6.3泰勒公式

6.3泰勒公式
6.3泰勒公式

§6.3 泰勒公式

教学章节:第六章 微分中值定理及其应用——§6.3 泰勒公式 教学目标:掌握Taylor 公式,并能应用它解决一些有关的问题.

教学要求:(1)深刻理解Taylor 定理,掌握Taylor 公式,熟悉两种不同余项的Taylor 公式及其

之间的差异;(2)掌握并熟记一些常用初等函数和Taylor 展开公式,并能加以应用.(3)会用带Taylor 型余项的Taylor 公式进行近似计算并估计误差;会用代Peanlo 余项的Taylor 公式求某些函数的极限.

教学重点:Taylor 公式

教学难点:Taylor 定理的证明及应用. 教学方法:系统讲授法. 教学过程: 引 言

不论在近似计算或理论分析中,我们希望能用一个简单的函数来近似一个比较复杂的函数,这将会带来很大的方便.一般来说,最简单的是多项式,因为多项式是关于变量加、减、乘的运算,但是,怎样从一个函数本身得出我们所需要的多项式呢?

上一节中,讨论过“微分在近似计算中的应用”从中我们知道,如果函数f 在点0x 可导,则有有限存在公式;

0000()()()()0()f x f x f x x x x x '=+-+-

即在0x 附近,用一次多项式1000()()()()p x f x f x x x '=+-逼近函数f(x)时,其误差为00()x x -.

然而,在很大场合,取一次多项式逼近是不够的,往往需要用二次或高于二次的多项式去逼近,并要求误差为00()x x -,其中n 为多项式次数.为此,有如下的n 次多项式:

0100()()()n n n p x a a x x a x x =+-++-

易见:

00()n a p x =,01()1!n p x a '=

,02()2!n p x a ''=,…,()

0()

!

n n n p x a n =(多项式的系数由其各阶导数在0x 的取值唯一确定).

对于一般的函数,设它在0x 点存在直到n 阶导数,由这些导数构造一个n 次多项式如下:

()00000()()

()()()()1!!

n n n f x f x T x f x x x x x n '=+-++-

称为函数f 在点0x 处泰勒多项式,()n T x 的各项函数,()0()

!

k f x k (k =1,2,…,n )称为泰勒系数.

问题 当用泰勒多项式逼近f(x)时,其误差为0()()0(())n n f x T x x x -=- 一、带有皮亚诺余项的泰勒公式

定理1 若函数f 在点0x 存在直至n 阶导数,则有0()()0(())n n f x T x x x =+-,即

()000000()()

()()()()0(())1!!

n n n f x f x f x f x x x x x x x n '=+-++-+-

即函数f 在点0x 处的泰勒公式;()()()n n R x f x T x =-称为泰勒公式的余项.

证明 设()()()n n R x f x T x =-, n a x x G )()(-=. 应用L 'Hospital 法则1-n 次, 并注意到

)()(a f n 存在, 就有

=====--→→)

()(lim )()(lim )1()

1(0

x G x R x G x R n n n a x n a x )(2)1()

)(()()(lim

)()1()1(a x n n a x a f a f x f n n n a x -------→ = 0)()()(lim !1)

()1()1(=???

? ??---=--→a f a x a f x f n n n n a x . 称()

n n a x x R )()(-= 为Taylor 公式的Peano 型余项, 相应的Maclaurin 公式的Peano 型余项为)()(n n x x R =. 并称带有这种形式余项的Taylor 公式为具Peano 型余项的Taylor 公式( 或Maclaurin 公式 ).

注1、若f(x)在点0x 附近函数满足0()()0(())n

n f x P x x x =+-,其中

0100()()()n n n p x a a x x a x x =+-++- ,这并不意味着()n p x 必定是f 的泰勒多项式()n T x .但()n p x 并非f(x)的泰勒多项式()n T x .(因为除(0)0f '=外,f 在x =0出不再存在其它等于一阶的导数.);

注2、满足条件0()()0(())n n f x P x x x =+-的n 次逼近多项式()n p x 是唯一的.由此可知,当f 满足定理1的条件时,满足要求0()()0(())n

n f x P x x x =+-的多项式()n p x 一定是f 在0x 点的泰勒

多项式()n T x ;

注3、泰勒公式0x =0的特殊情形――麦克劳林(Maclauyin )公式:

()(0)(0)()(0)0()1!!

n n

n f f f x f x x x n '=++++

引申 定理1给出了用泰勒多项式来代替函数y =f(x)时余项大小的一种估计,但这种估计只告诉我们当0x x →时,误差是较0()n x x -高阶的无穷小量,这是一种“定性”的说法,并未从“量”上加以描述;换言之,当点给定时,相应的误差到底有多大?这从带Peano 余项的泰勒公式上看不出来.为此,我们有有必要余项作深入的讨论,以便得到一个易于计算或估计误差的形式. 二、带有Lagrange 型余项的Taylor 公式

定理2(泰勒) 若函数f 在[a,b]上存在直到n 阶的连续导函数,在(a,b)内存在n +1阶导函数,则对任意给定的0,[,]x x a b ∈,至少存在一点(,)a b ξ∈使得:

()(1)1000000()()()()()()()()1!!(1)!

n n n

n f x f x f f x f x x x x x x x n n ξ++'=+-++-+-+

(1) 证明 记()()()n n R x f x T x =-,要证(1)1

0()

()()(1)!n n n f R x x x n ξ++=-+,记

10()()n n Q x x x +=-,不妨设0x x <,则(),()n n R x Q x 在0[,]x b 上有直到n 阶的连续导数,在0(,)x b 内存在1n +阶导数,又因为

()000()()()0n n n n R x R x R x '==== ,()000()()()0n n n n Q x Q x Q x '==== .

故在区间0[,]x x 上连续运用Cauchy 中值定理1n +次,就有

010010()()()()()()()()()()()()

n n n n n n

n n n n n n R x R x R x R R R x Q x Q x Q x Q Q Q x ξξξξ'''--===

-'''-

()()(1)20()()

(1)

02()()()()()()()()

n n n n n n n n n n n n n n n n R R R x R Q Q x Q Q ξξξξξξ++''-====-'' ,

其中,011n n x x ξξξξ-<<<<<< ,(1)(1)()()n n n R f ξξ++=,

(1)

()(1)!n n Q n ξ+=+, 从而得到

(1)1

0()

()()(1)!

n n n f R x x x n ξ++=-+ ,

(2)

ξ介于0x 与x 之间.

注1、当n =0时,泰勒公式即为拉格朗日公式,所以泰勒定理可以看作拉格朗日定理向高阶导数方向的推广;

2、当00x =时,则变为带拉格朗日型余项的麦克劳林公式

()(1)1

(0)(0)()()(0)1!!(1)!

n n n n f f f x f x f x x x n n θ++'=+++++ (0,1)θ∈

称这种形式的余项)(x R n 为Lagrange 型余项. 并称带有这种形式余项的Taylor 公式为具

Lagrange 型余项的Taylor 公式. Lagrange 型余项还可写为 ,)()!

1())

(()(1)1(++-+-+=n n n a x n a x a f x R θ ) 1 , 0(∈θ.

0=a 时, 称上述Taylor 公式为Maclaurin 公式, 此时余项常写为

,)()!

1(1

)(1)1(+++=

n n n x x f n x R θ 10<<θ.

三、 函数的Taylor 公式( 或Maclaurin 公式 )展开 (一) 直接展开

例1 求 x e x f =)(的Maclaurin 公式.

解 ) 10 ( ,)!

1(!!2!1112<<++++++=+θθn x

n x

x n e n x x x e .

例2 求 x x f sin )(=的Maclaurin 公式.

解 )()!

12() 1 (!5!3sin 2121

53x R m x x x x x m m m +--+-+-=-- ,

10 ,)21(sin )!12()(122<

+++=+θπθm x m x x R m m .

例3 求函数)1ln()(x x f +=的具Peano 型余项的Maclaurin 公式 . 解 )!1() 1()0( ,)

1()!1() 1()(1

)(1

)(--=+--=--n f x n x f n n n

n n . )() 1(32)1ln(132n n

n x n

x x x x x +-+-+-=+-. 例4 把函数tgx x f =)(展开成含5x 项的具Peano 型余项的Maclaurin 公式 .( 教材P179 E5, 留为阅读. ) (二) 间接展开

利用已知的展开式, 施行代数运算或变量代换, 求新的展开式.

例5 把函数2sin )(x x f =展开成含14x 项的具Peano 型余项的Maclaurin 公式 .

解 ) (!7!5!3sin 7753x x x x x x +-+-

=, ) (!

7!5!3sin 1414

1062

2

x x x x x x +-+-=. 例6 把函数x x f 2cos )(=展开成含6x 项的具Peano 型余项的Maclaurin 公式 .

解 ) (!

6!4!21cos 6642x x x x x +-+-

=, ), (!

62!34212cos 66

642

x x x x x +-+-= (注意, 0 ),()(≠=k x kx )

∴ ) (!

62!321)2cos 1(21cos 66542

2

x x x x x x +-+

-=+=. 例7 先把函数x

x f +=11

)(展开成具Peano 型余项的Maclaurin 公式 . 利用得到的展开式,把函数x

x g 531

)(+=

在点20=x 展开成具Peano 型余项的Taylor 公式. 解 ,)

1(!)1(1

)

(++-=n n n x n f

!)1()0()(n f n

n -=. ); ()1(1)(32n n n x x x x x x f +-++-+-=

13

)2(511

13

1

)2(5131531)(-+

=-+=+=

x x x x g

=

??

? ??--+--+--n n n x x x )2() 135 () 1()2() 135 ()2(135113122 +()

.)2(n

x - 例8 把函数shx 展开成具Peano 型余项的Maclaurin 公式 ,并与x sin 的相应展 开式进行比较.

解 ), (!

!2!112n n

x

x n x x x e ++++

+= )(!

)1(!2!112n n n x

x n x x x e +-+-+-= ; ∴ ) ( )!12(!5!32121253---+-++++=-=

m m x x x m x x x x e e shx . 而 ) ()!12()1(!5!3sin 121

2153---+--+-+-=m m m x m x x x x x .

四、常见的Maclaurin 公式

(一) 带Penno 余项的Maclaurin 公式

210()2!!

n

x

n x x e x x n =+++++

35211

2sin (1)0()3!5!(21)!

m m m x x x x x x m --=-+++-+-

24221cos 1(1)0()2!4!(2)!m m m x x x x x m +=-+++-+ 231ln(1)(1)0()23n

n n x x x x x x n

-+=-+++-+ 2(1)

(1)(1)

(1)10()2!

!

n n x x x x n ααααααα---++=++

++

+

21

10()1n n x x x x x

=+++++- (二) 带Lagrange 型余项的Maclaurin 公式

2112!!(1)!

n x

x

n x x e e x x n n θ+=++++++ x R ∈,(0,1)θ∈

35211

21cos sin (1)(1)3!5!(21)!(21)!

m m m m x x x x x x x

m m θ--+=-+++-+--+ x R ∈,(0,1)θ∈ 242122cos cos 1(1)(1)2!4!(2)!(22)!m m m m x x x x x x m m θ++=-+++-+-+ x R ∈,(0,1)θ∈ 23111

ln(1)(1)(1)23(1)(1)

n

n n n

n x x x x x x n n x θ+-++=-+++-+-++ 1x >-,(0,1)θ∈ 2(1)

(1)(1)

(1)12!!n

n x x x x n ααααααα---++=++

++

11(1)()(1)!

n n n x x n ααααθ--+--++ 1x >-,(0,1)θ∈

122

111(1)

n n

n x x x x x x θ++=+++++-- 1x <,(0,1)θ∈ 五、常见的Maclaurin 公式的初步应用 (一) 证明e 是无理数

例9 证明e 是无理数.

证明 把x e 展开成具Lagrange 型余项的Maclaurin 公式, 有

10 ,)!

1(!1!31!2111<<+++++++=ξξ

n e n e .

反设e 是有理数, 即p q

p

e ( =和q 为整数), 就有 =e n !整数 + 1+n e ξ.

对q p n e n q n ?=>?!! ,也是整数. 于是, -?=+q

p

n n e !1ξ整数 = 整数―整数 = 整数.但由

,30 ,10<<

ξ 因而当 3>n 时,

1

+n e ξ

不可能是整数. 矛盾. (二) 计算函数的近似值

例10 求e 精确到000001.0的近似值.

解 10 ,)!

1(!1!31!2111<<+++++++=ξξ

n e n e .

注意到,30 ,10<<

n R n . 为使000001.0)!

1(3

<+n , 只要取9≥n . 现取9=n , 即得数e 的精确到000001.0的近似值为 718281.2!

91

!31!2111≈++++

+≈ e . (三) 利用Taylor 公式求极限

原理:

例11 求极限 ) 0 ( ,2

lim

2

0>-+-→a x a a x x x . 解 ) (ln 2

ln 1222ln x a x a x e

a a

x x +++==,

) (ln 2

ln 122

2x a x a x a

x

++-=-;

). (ln 2222x a x a a x x +=-+-

∴ a x

x a x x a a x x x x 2

2222020ln ) (ln lim 2lim =+=-+→-→ . 例12 求极限011

lim (cot )

x x x x →-. 解 00111sin cos lim (cot )lim

sin x x x x x

x x x x x x →→--=

323

230()[1()]3!2!lim x x x x x x x x οο→-+--+=

3

33011(

)()

1

2!3!lim 3x x x x ο→-+==.

例13 设()f x 在[,]a b 上二阶可导,且()()0f a f b ''==,则存在(,

)a b ξ∈,使得2

4

()()()

()f f b f a b a ξ''≥

--.

证明 (,)x a b ?∈,将函数()f x 在点a 与点b 处Taylor 展开

2

1()

()()()()()2!f f x f a f a x a x a ξ'''=+-+

-,1a x ξ<<, 2

2()

()()()()()2!f f x f b f b x b x b ξ'''=+-+

-,2x b ξ<<.

2a b

x +=

代入得:

21()()()()22!4f a b b a f f a ξ''+-=+,22()()()()22!4f a b

b a f f b ξ''+-=+

,

上述二项相减,移项并取绝对值得

221()()()()()42f f b a f b f a ξξ''''---=

22

21()()()()()

424f f b a b a f ξξξ''''+--''≤≤,

其中,

12()max{(),()}

f f f ξξξ''''''=,取

2

4

()()()()f f b f a b a ξ''≥

--.

例14 证明: 0≠x 时, 有不等式 x e x +>1. 作业] 教材P141 1, 2,3(1),4(1),5 (1).

常用泰勒公式

简介 在数学上, 一个定义在开区间(a-r, a+r)上的无穷可微的实变函数或复变函数f的泰勒级数是如下的幂级数 这里,n!表示n的阶乘而f(n)(a) 表示函数f在点a处的n阶导数。如果泰勒级数对于区间(a-r, a+r)中的所有x都收敛并且级数的和等于f(x),那么我们就称函数f(x)为解析的。当且仅当一个函数可以表示成为幂级数的形式时,它才是解析的。为了检查级数是否收敛于f(x),我们通常采用泰勒定理估计级数的余项。上面给出的幂级数展开式中的系数正好是泰勒级数中的系数。 如果a = 0, 那么这个级数也可以被称为麦克劳伦级数。 泰勒级数的重要性体现在以下三个方面:首先,幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。第二,一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。第三,泰勒级数可以用来近似计算函数的值。 对于一些无穷可微函数f(x) 虽然它们的展开式收敛,但是并不等于f(x)。例如,分段函数f(x) = exp(?1/x2) 当x≠ 0 且f(0) = 0 ,则当x = 0所有的导数都为零,所以这个f(x)的泰勒级数为零,且其收敛半径为无穷大,虽然这个函数f仅在x = 0 处为零。而这个问题在复变函数内并不成立,因为当z沿虚轴趋于零时 exp(?1/z2) 并不趋于零。 一些函数无法被展开为泰勒级数因为那里存在一些奇点。但是如果变量x是负指数幂的话,我们仍然可以将其展开为一个级数。例如,f(x) = exp(?1/x2) 就可以被展开为一个洛朗级数。 Parker-Sockacki theorem是最近发现的一种用泰勒级数来求解微分方程的定理。这个定理是对Picard iterati on一个推广。 [编辑]

泰勒公式的证明及应用

摘要:泰勒公式是数学分析中的重要组成部分,是一种非常重要的数学工具。它集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用。本文通过对泰勒公式的证明方法进行介绍,归纳整理其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用,从而进一步加深对泰勒公式的认识。 关键词:泰勒公式,佩亚诺余项,拉格朗日余项,验证,应用

绪论 随着近代微积分的发展,许多数学家都致力于相关问题的研究,尤其是泰勒,麦克劳林、费马等人作出了具有代表性的工作。泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的。泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到 n 阶的导数,由这些导数构成一个n 次多项式 () 2 0000000()()() ()()()()(),1! 2! ! n n n f x f x f x T x f x x x x x x x n '''=+ -+ -++ - 称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有 0()()(()),n n f x T x x x ο=+- 即() 2 00000000()() ()()()()()()(()).2! ! n n f x f x f x f x f x x x x x x x x x n ο'''=+-+ -++ -+- 称为泰勒公式. 众所周知,泰勒公式是数学分析中非常重要的内容,是研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,且有很高的精确度,在微积分的各个方面都有重要的应用。它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

泰勒公式的证明及其应用

泰勒公式的证明及其应用 数学与应用数学专业胡心愿 [摘要]泰勒公式的相关理论是函数逼近论的基础。本文主要探索的是泰勒公式的一些证明方法,并对不同的证明方法进行相应的比较分析,在此基础上讨论泰勒公式在证明不等式、求函数极限、求近似值、求行列式的值、讨论了函数的凹凸性,判别拐点,判断级数敛散性等方面的应用.本文还针对多元函数的泰勒公式的推导和应用做了简单的论述. [关键词]泰勒公式;不等式;应用; Proof of Taylor's Formula and Its Application Mathematics and Appliced Mathematics Major HU Xin-yuan Abstract: The theory about Taylor's Formula is the basic content of Approximation Theory . What this paper explores is some methods that proof the Taylor's Formula, and the paper analyse and compare them. On that basis, the paper discuss the application of Taylor's Formula in some respects,such as Inequality proof, functional limit, approximate value, determinant value, convexity-concavity of function, the decision of inflection point, divergence of the series.The paper explore the derivation of Taylor's Formula of the function of many variables and its application. Key words:Taylor's Formula;inequality;application

泰勒公式word版

第三节 泰勒公式 教学目的:使学生了解泰勒公式,并会求简单函数的泰勒展开式。 教学重点:函数的泰勒展开式 教学过程: 多项式是函数中最简单的一种,用多项式近似表达函数是近似计算中的一个重要内容,在§2、8中,我们已见过:x n x x e x x x x 1 1)1(,1,sin 1+ ≈++≈≈ 等近似计算公式,就是多项式表示函数的一个特殊情形,下面我们将推广到一个更广泛的、更高精度的近似公式。 设)(x f 在0x 的某一开区间内具有直到)1(+n 阶导数,试求一个多项式 n n n x x a x x a x x a a x P )()()()(0202010-++-+-+= (1) 来近似表达)(x f ,并且)(x P n 和)(x f 在0x 点有相同的函数值和直到n 阶导数的各阶 导数,即:)()(,),()(),()(),()(0)(0) (000000x f x P x f x P x f x P x f x P n n n n n n =''="'='= 。 下面确定)(0x P n 的系数n a a a ,,10,通过求导,不难得到 ) (!),(321),(21),(1),(0) (03020100x f n a x f a x f a x f a x f a n n =?'''=???''=??'=?= ? n n n x x n x f x x x f x x x f x f x P )(! )()(!2)())(()()(00)(200000-++-''+-'+= (2) 这个)(x P n 即为所求。 Taylor 中值定理:如果函数)(x f 在0x 的某区间),(b a 内具有直到)1(+n 阶的导数,则当),(b a x ∈时,)(x f 可表示为)(0x x -的一个多项式)(x P n 和一个余项)(x R n 之和: ) ()(! )()(!2)())(()()(00)(2 00000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+=

泰勒公式的证明及应用 开题报告

题目泰勒公式的证明及推广应用 一、选题背景和意义 在初等函数中,多项式是最简单的函数。因为多项式函数的运算只有加、减、 乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。 通过对数学分析的学习,我感觉到泰勒公式是高等数学中的重要内容,在各个 领域有着广泛的应用,例如在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明,求函数在某点的高阶导数值等方面。 除此以外,泰勒公式及泰勒级数的应用,往往能峰回路转,使问题变得简单易解。 二、国内外研究现状、发展动态 本人以1999—2010十一年为时间范围,以“泰勒公式”、“泰勒公式的应用”为关键词,在中国知网以及万方数据等数据库中共搜索到30余篇文章,发现国内外对泰勒公式的其研究进展主要分配在以下领域: 一、带不同型余项泰勒公式的证明; 二、泰勒公式的应用举例。 三、研究内容及可行性分析 在高等数学中,泰勒公式占有重要的地位,并以各种形式出现而贯穿全部内容,因此掌握好泰勒公式是学习高等数学的关键一环。本论文将主要研究泰勒公式的证明及其在其他方面的应用。 本文将通过对泰勒公式的探讨,给出了泰勒公式在其它方面的应用,,显现出泰勒公式的应用之广泛。希望其研究结果在求极限等问题时可以提供一些方法的参考,也同时能给相关学科研究人员在解决比较复杂的不定式极限问题时能有一定的思路指导。 接下来我将分两方面的应用来阐述本次论文的主要内容。 一、带不同型余项泰勒公式的证明: 本次证明将涉及到三种不同余项的泰勒公式的证明,即: 1.带皮亚诺余项的泰勒公式; 2.带拉格朗日余项的泰勒公式; 3.带积分型余项的泰勒公式; 二、泰勒公式的应用: 本次论文将涉及到泰勒公式在以下七个方面的应用: 1、泰勒公式在极限计算中的应用; 在函数极限运算中,不定式极限的计算始终为我们所注意,因为这是比较困难的一类问题。计算不定式极限我们常常使用洛必达法则或者洛必达法则与等价无穷小结合使用。但对于有些未定式极限问题若采用泰勒公式求解,会更简单明了。我将在论文中就例题进行探讨。 2、泰勒公式在判定级数及广义积分敛散性中的应用;

泰勒公式

泰勒公式 一 带有佩亚诺型余项的泰勒公式 由微分概念知:f 在点0x 可导,则有 ).())(()()(0000x x x x x f x f x f -+-'+=ο. 即在点0x 附近,用一次多项式))(()(000x x x f x f -'+逼近函数)(x f 时,其误差为(0x x -)的高阶无穷小量.然而在很多场合,取一次多项式逼近是不够的,往往需要用二次或高于二 次的多项式去逼近,并要求误差为n x x ))((0-ο,其中n 为多项式的次数.为此,我们考察 任一n 次多项式 .)()()()(0202010n n n x x a x x a x x a a x p -++-+-+= (1) 逐次求它在点0x 处的各阶导数,得到 00)(a x p n =,20!2)(a x p n =",n n n a n x p !)(,0) (= , 即 .! ) (,! 2)(,! 1)(),(0) (020100n x p a x p a x p a x p a n n n n n n = " = ' = = 由此可见,多项式)(x p n 的各项系数由其在点0x 的各阶导数值所唯一确定. 对于一般函数f ,设它在点0x 存在直到n 阶的导数.由这些导数构造一个n 次多项式

, )(! ) ()(! 2)()(! 1)()()(00) (2 00000n n n x x n x f x x x f x x x f x f x T -+ +-''+ -'+ = (2) 称为函数f 在点0x 处的泰勒(Taylor)多项式,)(x T n 的各项系数 =k k x f k (! ) (0) (1, 2,…,n )称为泰勒系数.由上面对多项式系数的讨论,易知)(x f 与其泰勒多项式)(x T n 在点0x 有相同的函数值和相同的直至n 阶导数值,即.,,2,1,0),()(0) (0) (n k x T x f k n k == (3)下面 将要证明))(()()(0n n x x x T x f -=-ο,即以(2)式所示的泰勒多项式逼近)(x f 时,其误差为关于n x x )(0-的高阶无穷小量. 定理6.8 若函数f 在点0x 存在直至n 阶导数,则有+=)()(x T x f n 即),)((0n x x -ο ). )(()(! ) ()(! 2)())(()()(000) (2 00000n n n x x x x n x f x x x f x x x f x f x f -+-+-''+-'+=ο (4) 证 设 n R (,)()(),()()0n n n x x x Q x T x f x -=-= 现在只要证 .0) ()(lim =→x Q x R n n x x 由关系式(3)可知, 0)()()(0) (0'0===x R x R x R n n n n 并易知 !.)(,0)()()(0) (0)1(0'0n x Q x Q x Q x Q n n n n n n =====- 因为)(0) (x f n 存在,所以在点0x 的某邻域U(0x )内f 存在n —1阶导函数)(x f .于是,当 )(0x U x ∈且0x x →时,允许接连使用洛必达法则,n —1次,得到 . 0)] () ()([ lim !1 ) (2)1() )(()()(lim ) ()(lim ) ()(lim )()(lim 0) (0 0) 1() 1(000) (0)1() 1() 1()1(' ' =---= -----====--→--→--→→→x f x x x f x f n x x n n x x x f x f x f x Q x R x Q x R x Q x R n n n x x n n n x x n n n n x x n n x x n x x 定理所证的(4)式称为函数f 在点0x 处的泰勒公式,)()()(x T x f x R n n -=称为泰勒公

泰勒公式

第三节 泰勒公式 对于一些比较复杂的函数,为了便于研究,往往希望用一些简单的函数来近似表达. 多项式函数是最为简单的一类函数,它只要对自变量进行有限次的加、减、乘三种算术运算,就能求出其函数值,因此,多项式经常被用于近似地表达函数,这种近似表达在数学上常称为逼近. 英国数学家泰勒(Taylor. Brook, 1685-1731)在这方面作出了不朽的贡献. 其研究结果表明: 具有直到1+n 阶导数的函数在一个点的邻域内的值可以用函数在该点的函数值及各阶导数值组成的n 次多项式近似表达. 本节我们将介绍泰勒公式及其简单应用. 内容分布图示 ★ 引言 ★ 多项式逼近 ★ 泰勒中值定理 ★ 例1 ★ 例2 ★ 例3 ★ 常用函数的麦克劳林公式 ★ 例4 ★ 例5 ★ 例6 ★ 例7 ★ 内容小结 ★ 课堂练习 ★ 习题3-3 ★ 返回 内容要点: 一、问题:设函数)(x f 在含有0x 的开区间(a , b )内具有直到1+n 阶导数, 问是否存在一个n 次多项式函数 n n n x x a x x a x x a a x p )()()()(0202010-++-+-+= (3.1) 使得 )()(x P x f n ≈, (3.2) 且误差)()()(x p x f x R n n -=是比n x x )(0-高阶的无穷小,并给出误差估计的具体表达式. 二、泰勒中值公式 200000)(! 2)())(()()(x x x f x x x f x f x f -''+-'+=)()(!)(00)(x R x x n x f n n n +-++ (3.6) 拉格朗日型余项 10)1()()! 1()()(++-+=n n n x x n f x R ξ (3.7) 皮亚诺形式余项 ].)[()(0n n x x o x R -= (3.9) 带有皮亚诺型余项的麦克劳林公式 )(! )0(!2)0()0()0()()(2n n n x o x n f x f x f f x f +++''+'+= (3.12) 从公式(3.11)或 (3.12)可得近似公式

一些常用函数及其泰勒(Taylor)展开式的图像

其中, 。 ! 4!3!21)(; ! 3!21)(; ! 21)(; 1)(;)exp(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y e x y x ++++==+++==++==+==== -3 -2-1 0123 -50 5 10 15 20 25 Figure 1 y=exp(x) and its Taylor expansion equation X Y

其中, 。 ! 7!5!3)(; !5!3)(; ! 3)(; )();sin(7 53775 35533311x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-===== -4 -3-2-1 01234 -8-6-4-202468Figure 2 y=sin(x) and its Taylor expansion equation X Y

其中, 。 ! 8!6!4!21)(; !6!4!21)(; ! 4!21)(; !21)(); cos(8 642886 42664 2442 22x x x x x P y x x x x P y x x x P y x x P y x y +-+-==-+-==+-==-=== -4 -3-2-1 01234 -8-6 -4 -2 2 4 Figure 3 y=cos(x) and its Taylor expansion equation X Y

其中, 。 4 32)(; 3 2)(; 2 )(; )();1ln(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-====+= -1 -0.50 0.51 1.52 -3-2 -1 1 2 3 Figure 4 y=ln(x) and its Taylor expansion equation X Y

Taylor公式的唯一性证明

Tayloy 公式的唯一性证明 作者:卢晓峰 1. 引理:设0 lim ()0x x g x →=,()g x 在0x 的某邻域内可导,且()g x ' 在0x 处连续。若0()(())n g x x x ο=-,则10()(())n g x x x ο-'=-。 证明: 00001 11 00 000 ()()()()() () lim lim lim lim lim ()()()()()n n n n n x x x x x x x x x x g x g x g x x x g x g x g x x x x x x x x x x x ---→→→→→-''-===------又 0()(())n g x x x ο=-,0 0lim ()()0x x g x g x →== ∴0 0() lim 0()n x x g x x x →=-;0 00 ()lim 0()n x x g x x x →=- ∴0 1 0()lim 0() n x x g x x x -→'=-,即1 0()(())n g x x x ο-'=-。 2. 唯一性证明: ()f x 在0x 处存在n 阶导,设0()()(())n n f x P x x x ο=+-<1>。(其中() n P x 为n 次多项式) 设<1>式中0(())()n x x g x ο-=。易证:()g x 满足引理的条件。 ∴10()(())n g x x x ο-'=-,20()(())n g x x x ο-''=-, ,(1)0()()n g x x x ο-=-。 ∴ ()()() n f x P x g x '''=+, ()()() n f x P x g x ''''''=+, , (1)(1)(1)()()()n n n n f x P x g x ---=+<2> 对<2>中的所有等式,均取0x x →的极限,则有: 00()()n f x P x ''=,00()()n f x P x ''''=, ,(1)(1)00()()n n n f x P x --= 又

常用的泰勒公式

常用的泰勒公式 e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

常见泰勒公式展开式

泰勒公式 泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。 泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容历史发展 泰勒公式是高等数学中的一个非常重要的内容,它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有力工具。 18世纪早期英国牛顿学派最优秀的代表人物之一的数学家泰勒( Brook T aylor),其主要著作是1715年出版的《正的和反的增量方法》,书中陈述了他于1712年7月给他老师梅钦信中提出的著名定理——泰勒定理。1717年,泰勒用泰勒定理求解了数值方程。泰勒公式是从格雷戈里——牛顿差值公式发展而来,它是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑,在已知函数某一点各阶导数的前提下,泰勒公式可以利用这些导数值作为系数构建一个多项式来近似该函数在这一点的邻域中的值。1772年,拉格朗日强调了泰勒公式的重要性,称其为微分学基本定理,但是泰勒定理的证明中并没有考虑级数的收敛性,这个工作直到19世纪20年代,才由柯西完成。泰勒定理开创了有限差分理论,使任何单变量函数都

可以展开成幂级数,因此,人们称泰勒为有限差分理论的奠基者。 泰勒公式是数学分析中重要的内容,也是研究函数极限和估计误差等方面不可或缺的数学工具,泰勒公式集中体现了微积分“逼近法”的精髓,在近似计算上有独特的优势。利用泰勒公式可以将非线性问题化为线性问题,且具有很高的精确度,因此其在微积分的各个方面都有重要的应用。泰勒公式可以应用于求极限、判断函数极值、求高阶导数在某点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

泰勒公式的证明

泰勒公式 定理(peano 余项型,洛必达法则法证明) 若()0()n f x 存在, 则0()x x ?∈ , 0()(,)n f x T x x =+()0()n x x - . ()200000000()()(,)()()()()()2!! n n n f x f x T x x f x f x x x x x x x n '''=+-+-++- . 0(,)n T x x 叫做f 在0x 的n 次泰勒多项式,也叫f 在0x 的n 次密切( “切线”). 证法 洛必达法则法的分析. 按照洛必达法则往证0()()lim 0()n n x a f x T x x x →-=-即可. 记()()()n n R x f x T x =-,0()()n n Q x x x =-, 注意到 (1)()000()()()0n n n n n R x R x R x -==== , (1)00()()0n n n Q x Q x -=== ,()0()!n n Q x n = ()0()n f x 存在,意味着(1)()n f x -在0()U x 内还可导.允许()0lim ()0n x a n R x Q x →?? ???反复使用洛必达法则1n -次. 证明 连续1n -次使用洛必达法则,得 (1)(1)()()00lim lim ()0()0n n n n x a x a n n R x R x Q x Q x --→→????= ? ?????不断添入0,使结论成为两个函数值之差的比. (1)(1)()0000()()()()lim (1)2() n n n x a f x f x f x x x n n x x --→---=-- (1)(1)()000()()1lim ()0!n n n x a f x f x f x n x x --→??-=-= ?-?? . 注1 即使函数能表成()00()(,)()n n f x P x x x x =+- ,0(,)n P x x 不一定是泰勒多项式. 如1()(),n f x x D x n N ++=∈,由100()()lim lim 0n n n x x f x x D x x x +→→==,故()()(0)n f x x x =→ . 虽然能写成()2()0000n n f x x x x x =+++++ ,但是,根据海因定理,1()()n f x x D x += ,n N +∈仅在0点仅1阶可导(0)0f '=(0的邻域内()f x '无定义). 故2()0000n n p x x x x =++++ 并不是()f x 在0处的泰勒多项式. 注2 若f 能表成()00()(,)()n n f x P x x x x =+- ,则多项式0(,)n P x x 是唯一的 (不论可导性). 因为 若 () 00()(,)()n n f x P x x x x =+- ()20102000()()()()n n n a a x x a x x a x x x x =+-+-++-+- (1) 则由(1) 00lim ()x x f x a →=, 反代入(1)式又得 0010 ()lim x x f x a a x x →-=-, 反代入(1)式又得 0010220()[()]lim ()x x f x a a x x a x x →-+-=-

常用的泰勒公式

常用的泰勒公式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

常用的泰勒公式 e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k- 1)!+……。(-∞

泰勒公式的几种证明法及其应用 -毕业论文

泰勒公式的几种证明法及其应用 -毕业论文 【标题】泰勒公式的几种证明法及其应用 【作者】张廷兵 【关键词】泰勒公式构造函数法数学归纳法柯西中值定理应用【指导老师】陈波涛 【专业】数学与应用数学 【正文】 1引言 泰勒公式在分析和研究数学问题方面有着重要的应用。但是它的证明大多数是重复运用柯西中值定理来推导,这给初学者从理解到接受有一定的困难。为了给不同层次的学习者理解和接受泰勒公式提供方便。本文研究不同的证明方法,给学习者提供了选择的余地。归根结底,使学习者更好运用泰勒公式,为此就对泰勒公式的应用及技巧的总结。 2 带佩亚诺型余项泰勒公式的证明方法 在初等函数中,最简单的函数就是多项式,对于数值计算和理论分析都很方便。如果将一类复杂的函数用多项式来近似表示出来,其误差又能满足一定的要求。那么,我们就可以表示出此函数。若函数是n次多项式 令 .于是 对任意一个函数,只要函数在a点存在n阶导数,我们就可以写出一个相应的多项式 称为函数在a点的n次泰勒多项式,那么n次泰勒多项式与函数在在点a 的邻域上有什么联系呢,下面的定理回答了这个问题( 定理1[1] 若函数在a点存在n阶导数 ,则 其中 ,则上式就为在a点的泰勒公式, 为泰勒公式的余项.

2.1方法一 证明:将上式改为 ,有 分子是函数 ,分母是函数 .应用n-1次柯西中值定理[2] 其中 其中 其中 (至此已应用了n-1次柯西定理) 当根据右导数定义,有 同法可证: 于是 , 表示余项是佩亚诺型. 证毕. 2.2方法二 证明在的一个邻域内有一阶导数,则存在且在处连续,即有则由极限与无穷小量的关系有: ( 是无穷小量), 又 则 (2—1) 从(2—1)式推出: 比较无穷小量与 = = (因为二阶可导) 又由极限与无穷小量的关系有: 将上边代入(2—1)式: 设 .则在处有阶导数,且设当时仍有: + (2—2) 从(2—2)中推出 比较与 :

证明泰勒公式

泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2,+f'''(x.)/3!?(x-x.)^3+……+f(n) (x.)/n!?(x-x.)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以 A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n) (x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得: P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有 Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n) (x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn(x.)/(x-x.)^(n+1)-0=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得Rn'(ξ1)-Rn'(x.)/(n+1)(ξ1-x.)^n- 0=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但 Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项 Rn(x)=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。 麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+Rn 其中Rn=f(n+1)(θx)/(n+1)!?x^(n+1),这里0<θ<1。 证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+f(n+1)

常用的泰勒公式

h i n g s i n t h r b e i a r g o 常用的泰勒公式 e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

一些常用函数及其泰勒(Taylor)展开式的图像

图 1 )exp(x y =及其 Taylor 展开式 其中, 。 ! 4!3!21)(; ! 3!21)(; ! 21)(; 1)(;)exp(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y e x y x ++++==+++==++==+==== -3 -2-1 0123 -50 5 10 15 20 25 Figure 1 y=exp(x) and its Taylor expansion equation X Y

图 2 )sin(x y =及其 Taylor 展开式 其中, 。 ! 7!5!3)(; !5!3)(; ! 3)(; )();sin(7 53775 35533311x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-===== -4 -3-2-1 01234 -8-6-4-202468Figure 2 y=sin(x) and its Taylor expansion equation X Y

图 3 )cos(x y =及其 Taylor 展开式 其中, 。 ! 8!6!4!21)(; !6!4!21)(; ! 4!21)(; !21)(); cos(8 642886 42664 2442 22x x x x x P y x x x x P y x x x P y x x P y x y +-+-==-+-==+-==-=== -4 -3-2-1 01234 -8-6 -4 -2 2 4 Figure 3 y=cos(x) and its Taylor expansion equation X Y

常用十个泰勒展开公式

常用bai泰勒展开公式如下: 1、due^x = 1+x+x^2/2!+x^3/3!+……zhi+x^n/n!+…… 2、daoln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) 3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

9、cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞

泰勒公式的理解及泰勒公式

对泰勒公式的理解及泰勒公式的应用 1 函数展开与向量空间 泰勒公式是函数展开的一种工具,也就是说,利用泰勒公式将函数展成幂级数是函数展开的一种方法,当然,函数的展开方法有多种,例如:用泰勒公式展开、三角级数的展开等。为更好地理解函数展开的意义以及泰勒公式的应用,文章先对函数的展开进行论述,然后,用例题对其应用做进一步的说明。 在高等数学中,函数展开有许多不同的形式,最常用的有如下两种类型的函数级数展开。 1.1 函数的泰勒展开(幂级数展开) 若函数f(x)在区间{x||x-x 0|<R}内无穷可微,且它的Lagrange余项r n(x)当n→∞ 时,收敛于零,则在这区间内有: 1 2 函数的三角级数展开 若函数f(x)在区间[-π,π]上连续且逐段光滑,则在这区间内有: 从函数展开式(1)和(2)两边的项来看,左边的函数f(x)作为一个整体,它只有有限的一项,而右边却包含着无限多项,说明在一定条件下,有限形式的函数可以用无限形式的级数来表示, 关于这一点,可以从另一个视角来看,若把展开式(1)和(2)中的函数系: {1,(x-x0),(x-x 0)2,(x-x0)3,…,(x-x0)n,…} {1,cosx,sinx,cos2x,sin2x,…,cosnx,sinnx,…} 分别看成无限维函数空间的两个坐标系, 其中的函数就是相应的坐标向量,则f(x)就可以看作这个空间的一个点(或一个向量),则两级数的系数组成的两个数列: {a0,a1,a2,…,a n}与{a0,a1,b1,a2,b2,…,n,b n,…} 就是f(x)分别在这两个坐标系中的坐标,于是从形式来看,f(x)作为这无限维空间中的一个点(一个向量),但从数来看,f(x)在这个空间中却要用无限个坐标来决定.在高等数学中, 根据问题的需要,进行有限与无限形式的相互变换,在解决数学问题中是常有的。可见,换个角度看函数的展开,会给人加深印象,能在原有的基础上根深蒂固。 谈到有限与无限,在高等数学中,根据问题的需要,进行有限与无限形式的相互变换,在解决数学问题中是常常会用到的,这就是泰勒公式的魅力所在.比如说:函数的分解与求和,函数关系的证明等,就要用这种有限与无限之间的变换方法。

相关文档
最新文档