,问题就能得到解决。 2、分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法这是一种执果索因的思考和证明方法。 ①用分析法证明不等式的逻辑关系是:②分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有……这只需要证明命题B2为真,从而又有……这只需要证明命题A为真,而已知A为真,故B必真。 例3.求证:分析:观察结构特点,可以利用分析法。 点评:①分析法的思维特点是:执果索因.对于思路不明显,感到无从下手的问题宜用分析法探究证明途径.另外,不等式的基本性质告诉我们可以对不等式做这样或那样的变形,分析时贵在变形,不通思变,变则通! ②证明某些含有根式的不等式时,用综合法比较困难,常用分析法. ③在证明不等式时,分析法占有重要的位置.有时我们常用分析法探索证明的途径,然后用综

数学归纳法教学设计电子教案

数学归纳法教学设计

授课日期: 2016 年 4 月 8 日授课班级:高二年级2 班

【教学难点】 (1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性; (2)假设的利用,即如何利用假设证明当n=k+1时结论正确. 教法、学法分析 教法: 学习数学归纳法的过程紧扣多米诺骨牌是怎样倒下的,通过对科技节活动中多米诺骨牌倒下的分析类比得出数学归纳法的应用步骤,尤其是在引导学生理解数学归纳法由n=k得出n=k+1时必要性和有效性中,类比“后一块骨牌必须是被前一块骨牌砸倒的”起到重要作用。在教师的组织启发下,师生之间、学生之间共同探讨,平等交流;既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强调学生的主体性、主动性、平等性、开放性、合作性。这节课主要选择以合作探究式教学法组织教学. 学法: 本课以问题为中心,以解决问题为主线展开,学生主要采用“探究式学习法”进行学习.本课学生的学习主要采用下面的模式进行: 教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用. 教学资源 导学案、PPT 教学过程 教学环 节 教师活动学生活动设计意图 课前复习准备 1、布置导学案内容; 2、批改纠正学生出现的错误; 3、及时了解学生学习情. 完成学案内容 1、归纳推理: 2、回忆等差数列,等比数 列的通项公式;思考等 差、等比数列通项公式的 得出过程,你能证明该公 式吗? 3、已知数列{}n a中, 1 1 = a, ) (* + ∈ + =N n a a a n n n2 2 1 , 试猜想这个数列的通项公 式并证明你的猜想. 复习公式及 其得出过 程,为本节 学习做好铺 垫. 使学生发现 不能解决的 问题,激发 学生学习新 知的愿望. 创设问题情景,引出新课问题情景:引导学生共同回顾学案 第3小题数列{}n a通项公式的得出过 程,提问:你的猜测正确吗?如何证 明? 学生回忆第3小题数列 {} n a通项公式的得出过 程,并思考老师的问题. 发现问题, 突出矛盾. 合作探索解决问题的方法1. 多媒体演示多米诺骨牌游戏. 引导学生共同探讨多米诺骨牌全 部依次倒下的条件: (1)第一块要倒下; 学生类比多米诺骨牌依顺 序倒下的原理,探究出证 明有关正整数命题的方 播放视频活 跃课堂氛 围,激发学 生的兴趣. 提 出 问 分 析 问 猜想与 置疑 论证 观察 情景 应用

浅谈数学归纳法

浅谈数学归纳法 国良 井冈山大学数理学院邮编:343009 指导老师:艳华 [摘要]用数学归纳法证明数学问题时,要注意它的两个步骤缺一不可,第一步是命题递推的基础,第二步是命题递推的依据,也是证明的关键和难点,两个步骤各司其职,互相配合.数学归纳法经历无数数学的潜心研究与科学家们的利用,是数学归纳法得以发展和它为数学问题与科学问题的发现做出了极大的贡献。学好归纳法是科学问题研究的最基础的知识. [关键词]理论依据;数学归纳法;表现形式 1 数学归纳法的萌芽和发展过程 数学归纳法思想萌芽可以说长生于古希腊时代。欧几里德在证明素数有无穷多多个时,使用了反证法,通过反设“假设有有限多个”,使问题变成“有限”的命题,其中证明里隐含着:若有n个素数,就必然存在第n+1个素数,因而自然推出素数有无限多个,这是一种是图用有限处理无限的做法,是人们通过过有限和无限的最初尝试。 欧几里德之后直到16世纪,在意大利数学家莫洛克斯的《算术》一书中明确提出一个“递归推理”原则,并用它证明了1+2+3+…+(2n-1)=2n,对任何自然数n都成立。不过他并没有对这原则做出清晰的表述。 对数学归纳法首次作出明确而清晰阐述的是法国数学家和物理学家帕斯卡,他发现了一种被后来成为“帕斯卡三角形”的数表。他在研究证明有关这个“算术三角形”的一些命题时,最先准确而清晰的指出了证明过程且只需的两个步骤,称之为第一条引理和第二条引理:

第一条引理 该命题对于第一底(即(n=1)成立,这是显然的。 第二条引理 如果该命题对任意底(对任意n )成立,它必对其下一底(对n+1)也成立。 由此可得,该命题对所有n 值成立。 因此,在数学史上,认为帕斯卡是数学归纳法的创建人,因其所提出的两个引理从本质上讲就是数学归纳法的两个步骤,在他的著作《论算术三角形》中对此作了详尽的论述。 帕斯卡的思想论述十一例子来述归纳法的,而在他的时代还未建立表示一般自然数的符号。直至十七世纪,瑞士数学家J 。伯努利提出表示任意自然熟的符号之后,在他的《猜度术》一书中,才给出并使用了现代形式的数学归纳法。由此,数学归纳法开始得到世人的承认并得到数学界日益广泛的应用。十九世纪,意大利数学家皮亚若建立自然数的公理体系时,提出归纳公理,为数学归纳法奠定了理论基础。即:对于正整数N +的子集M ,如果满足:①1∈M;②若a ∈M ,则a+1∈M ;则M=N +. 2 数学归纳法的表现形式 2.1 第一数学归纳法 原理1:设()P n 是一个与正整数有关的命题,如果 (1)当00()n n n N +=∈时,()P n 成立; (2)假设0(,)n k k n k N +=≥∈时命题成立,由此推得n=k+1时,()P n 也成立; 那么,对一切正整数n 0n ≥,()P n 成立。 证明:反证法.假设该命题不是对于一切正整数都成立.令S 表示使该命题不成立的正整数作成的集合,那么S ≠?,于是由最小数原理,S 中有最小数a ,

证明不等式的基本方法(20200920095256)

12. 4 证明不等式的基本方法 T 懈不评式证明的基車方诜:比较法,综合建、井析媒 ttMK MMM ■■座用它们证明一些简 厲的不等式. Kiff <年斋号悄况来看.本讲尼岛号血埶的一个热点一 fO 灿讪卜将芸号僧::1;与躺碓不零式结, 证 期不等式:2>M 破立,探索性问題结合,ttaAMML 厲中档題團L E 基础知识过关 [知识梳理] 1. 证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. 2. 三个正数的算术-几何平均不等式 (1) 定理:如果a , b , c € R +那么a + ?+1需辰,当且仅当a = b = c 时,等号 a + b + c Q 成立.即三个正数的算术平均 3 不小于它们的几何平均Vabc. (2) 基本不等式的推广 对于n 个正数a i , a 2, , , a ,它们的算术平均数不小于它们的几何平均数, 即a 〔 + 汁‘ + 》^a 1a 2,—,当且仅当 a 1 = a 2 =, = a n 时,等号成立. n 3. 柯西不等式 (1)设 a , b , c , d 均为实数,则(a 2 + b 2)(c 2 + d 2)>(ac + bd)2,当且仅当 ad = bc 时等号成立. f n 「n J 「n ' ⑵若a i, b(i € N *)为实数,贝则 18 15 A l^a b i 2,当且仅当 I "八=1丿 T =1丿 (当a i = 0时,约定b i = 0, i = 1,2, , , n)时等号成立. (3) 柯西不等式的向量形式:设 a B 为平面上的两个向量,则|如3》|a ? (3当 且仅当a, 3共线时等号成立. 善纲解谨 君向预测 b^_ b2_ a 1 a 2 b n =a ;

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

数学归纳法优秀教学设计

数学归纳法 【教学目标】 1.进一步理解“数学归纳法”的含意和本质;掌握数学归纳法证题的两个步骤一个结论;会用“数学归纳法”证明简单的恒等式;理解为证n=k+1成立,必须用n=k成立的假设;掌握为证n=k+1成立的常见变形技巧。 2.掌握归纳与推理的方法;培养大胆猜想,小心求证的辩证思维素质;培养学生对于数学内在美的感悟能力。 【教学重点】 使学生理解数学归纳法的实质,掌握数学归纳法的证题步骤 【教学难点】 如何理解数学归纳法证题的有效性;递推步骤中如何利用归纳假设 【授课类型】 新授课 【课时安排】 1课时 【教学准备】 多媒体、实物投影仪 【教学过程】 一、复习引入: 1.归纳法:由一些特殊事例推出一般结论的推理方法。特点:特殊→一般 2.不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫做不完全归纳法。 3.完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法。与不完全归纳法不同,用完全归纳法得出的结论是可靠的。通常在事物包括的特殊情况数不多时,采用完全归纳法。 4.数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性: )时命题成立,证明当n=k+1先证明当n取第一个值n0时命题成立;然后假设当n=k(k N*,k≥n 时命题也成立这种证明方法就叫做数学归纳法

5. 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n 0,如果当n=n 0时,命题成立,再假设当n=k(k ≥n0,k ∈N*)时,命题成立。(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立。 6.用数学归纳法证明一个与正整数有关的命题的步骤: (1)证明:当n 取第一个值n 0结论正确; (2)假设当n=k(k ∈N*,且k ≥n 0)时结论正确,证明当n=k+1时结论也正确。 由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确 二、讲解范例: 例1用数学归纳法证明 6 )12)(1(3212222++=++++n n n n 例2用数学归纳法证明 2)1()13(1037241+=+++?+?+?n n n n 三、课堂练习: 1.用数学归纳法证明:().125312n n =-++++ 证明:(1)当1=n ,左边=1,右边=1,等式成立。 (2)假设当k n =时,等式成立,就是(),125312k k =-++++ 那么()()[]11212531-++-++++k k ()[]1122-++=k k 122++=k k ().12+=k 这就是说,当1+=k n 时等式也成立。 根据(1)和(2),可知等式对任何的*N n ∈都成立。 2.用数学归纳法证明()()(),1121531n n n n -=--+-+- 当1=n 时,左边应为_____________。 3.判断下列推证是否正确,并指出原因。 用数学归纳法证明:126422++=++++n n n 证明:假设k n =时,等式成立 就是 126422++=++++k k k 成立 那么()122642++++++k k ()1212++++=k k k =()()1112++++k k 这就是说当1+=k n 时等式成立, 所以*N n ∈时等式成立。

高中数学 2.3数学归纳法教学设计 新人教A版选修22

数学归纳法教学设计 【教学目标】 (1)知识与技能: ①理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤; ②会用数学归纳法证明某些简单的与正整数有关的命题; ③能通过“归纳、猜想”的过程得出结论并用数学归纳法证明结论。 (2)过程与方法: 努力创设愉悦的课堂气氛,使学生处于积极思考,大胆质疑的氛围中,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会归纳递推的数学思想。 (3)情感态度与价值观: 通过本节课的教学,使学生领悟数学归纳法的思想,由生活实例,激发学生学习的热情,提高学生学习的兴趣,培养学生大胆猜想,小心求证,以及发现问题、提出问题,解决问题的数学能力。 【教学重点】 借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,能熟练运用它证明一些简单的与正整数n 有关的数学命题; 【教学难点】 数学归纳法中递推关系的应用。 【辅助教学】 多媒体技术辅助课堂教学。 【教学过程】 一、创设问题情境,启动学生思维(说明引入数学归纳法的必要性) (情景一)问题1:大球中有5个小球,如何证明它们都是绿色的? 问题2: 如果{}n a 是一个等差数列,怎样得到()11n a a n d =+-? (情境二)数学家费马运用不完全归纳法得出费马猜想的事例。 【设计意图:】以上两个情境分别是完全归纳法和不完全归纳法的体现,发现其结论正确性不同,而这里实际上体现了数学中的归纳思想。归纳法分为“不完全归纳法(只验证几个个体成立,得到一般性结论,但结论不一定正确)”和“完全归纳法(验证每个个体都成立,得到一般性结论,其结论一定正确)”。 (情景三)问题:如何解决不完全归纳法存在的问题呢? 如何保证骨牌一一倒下?需要几个步骤才能做到? 二、搜索生活实例,激发学生兴趣

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

数学归纳法教学内容

数学归纳法

收集于网络,如有侵权请联系管理员删除 数学归纳法及其应用举例单元练习(二) 一、选择题(本大题共6小题,每小题3分,共18分) 1.在应用数学归纳法证明凸n 边形的对角线为 21n (n -3)条时,第一步验证n 等于 A. 1 B.2 C.3 D.0 2.等式12+22+32+…+n 2=2 4752+-n n A.n 为任何自然数时都成立;B.仅当n =1,2,3时成立 C.n =4时成立,n =5时不成立; D.仅当n =4时不成立 3.用数学归纳法证明不等式312111+++++n n n +…+24 1321>n (n ≥2,n ∈N *)的过程中,由n =k 逆推到n =k +1时的不等式左边 A. 增加了1项 )1(21+k ; B.增加了“)1(21121+++k k ”,又减少了“1 1+k ” C.增加了2项 )1(21121+++k k D.增加了)1(21+k ,减少了11+k 4.用数学归纳法证明(n +1)(n +2)…(n +n )=2n ·1·3·5·…(2n -1)(n ∈N *)时,假设n =k 时成立,若证n =k +1时也成立,两边同乘 A.2k +1 B.112++k k C.1)22)(12(+++k k k D.1 32+-k k

收集于网络,如有侵权请联系管理员删除 5.证明1+413121+++…+2 121n n >- (n ∈N *),假设n =k 时成立,当n =k +1时,左端增加的项数是 A. 1项 B.k -1项 C.k 项 D.2k 项 6.上一个n 级台阶,若每步可上一级或两级,设上法总数为f (n ),则下列猜想中正确的是 A.f (n )=n B.f (n )=f (n -1)+f (n -2) C.f (n )=f (n -1)·f (n -2) D.f (n )=???≥-+-=3 )2()1(2,1,n n f n f n n 二、填空题(本大题共5小题,每小题3分,共15分) 7.凸n 边形内角和为f (k ),则凸k +1边形的内角和 f (k +1)=f (k )+___________. 8.观察下列式子:1+23212<,1+223121+<35,1+474 13121222<++,…则可归纳出:___________. 9.设f (n )=(1+)11()111)(1n n n n ++???++,用数学归纳法证明f (n )≥3.在“假设n =k 时成立”后,f (k +1)与f (k )的关系是 f (k +1)=f (k )·___________. 10.有以下四个命题:(1)2n >2n +1(n ≥3) (2)2+4+6+… +2n =n 2+n +2(n ≥1) (3)凸n 边形内角和为f (n )=(n -1)π(n ≥3) (4)凸n 边形对角线条数f (n )=2 )2(-n n (n ≥4).其中满足“假设n =k (k

(完整版)导数与不等式证明(绝对精华)

二轮专题 (十一) 导数与不等式证明 【学习目标】 1. 会利用导数证明不等式. 2. 掌握常用的证明方法. 【知识回顾】 一级排查:应知应会 1.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题.比如要证明对任意∈x [b a ,]都有)()(x g x f ≤,可设)()()(x g x f x h -=,只要利用导数说明)(x h 在[b a ,]上的最小值为0即可. 二级排查:知识积累 利用导数证明不等式,解题技巧总结如下: (1)利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服务于第二问要证明的不等式. (2)多用分析法思考. (3)对于给出的不等式直接证明无法下手,可考虑对不等式进行必要的等价变形后,再去证明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函数的性质,力求变形后不等式一边需要出现函数关系式. (4)常用方法还有隔离函数法,max min )()(x g x f ≥,放缩法(常与数列和基本不等式一起考查),换元法,主元法,消元法,数学归纳法等等,但无论何种方法,问题的精髓还是构造辅助函数,将不等式问题转化为利用导数研究函数的单调性和最值问题. (5)建议有能力同学可以了解一下罗必塔法则和泰勒展开式,有许多题都是利用泰勒展开式放缩得来. 三极排查:易错易混 用导数证明数列时注意定义域.

【课堂探究】 一、作差(商)法 例1、证明下列不等式: ①1+≥x e x ②1ln -≤x x ③x x 1-1ln ≥ ④1x 1)-2(x ln +≥ x )1(≥x ⑤)2 ,0(,2sin ππ∈>x x x 二、利用max min )()(x g x f ≥证明不等式 例2、已知函数.2 2)(),,(,ln )1(1)(e x e x g R b a x a b x ax x f +-=∈+-+-= (1)若函数2)(=x x f 在处取得极小值0,求b a ,的值; (2)在(1)的条件下,求证:对任意的],[,221e e x x ∈,总有)()(21x g x f >.

分析法证明不等式

分析法证明不等式 山东 林 博 分析法是不等式证明的基本方法,但它不失为不等式证明的重要方法.下面以几道不等式证明题作为分析法的范例加以阐释. 例1 已知:a b c +∈R ,,, 求证:3223a b a b c ab abc +++????-3- ? ????? ≤. 分析:这道题从考查思维的角度来看,方法基本,只要从分析法入手———步步变形,问题极易解决. 证明:为了证明3223a b a b c ab abc +++????-3- ? ????? ≤, 只需证明323ab c abc --≤, 即证明332abc c ab c ab ab +=++≤. 而3333c ab ab c ab ab abc ++=≥成立,且以上各步均可逆, ∴32323a b a b c ab abc +++????-- ? ????? ≤. 点评:分析法是思考问题的一种基本方法,容易找到解决问题的突破口. 例2 已知关于x 的实系数方程2 0x ax b ++=有两个实根αβ,,证明: (1)如果||2α<,||2β<,那么2||4a b <+,且||4b <; (2)如果2||4a b <+,且||4b <,那么||2α<,||2β<. 分析:本题涉及参数较多,应注意它们之间的等量关系. 证明:∵αβ,是方程20x ax b ++=的两个实根, ∴a αβ+=-,b αβ=. (1)欲证2||4a b <+,且||4b <. 只要证2||4αβαβ+<+,且||4αβ<, 而||2α<,||2β<,从而有||4αβ+<,40αβ+>. 故只要证224()(4)αβαβ+<+,只要证22(4)(4)0αβ-->.

数学归纳法典型例题

实用文档 文案大全数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 数学归纳法的原理及应用 四. 知识分析 【知识梳理】 数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。 一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n = n0时命题成立; (2)(归纳递推)假设n= k()时命题成立,

证明当时命题也成立。 只要完成这两个步骤,就可以断定命题对从开始的所有正整数n 都成立。上述证明方法叫做数学归纳法。 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步 实用文档 文案大全各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n =k+1时也成假设了,命题并没有得到证明。 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。 2、运用数学归纳法时易犯的错误 (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。

相关文档
最新文档