2011年高中奥赛辅导系列数学(上)

2011年高中奥赛辅导系列数学(上)
2011年高中奥赛辅导系列数学(上)

华夏园教育奥赛专题——数学

培训辅导 (2)

奥林匹克数学的技巧(上篇) (3)

奥林匹克数学的技巧(中篇) (10)

奥林匹克数学的技巧(下篇) (22)

竞赛培训专题1-----等差数列与等比数列 (25)

竞赛培训专题2---染色问题与染色方法 (32)

竞赛培训专题3---几个重要不等式 (37)

竞赛培训专题4---同余式与不定方程 (40)

竞赛培训专题5---指数函数、对数函数 (46)

竞赛培训专题6---整数的整除性 (53)

竞赛培训专题7---高阶等差数列 (60)

专题材料 (65)

不定方程 (66)

概率、统计 (70)

函数 (73)

立体几何(传统方法) (77)

立体几何(向量方法) (79)

由数列的递推公式求通项公式 (86)

历届奥赛 (92)

2008年全国初中数学竞赛试题及参考答案 (93)

2010年数学奥赛题及答案 (99)

2006中国数学奥林匹克(第二十一届全国中学生数学冬令营) (106)

第一天 (106)

第二天 (110)

华夏园教育奥赛专题——数学

培训辅导

奥林匹克数学的技巧(上篇)

有固定求解模式的问题不属于奥林匹克数学,通常的情况是,在一般思维规律的指导下,灵活运用数学基础知识去进行探索与尝试、选择与组合。这当中,经常使用一些方法和原理(如探索法,构造法,反证法,数学归纳法,以及抽屉原理,极端原理,容斥原理……),同时,也积累了一批生气勃勃、饶有趣味的奥林匹克技巧。在2-1曾经说过:“竞赛的技巧不是低层次的一招一式或妙手偶得的雕虫小技,它既是使用数学技巧的技巧,又是创造数学技巧的技巧,更确切点说,这是一种数学创造力,一种高思维层次,高智力水平的艺术,一种独立于史诗、音乐、绘画的数学美。”

奥林匹克技巧是竞赛数学中一个生动而又活跃的组成部分。 2-7-1 构造

它的基本形式是:以已知条件为原料、以所求结论为方向,构造出一种新的数学形式,使得问题在这种形式下简捷解决。常见的有构造图形,构造方程,构造恒等式,构造函数,构造反例,构造抽屉,构造算法等。

例2-127 一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋。

证明:用n a 表示这位棋手在第1天至第n 天(包括第n 天在内)所下的总盘数(1,2,77n =…),依题意 127711211132a a a ≤<<≤?=…

考虑154个数:

12771277,,,21,21,21a a a a a a +++…,

又由772113221153154a +≤+=<,即154个数中,每一个取值是从1到153的自然数,因而必有两个数取值相等,由于i j ≠时,i i a a ≠ 2121i j a a +≠+

故只能是,21(771)i j a a i j +≥>≥满足 21i j a a =+ 这表明,从1i +天到j 天共下了21盘棋。

这个题目构造了一个抽屉原理的解题程序,并具体构造了154个“苹果”与153个“抽屉”,其困难、同时也是精妙之处就在于想到用抽屉原理。

例 2-128 已知,,x y z 为正数且()1xyz x y z ++=求表达式()()x y y z ++的最最小值。

解:构造一个△ABC ,其中三边长分别为a x y b y z c z x =+??

=+??=+?,则其面积为

1?===

另方面2()()2sin x y y z ab C

?

++==

≥ 故知,当且仅当∠C=90°时,取值得最小值2,亦即2

2

2

()()()x y y z x z +++=+

()y x y z xz ++=时,()()x y y z ++取最小值2,如1,x z y ===时,()()2x y y z ++=。

2-7-2 映射

它的基本形式是RMI 原理。

令R 表示一组原像的关系结构(或原像系统),其中包含着待确定的原像x ,令M 表示一种映射,通过它的作用把原像结构R 被映成映象关系结构R*,其中自然包含着未知原像x 的映象*x 。如果有办法把*x 确定下来,则通过反演即逆映射1I M -=也就相应地把x 确定下来。取对数计算、换元、引进坐标系、设计数学模型,构造发生函数等都体现了这种原理。

建立对应来解题,也属于这一技巧。

例2-129 甲乙两队各出7名队员按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,…直到有一方队员全被淘汰为止,另一方获得胜利,形成一种比赛过程,那么所有可能出现的比赛过程的种数为 。

解 设甲、乙两队的队员按出场顺序分别为A 1,A 2,…,A 7和B 1,B 2,…B 7。

如果甲方获胜,设i A 获胜的场数是i x ,则07

,17i x i ≤≤≤≤而且 1277x x x +++=… (*)容易证明以下两点:在甲方获生时,

(i )不同的比赛过程对应着方程(*)的不同非负整数解;

(ii )方程(*)的不同非负整数解对应着不同的比赛过程,例如,解(2,0,0,1,3,1,0)对应的比赛过程为:A 1胜B 1和B 2,B 3胜A 1,A 2和A 3,A 4胜B 3后负于B 4,A 5胜B 4,B 5和B 6但负于B 7,最后A 6胜B 7结束比赛。

故甲方获胜的不同的比赛过程总数是方程(*)的非负整数解的个数7

13C 。 解二 建立下面的对应;

集合{}127,,A A A …,的任一个7-可重组合对应着一个比赛过程,且这种对应也是一个一一对应。例如前述的比赛过程对应的7-可重组合是{}123456,,,,,A A A A A A 所以甲方获胜的不同的比赛过程的总数就是集合{}127,,A A A …,的7-可重组合的个数7

7

77113C C +-=。

例2-130 设()n p k 表示n 个元素中有k 个不动点的所有排列的种数。求证

()!n

n

k kp k n ==∑

证明 设{}12,,,n S a a a =…。对S 的每个排列,将它对应向量12(,,)n e e e …,,其中每个

{}0,1i e ∈,当排列中第i 个元素不动时,1i e =,否则为0。于是()n p k 中所计数的任一排列所对应

的向量都恰有k 个分量为1,所以!n 个排列所对应的那些向量中取值为1的分量的总数为

1

()n

n

k kp k =∑。

另一方面,对于每个i ,1i n ≤≤,使得第i 个元素不动的排列共有(1)!n -个,从而相应的n 维

向量中,有(1)!n -个向量的第i 个分量为1。所以,所有向量的取值为1的分量总数(1)!!n n n -=,

从而得到

1

()!n

n

k kp k n ==∑

例2-131 在圆周上给定21(3)n n -≥个点,从中任选n 个点染成黑色。试证一定存在两个黑点,使得以它们为端点的两条弧之一的内部,恰好含有n 个给定的点。

证明 若不然,从圆周上任何一个黑点出发,沿任何方向的第1n -个点都是白点,因而,对于每一个黑点,都可得到两个相应的白点。这就定义了一个由所有黑点到白点的对应,因为每个黑点对应于两个白点,故共有2n 个白点(包括重复计数)。又因每个白点至多是两个黑点的对应点,故至少有n 个不同的白点,这与共有21n -个点矛盾,故知命题成立。

2-7-3 递推

如果前一件事与后一件事存在确定的关系,那么,就可以从某一(几)个初始条件出发逐步递推,得到任一时刻的结果,用递推的方法解题,与数学归纳法(但不用预知结论),无穷递降法相联系,关键是找出前号命题与后号命题之间的递推关系。

用递推的方法计数时要抓好三个环节:

(1)设某一过程为数列()f n ,求出初始值(1),(2)f f 等,取值的个数由第二步递推的需要决定。

(2)找出()f n 与(1)f n -,(2)f n -等之间的递推关系,即建立函数方程。

(3)解函数方程

例2-132 整数1,2,…,n 的排列满足:每个数大于它之前的所有的数或者小于它之前的所有的数。试问有多少个这样的排列?

解 通过建立递推关系来计算。设所求的个数为n a ,则11a =(1)

对1n >,如果n 排在第i 位,则它之后的n i -个数完全确定,只能是,1,n i n i ---…,2,1。而它之前的1i -个数,1,2,n i n i -+-+…,1n -,有1i a -种排法,令1,2,i =…,n 得递推关系。

1211211111(1)2n n n n n n n n a a a a a a a a a a -------=++++=++++=+= (2)

由(1),(2)得 1

2

n n a -=

例2-133 设n 是正整数,n A 表示用2×1矩形覆盖2n ?的方法数;n B 表示由1和2组成的

各项和为n 的数列的个数;且 0242

12213521

12321, 2, 21m m m m m n m m m m m C C C C n m

C C C C C n m +++++++?++++=?=?+++

+=+??……,证明n n n A B C ==

证明 由,n n A B 的定义,容易得到 1112,1,2n n n A A A A A +-=+== 1112

,1,2n n n B B B B B +-=+==

又因为121,2C C ==,且当2n m =时,

0242221352113

112212122112m m m n n m m m m m m m m m m m C C C C C C C C C C C C C ---++-++-+++=++++++++++=+…… 5212132211m m m m m n C C C C -++++++++=…

类似地可证在21n m =+时也有11n n n C C C -++=,从而{}{},n n A B 和{}n C 有相同的递推关系和相同的初始条件,所以n n n A B C ==。

223296,IMO IMO --用无穷递降法求解也用到了这一技巧。

2-7-4 区分

当“数学黑箱”过于复杂时,可以分割为若干个小黑箱逐一破译,即把具有共同性质的部分分为一类,形成数学上很有特色的方法——区分情况或分类,不会正确地分类就谈不上掌握数学。

有时候,也可以把一个问题分阶段排成一些小目标系列,使得一旦证明了前面的情况,便可用来证明后面的情况,称为爬坡式程序。比如,解柯西函数方程就是将整数的情况归结为自然数的情况来解决,再将有理数的情况归结为整数的情况来解决,最后是实数的情况归结为有理数的情况来解决。142IMO -的处理也体现了爬坡式的推理(例2-47)。

区分情况不仅分化了问题的难度,而且分类标准本身又附加了一个已知条件,所以,每一类子问题的解决都大大降低了难度。

例2-134 设凸四边形ABCD 的面积为1,求证在它的边上(包括顶点)或内部可以找出4个点,使得以其中任意三点为顶点所构成的4个三角形的面积均大于1/4。

证明 作二级分类

1.当四边形ABCD 为平行四边形时,

1124

ABC ABD ACD BCD S S S S ????====

> A ,B ,C ,D 即为所求,命题成立。

2.当四边形ABCD 不是平行四边形时,则至少有一组对边不平行,设AD 与BC 不平行,且直线AD 与直线BC 相交于E ,又设D 到AB 的距离不超过C 到AB 的距离,过D 作AB 的平行线交BC 于F ,然后分两种情况讨论。

(1)如图2-52,1

2

DF AB ≤,此时可作△EAB 的中位线PQ 、QG ,则 111

222

AGQP EAB ABCD S S S =>= 即A 、G 、Q 、P 为所求。

(2)如图2-53,12DF AB >,此时可在CD 与CF 上分别取P 、Q ,使1

2

PQ AB =。过Q9

或P )作QG ∥AP 交AB 于G 。为证1

2

APQG S > ,连AP 交BE 于M ,过A 作AH ∥BC 交CD 延长

线于H 。有PCM PAH PAD S S S ???=>

MAB PCM ABCP PAD ABCO ABCD S S S S S A ???=+>+=

得 1

1

12

22

A P Q G M A

B A B

C

D S S S ?=

>= 故A 、P 、Q 、G 为所求,

这实际上已证明了一个更强的命题:面积为1的凸四边形一定能嵌入一个面积大于1/2的平行四边形。

例2-135 对内角分别为为30°、60°、90°的三角形的顶点和各边四等分点共12个点,染以红色或蓝色,则必存在同色的三点,以它们为顶点的三角形与原三角形相似。

证明 设△ABC 中,∠C=90°,∠B=60°,∠C=30°,点A 1,A 2,A 3;B 1,B 2,B 3;C 1,C 2,C 3分别是边AB 、BC 、CA 的四等分点,下面作三级分类。

1.点A 、B 、C 同色时,结论显然成立。

2.点A 、B 、C 异色时,记A 为红色,写作A (红),其余各点染色记号类同。 (1)A (红),B (红),C (蓝)时,由△ABC~△B 1BA~△C 3B 1C~△C 3AA 3~△A 2A 3B 1~△AA 2C 2~△C 2B 2C~△A 2AB 2知,若结论不成立,则有

B 1(蓝)→

C 3(红)→A 3(蓝)→A 2(红)→C 2(蓝)→B 2(红)→A (蓝)。 这与A (红)矛盾。 (2)A (红),B (蓝),C (红)时,由△ABC~△B 1AC~△A 3BB 1~△AC 3A 3~△C 2C 3B 1~△C 2B 2C~△A 2BB 2~△AA 2C 2知,若结论不成立,则有B 1(蓝)→A 3(红)→C 3(蓝)→C 2(红)→B 2(蓝)→A 2(红)→A (蓝)这与A (红)矛盾。

(3)A (红),B (蓝),C (蓝)时,又分两种情况:

(3)1当B 1(红)时,由△ABC~△B 2B 1A~△B 2C 2C~△AA 2C 2~△A 2BB 2知,若结论不成立,则有B 2(蓝)→C 2(红)→A 2(蓝)→B (红)。这与B (蓝)矛盾。图(2-56)

(3)2当B 1(蓝)时,由△ABC~△C 3B 1C~△C 3AA 3~△A 3BB 1知,若结论不成立,则有 C 3(红)→A 3(蓝)→B (红)与B (蓝)矛盾。(图2-57) 2-7-5 染色

染色是分类的直观表现,在数学竞赛中有大批以染色面目出现的问题,其特点是知识点少,逻辑性强,技巧性强;同时,染色作为一种解题手段也在数学竞赛中广泛使用。下面是一些熟知的结果。

1.在(点)二染色的直线上存在相距1或2的同色两点。 2.在(点)二染色的直线上存在成等差数列的同色三点。

3.在(点)二染色的平面上存在边长为1的单色正三角形(三个顶点同色的三角形)。

4.设T 1,T 2是两个三角形,T 1有一边长1,T 2找到一个全等于T 1或T 2的单色三角形。

5.在(点)三染色的平面上,必有相距为1的两点同色。

6.在(点)三染色的平面上,必存在一个斜边为1的直角三角形,它的三个顶点是全同色的或是全不同色的。

7.在(边)染色的六阶完全图中必有单三角形(三边同色)。 8.在(边)染色的六阶完全图中至少有两个单色三角形。

例2-136 有一个3×7棋盘。用黑、白两种颜色去染棋盘上的方格,每个方格只染一种颜色。证明不论怎样染色,棋盘上的方格组成的矩形中总有这样的矩形,其边与棋盘相应的边平行,而4个角上的方格颜色相同。

证明 称满足条件的矩形为单色矩形。由于棋盘上的3×7=21个方格只染两种颜色,必有11个同色,不妨设同为黑色。现设第i 列上有(03)i i d d ≤≤个黑色方格,一方面,总黑格数为

7

1

11i i x d ==≥∑;另一方面,在第i 列上首尾两端都是黑格的矩形有1

(1)2i i d d -个,总计

7777

22

221111

1111()[()](7)14(11711)327147i i i i i i i i t d d d d x x =====-≥-=-≥-?=∑∑∑∑

若题中的结论不成立,则上述t 个矩形两两不同,将它们投影到第一列,那么第1列就存在t 个首尾两端都是黑格的矩形,但第1列最多有2

33C =个这样的矩形,有1

33

7

t ≥≥矛盾,故命题成立。

例2-137 在边二染色的K 5中没有单色三角形的充要条件是它可分解为一红一蓝两个圈,每个圈恰由5条边组成。

证明 由图2-58可见,充分性是显然的。 考虑必要性,在K 5中每点恰引出4条线段,如果从其中某点A 1能引出三条同色线段A 1A 1,A 1A 3,A 1A 4,记为同红,则考虑△A 2A 3A 4,若当中有红边i j A A (24i j ≤≤≤),则存在红色三角形1i j A A A 是同蓝色三角形,均无与单色三角形矛盾。所以,从每点引出的四条线段中恰有两条红色两条蓝色,整个图中恰有5条红边、5条蓝边。

现只看红边,它们组成一个每点度数都是2的偶图,可以构成一个或几个圈,但是每个圈至少有3条边,故5条红边只能构成一个圈,同理5条蓝边也构成一个圈。

例2-138 求最小正整数n ,使在任何n 个无理数中,总有3个数,其中每两数之和都仍为无理数。

解 取4

个无理数

,显然不满足要求,故5n ≥。

设,,,,a b c d e 是5个无理数,视它们为5个点,若两数之和为有理数,则在相应两点间连一条红边,否则连一条蓝边。这就得到一个二染色5k 。只须证图中有蓝色三角形,分两步:

(1)无红色三角形。若不然,顶点所对应的3个数中,两两之和均为有理数,不妨设

,,a b b c c a +++都是有理数,有1

[()()()]2

a a

b b

c c a =+-+++

但无理数≠有理数,故5k 中无红色三角形。

(2)有同色三角形,若不然,由上例知,5k 中有一个红圈,顶点所对应的5个数中,两两之和均为有理数,设,,,,a b b c c d d e e a +++++为有理数,则

1

[()()()()()]2

a a

b b

c c

d d

e e a =+-++--+++

但无理数≠有理数,故5k 中无5条边组成的红圈,从而有同色三角形。

这时,同色三角形必为蓝色三角形,其顶点所对应的3个无理数,两两之和仍为无理数。 综上所述,最小的正整数n=5 2-7-6 极端

某些数学问题中所出现的各个元素的地位是不平衡的,其中的某个极端元素或某个元素的极端状态往往具有优先于其它元素的特殊性质,而这又恰好为解题提供了突破口,从极端元素入手,进而简捷地解决问题,这就是通常所说的“极端原理”。

使用这一技巧时,常常借用自然数集的最小数原理,并与反正法相结合。 例2-139 设S 为平面上的一个有限点集(点数≥5),其中若干点染上红色,其余的点染上蓝色,设任何3个及3个以上的同色的点不共线。求证存在一个三角形,使得

(1)它的3个顶点涂有相同颜色;

(2)这三角形至少有一边上不包含另一种颜色的点。

证明 对于任意的五点涂上红色蓝色,则必有三点同色,结论(1)成立。

若结论(2)不成立,可取顶点同色的三角形中面积最小的一个,因为只有有限个三角形,这是可以做到的,记为△ABC ,由于此三角形的每一边上都有异色点,记为A 1,B 1,C 1,则△A 1B 1C 1也是同色三角形,且面积小于△ABC 的面积,这与△ABC 面积的最小性矛盾。故(2)成立。

例2-140 已知实数列{}1n k a ∞

=具有下列性质:存在自然数n ,满足120n a a a +++=… 及,1,2n k k a a k +==…

求证存在自然数N ,使当0,1,2,k =…时,总有0N K

i

i N

a

+=≥∑

证明 构造和式

12(1,2,,j j S a a a j n =+++=……)

依题设知

121212n j j j j j n j j j n j S S a a a S a a a a a a ++++++=++++=++++++++………

12()j n j S a a a S =++++=…

这表明,和数列的各项中只取有限个不同的值:S 1,S 2,…,S n ,其中必有最小数,记作

(1)n S m n ≤≤,取N=m+1,则

112110N N N k m m m k m k m a a a a a a S S +++++++++++=+++=-≥……

2-7-7 对称

对称性分析就是将数学的对称美与题目的条件或结论相结合,再凭借知识经验与审美直觉,从而确定解题的总体思想或入手方向。其实质是美的启示、没的追求在解题过程中成为一股宏观指导的力量。著名物理学家杨振宁曾高度评价对称性方法:“当我们默默考虑一下这中间所包含的数学推理的优美性和它的美丽完整性,并以此对比它的复杂的、深入的物理成果,我们就不能不深深感到对对称定律的力量的钦佩”。

例2-141 设12,,n a a a …,为正数,它们的和等于1,试证必有下不等式成立:

2222

1

1212231112

n n n n n a a a a a a a a a a a a --++++≥++++…

证明 设左边为2222

1

12122311

n n n n n a a a a x a a a a a a a a --=++++++++…

出于对称性的考虑,再引进222

2321122311n n n n a a a a y a a a a a a a a -=++++++++

有22222222

23111212231n n n n n n i

a a a a a a a a x y a a a a a a a a -------=++++++++…

122311()()()()0n n n a a a a a a a a -=-+-++-+-=… 又由

222

i j i j

i j

a a a a a a ++≥

+

得222222

2311212231

11()(

)22n n a a a a a a x x y a a a a a a +++=+=++++++ 122311

[()()()]4n a a a a a a ≥++++++… 1211()22

n a a a =+++= (121)

n a a a n

====…时,可取等号。

还可用平均值不等式、柯西不等式直接证明。

例2-142 在[0,1]上给定函数2

y x =(图2-59),则t 点在什么位置时,面积12S S +有最大值和最小值。

解 在[0,1]中作曲线2

y x =关于直线1

2

x =

的对称曲线与之相交于P 点,由对称性,可将S 2移至左上角,阴影部分即S 1+S 2(图2-60)。移动t 点,相当于MN 上下平移,当MN 经过P 点,即

1

2

t =

时,阴影面积(S 1+S 2)最小(图2-61);当1t =时,阴影面积为最大(图2-62)。 下文中,例3-2的处理,是不落俗套进行对称性分析的一个好例子,例3-18体现了对图形对称性的洞察。

奥林匹克数学的技巧(中篇)

2-7-8 配对

配对的形式是多样的,有数字的凑整配对或共轭配对,有解析式的对称配对对或整体配对,有子集与其补集的配对,也有集合间象与原象的配对。凡此种种,都体现了数学和谐美的追求与力量,小高斯求和(1+2+…+99+100)首创了配对,163IMO -也用到了配对。

例2-143 求

502

0305[

]503

n n

=∑之值。 解 作配对处理 502

251

251011

305305305(503)304503

[]([][])30425176304

503503503503n n n n n n ===-?=+==?=∑∑∑ 例2-144 求和 122k n

n n n n n a C C kC nC =+++++…… 解一 由k

n k

n n

C C -=把n a 倒排,有012012k n

n n n n n n a C C C kC nC =++++++……

1(1)()0n n n k n

n n n n n a nC n C n k C C --=+-++-++……

相加 012()2n n

n n n n a n C C C n =+++?… 得 1

2

n n a n -=?

解二 设集合{}1,2,,S n =…,注意到 ,

,1,2,,k n A S A k

k C A k n

?=

=

=∑

… 有n A S

a A ?=

为了求得A S

A ?∑把每一A S ?,让它与补集A 配对,共有1

2

n -对,且每对中均有A A n +=

于是12n n A S

a A n n n n -?=

=++=?∑

这两种解法形式上虽有不同,但本质上是完全一样的,还有一个解法见例2-149。 例2-145 设12,,,n x x x …是给定的实数,证明存在实数x 使得

{}{}{}121

2

n n x x x x x x --+-++-≤

… 这里的{}y 表示y 的小数部分。 证明 有 {}{}1,0,y Z

y y y Z

?∈?+-=?

∈?? 知{}{}1y y +-≤

下面利用这一配对式的结论。设{}{}{}112i i i n f x x x x x x =-+-++-

{}{}2

1

11(1)

()12

n

i

i

j

j i n i i j n

i j n

n n f

x x x

x C =≤≤≤≤≤≤-=

-+-≤

==

∑∑∑

据抽屉原理①知,必存在(1)k k n ≤≤,使211

2

k n n f C n -≤=

取k x x =,由上式得

{}{}{}121

2

n n x x x x x x --+-++-≤

… 2-7-9 特殊化

特殊化体现了以退求进的思想:从一般退到特殊,从复杂退到简单,从抽象退到具体,从整体退到部分,从较强的结论退到较弱的结论,从高维退到低维,退到保持特征的最简单情况、退到最小独立完全系的情况,先解决特殊性,再归纳、联想、发现一般性。华罗庚先生说,解题时先足够地退到我们最易看清楚问题的地方,认透了、钻深了,然后再上去。

特殊化既是寻找解题方法的方法,又是直接解题的一种方法。

例2-146 已知恒等式 8824

(21)()()x a

x b x c x d --+=++ 求实数,,,a b c d ,其中0a >。

解 对x 取特殊值,当12x =

时,有84

1()()0242

a c

b d -+=++≥ 故有02a b +=(1) 1042

c

d ++=(2)

又取0x =(即比较常数项系数),有 84

1b d -=(3) 比较8x 的系数(考虑特殊位置),有88

21a -=(4)

由④得a =

= 代入(1),得b =

代入原式左边,有8

88811

(21)256()255()22

x x x --=--- 82

4

1

1()()2

4

x x x =-=-+ 故知11,4

c d =-=

。 也可以将,a b 的值代入(3)、(2)求,d c ,但要检验排除增根。 例2-147 已知a 为常数,x R ∈,且()1

()()1

f x f x a f x -+=

+

求证 ()f x 是周期函数。

分析 作特殊化探索。求解的困难在于不知道周期,先特殊化,取一个满足条件的特殊函数

()f x ctgx =且4

a π

=

,有1

()4

1

ctgx ctg x ctgx π

-+

=

+

但ctgx 的周期为444

T a π

π==?=。

猜想:4T a =是周期。

证明 由已知有()1

1

()11

()1(2)()1()

1()1

f x f x a f x f x a f x a f x f x --+--++===

++++ 据此,有11

(4)()1(2)()

f x a f x f x a f x +=-

=-=+-

得证()f x 为周期函数,且4T a =为一个周期。

例2-148 在平面上给定一直线,半径为n 厘米(n 是整数)的圆以及在圆内的4n 条长为1厘米的线段。试证在给定的圆内可以作一条和给定直线平行或垂直的弦,它至少与两条给定的线段相交。

分析 特殊化,令1n =,作一个半径为1的圆,在圆内作四条1厘米长的线段,再作一条与已知直线L 垂直的直线L ’(图2-63)

现从结论入手,设AB ∥L 并与两条弦相交,则交点在L ’上的投影重合,反之,如果四条线段在L 或L ’上的投影有重合点,则从重合点出发作垂线即可。

由特殊化探索出一个等价命题:将给定的线段向已知直线L 或L 的垂线作投影时,至少有两个投影点重合。

这可以通过长度计算来证实。

证明 设已知直线为L ,作L ’⊥L ,又设4n 条线段为124,,,n d d d …,每一条i d 在L ,L ’上的投影长为,(14)i i a b i n ≤≤

,有0,1i i a b ≥≥=。

由1i i a b +=

≥=

4441

1

1

()4n

n

n

i

i

i

i

i i i a b a b n ===+=+≥∑∑∑

从而,两个加项

4411

,n n

i

i

i i a b ==∑∑中必有一个不小于2n 厘米,

但圆的直径为2n 厘米,故1

2

4,,,n

d d d …在L 或L ’的投影中,至少有两条线段的投影相交,过重迭点作L 或L ’的垂线即为所求。(将,i i a b 表示为三角函数运算更方便)

.275IMO -(例2-51)的求解过程,实质上是对表达式(())()()f xf y f y f x y ?=+中函数的三个表达式(),(),(())f y f x y f xy y +分别取值为(2)0f =

2-7-10 一般化

推进到一般,就是把维数较低或抽象程度较弱的有关问题转化为维数较高、抽象程度较强的问题,通过整体性质或本质关系的考虑,而使问题获得解决,离散的问题可以一般化用连续手段处理,有限的问题可以一般化用数学归纳法处理,由于特殊情况往往涉及一些无关宏旨的细节而掩盖了问

题的关键,一般情况则更明确地表达了问题的本质。波利亚说:“这看起来矛盾,但当从一个问题过渡到另一个,我们常常看到,新的雄心大的问题比原问题更容易掌握,较多的问题可能比只有一个问题更容易回答,较复杂的定理可能更容易证明,较普遍的问题可能更容易解决。”

希尔伯特还说:在解决一个数学问题时,如果我们没有获得成功,原因常常在于我们没有认识到更一般的观点,即眼下要解决的只不够是一连串有关问题的一个环节。

例2-149 求和(例2-144) 1

2

2k

n

n n n n n a C C kC nC =+++++…… 解 引进恒等式 0

(1)n

n

k

k n

k x C

x =+=

对x 求导 1

1

1

(1)

n

n k k n k n x kC x --=+=∑ 令1x =,得

11

2n

k n n

k kC

n -==∑。

这实质是将所面临的问题,放到一个更加波澜壮阔的背景上去考察,当中既有一般化、又有特殊化。

例2-150 1985个点分布在一个圆的圆周上,每个点标上+1或-1,一个点称为“好点”,如果从这点开始,依任一方向绕圆周前进到任何一点时,所经过的各数的和都是正的。证明:如果标有-1的点数少于662时,圆周上至少有一个好点。

证明 这里662与1985的关系是不清楚的,一般化的过程其实也就是揭示它们内在联系的过程,可以证明更一般性的结论:在32n +个点中有n 个-1时,“好点”一定存在。

(1)1n =时,如图2-64,A 、B 、C 、D 标上+1,则B 、C 均为好点。 (2)假设命题当n k =时成立,即32k +个点中有k 个-1时,必有好点。

对1n k =+,可任取一个-1,并找出两边距离它最近的两个+1,将这3个点一齐去掉,在剩下的32k +个点中有k 个-1,因而一定有好点,记为P 。现将取出的3个点放回原处,因为P 不是离所取出的-1最近的点,因而从P 出发依圆周两方前进时,必先遇到添回的+1,然后再遇到添回的-1,故P 仍是好点,这说明,1n k =+时命题成立。

由数学归纳法得证一般性命题成立,取661n =即得本例成立。

这里一般化的好处是:第一,可以使用数学归纳法这个有力工具;第二归纳假设提供了一个好点,使得顺利过渡到1n k =+。一般说来,更强的命题提供更强的归纳假设。

例2-151 设,m n N ∈,求证2

2

[

(1)

]()k k n

n

k

k k S m m ===-∑∑是整数。

证明 考虑更一般性的整系数多项式 0

()[()]()n n

k

k

k k f x x x

===-∑∑

由 ()()

f x f x -= 知()f x 是偶函数,从而()f x 只含x 的偶次项,得()f x 是含2x 的整系数多项式,特别地,取2

x

为正整数即2

m x =,得2

2

(

(1)

)()k

k n

n

k

k k S f m m ====-∑∑为整数。

这里,把常数m 一般化为变数之后,函数性质便成为解决问题的锐利武器。 2-7-11 数字化

数字化的好处是:将实际问题转化为数学问题的同时,还将抽象的推理转化为具体的计算。这在例2-33中已见过。

例2-152 今有男女各2n 人,围成内外两圈跳舞,每圈各2n 人,有男有女,外圈的人面向内,内圈的人面向外,跳舞规则如下:每当音乐一起,如面对面者为一男一女,则男的邀请女的跳舞,如果均为男的或均为女的,则鼓掌助兴,曲终时,外圈的人均向左横移一步,如此继续下去,直至外圈的人移动一周。

证明:在整个跳舞过程中至少有一次跳舞的人不少于n 对。

解 将男人记为+1,女人记为-1,外圈的2n 个数122,,,n a a a …与内圈的2n 个数122,,,n b b b …中有2n 个1,2n 个-1,因此,和1221220n n a a a b b b +++++++=……

从而2

122122122()()()0n n n a a a b b b b b b ++++++=-+++≤……… ①

另一方面,当1a 与i b 面对面时, 12121,,,i i n i a b a b a b +-…中的-1的个数表示这时跳舞的对数,如果在整个过程中,每次跳舞的人数均少于n 队,那么恒有

121210(1,2,,2i i n i a b a b a b i n +-+++>=……)

从而总和2121

211221221

0()()()n

i

i n i n n i a b a b

a b a a a b b b +-=<

+++=++++++∑……… ②

由①与②矛盾知,至少有一次跳舞的人数不少于n 对。 这里还用到整体处理的技巧。

例 2-153 有男孩、女孩共n 个围坐在一个圆周上(3n ≥),若顺序相邻的3人中恰有一个男孩的有a 组,顺序相邻的3人中恰有一个女孩的有b 组,求证3a b -。

证明 现将小孩记作(1,2,,)i a i n =…,且数字化

11i i i a a a ?=?-?

表示男孩时 表示女孩时

则121212

12123,,3,,1,,1,,i i i i i i i i i i i i i i i i a a a a a a A a a a a a a a a a ++++++++++??

-?=++=?

??-?

均为男孩

均为女孩

恰有一个女孩 恰有一个男孩

其中n j j a a +=

又设取值为3的i A 有p 个,取值为3-的i A 有q 个,依题意,取值为1的i A 有b 个,取值为1-的i A 有a 个,得 12123234123()()()()n n a a a a a a a a a a a a +++=+++++++++……

3(3)(1)3()()p q a b p q b q =+-+-+=-+-

可见3a b -,也可以数字化为j j j a a a ωω??=??? 表示男孩时

表示女孩时

31.122w ω=-+= 有1212

122

121,,,,,,i i i i i i i i i i i i a a a a a a a a a a a a ωω++++++++??

+=??? 表示三男或三女

表示二男一女 表示一男二女

考虑积 3

121()b a

n a a a ω

-==… 知3a b -

2-7-12 有序化

当题目出现多参数、多元素(数、字母、点、角、线段等)时,若按一定的规则(如数的大小,点的次序等),将其重新排列,则排序本身就给题目增加了一个已知条件(有效增设),从而大大降低问题的难度。特别是处理不等关系时,这是一种行之有效的技巧。

例2-154 设有22n n ?的正方形方格棋盘。在其中任意的3n 个方格中各放一枚棋子,求证可以选出n 行和n 列,使得3枚棋子都在这n 行和n 列中。

证明 设3n 枚棋子放进棋盘后,2n 行上的棋子数从小到大分别为122,,,n a a a …,有

1220n a a a ≤≤≤≤… ①

12123n n n a a a a a n +++++++=…… ②

由此可证 1222n n n a a a n +++++≥… ③ (1)若12n a +≥,③式显然成立。

(2)若11n a +≤时,121n n a a a n a n ++++≤?≤… 从而122123()2n n n n a a a n a a a n +++++=-+++≥…… 得③式也成立。

据③式,可取棋子数分别为122,,,n n n a a a ++…所对应的行,共n 行。由于剩下的棋子数不超过n ,因而至多取n 列必可取完全部3n 个棋子。

例2-155 设12,,,n x x x …都是自然数,且满足 1212n n x x x x x x +++=…… ① 求12,,,n x x x …中的最大值。(2n ≥)

解 由条件的对称性,不妨设 12n x x x ≤≤≤… ②

这就改变了条件的对称性,相当于增加了一个条件 12(

2)n x n -≥≥ 否则,11n x -=,由②知 12111n n x x x x --=====…

从而,代入①得 (1)n n n x x -+=矛盾,这时,由①有 1211221221211

12112111

n n n n n n n n x x x x x x x x x x x x x x x x x x x x -------++++++=

-- (1122)

121(2)1

n n n n x x x x x x x ----+=

-……

1122112112211(2)21

111

n n n n n n n n x x x x n x n n x x x x x x x x --------+-+-≤

==+≤---………

当1221n x x x -====…且12n x -=时,n x 有最大值n ,这也就是12,,,n x x x …的最大值。 2-7-13 不变量

在一个变化的数学过程中常常有个别的不变元素或特殊的不变状态,表现出相对稳定的较好性质,选择这些不变性作为解题的突破口是一个好主意。

例2-156 从数集{}3,4,12开始,每一次从其中任选两个数,a b ,用3455a b -和43

55

a b +代替它们。能否通过有限多次代替得到数集{}4,6,12,

解 对于数集{},,a b c ,经过一次替代后,得出3

443,,5555a b a b c ??-+????

, 有2222223

443

()()5555

a b a b c a b c -

+++=++ 即每一次替代后,保持3个元素的平方和不变(不变量)。由2

2

2

2

2

2

34124612++≠++知, 不能由{}3,4,12替换为{}4,6,12。

例2-157 设21n +个整数1221,,,n a a a +…具有性质p ;从其中任意去掉一个,剩下的2n 个数可以分成个数相等的两组,其和相等。证明这2n+1个整数全相等。 证明 分三步进行,每一步都有“不变量”的想法。 第一步 先证明这2n+1个数的奇偶性是相同的。

因为任意去掉一个数后,剩下的数可分成两组,其和相等,故剩下的2n 个数的和都是偶数。因此,任一个数都与这2n+1个数的总和具有相同的奇偶性。

第二步 如果1221,,,n a a a +…具有性质P ,则每个数都减去整数c 之后,仍具有性质P ,特别地取1c a =,得21312110,,,,n a a a a a a +---…

也具有性质P ,由第一步的结论知,2131211,,,n a a a a a a +---…都是偶数。 第三步 由21312110,,,,n a a a a a a +---…为偶数且具有性质P ,可得

31

211210,

,,,222

n a a a a a a +---… 都是整数,且仍具有性质P ,再由第一步知,这21n +个数的奇偶性相同,为偶数,所以都除

以2后,仍是整数且具有性质P ,余此类推,对任意的正整数k ,均有

31

211210,

,,,

222n k k k

a a a a a a +---…为整数,且具有性质P ,因k 可以任意大,这就推得 21312110n a a a a a a +-=-==-=…即 1221

n a a a +===… 2-7-14 整体处理

数学题本身是一个子系统,在解题中,注意对其作整体结构的分析,从整体性质上去把握各个局部,这样的解题观念或思考方法,称为整体处理。

例2-158 九个袋子分别装有9,12,14,16,18,21,24,25,28只球,甲取走若干袋,乙也取走若干带,最后只剩下一袋,已知甲取走的球数总和是乙的两倍,问剩下的一袋内装有球几只?

解 从全局上考虑,由于甲取走的球数是乙取走球数的两倍,所以取走的球数总和必是3的倍数,而九个袋子的球数之和被3除余2,所以剩下的一袋也是被3除余2,又由于九袋中,只有

142(mod3)≡,故剩下的袋内装球14只。

例2-159 证明任意3个实数,,a b c 不能同时满足下列三个不等式

,,a b c b c a c a b <-<-<-

证明 若不然,存在3个实数000,,a b c ,使

000a b c <- 000b c a <- 000c a b <-

相乘 2

2

2

0000000000()()()0a b c a b c b c a ≤-++-+-<

这一矛盾说明,任意3个实数,,a b c 不能同时满足题设的三个不等式。

2-7-15 变换还原

利用那些具有互逆作用的公式或运算,先作交换,再作还原,是绕过难点,避开险处的一个技巧。

例2-160 求数列的通项,已知112

1

20,1,(3)

(1)31n n n n x x x x x n x +>≠??+?=≥?+?

且 解 引进变换1()1x

F x x

-=

+,有 (())F F x x = 由 23

31111233

111(3)(1)(1)

31(1)(1)

n n n n n n n n x x n x x x x x -------+++-==++--

31331113

3111

11()

11()

(())11()1()

1n n n n n n n x x F x F F x x F x x ---------+-===-+++ 得2

1

3

3

331121()((()))()()()n n n n n F x F F F x F x F x F

x ----=====…

得 1

31(())(())

n n n x F F x F F x -==

1

11

11

131331113331111

11()1(1)(1)

1(1)(1)1()

1n n n n n n x x x x x x x x --------++--==

-++-++ 例2-161 证明恒等式

1

111(1)(1)2n

k k

n

k C k n =-+++=-∑… (1) 证明 利用互逆公式: 若0(1)k

l

l n k l

t b C a ==

-∑ 0,1,2,k =…

(2) 则0

(1)n

k

k n n k

k a C b

==

-∑ 0,1,2,n = (3)

记010,,1,2,l a a l l ==-= (011)

0,1,1,2,2n b b n n

==+++=…… 先作(2)中的运算

11111

11

(1)()(1)(1)k

k l

l l l k k k

k l l b C C l k -++===--=-+-∑∑

1

1

11

11111(1)

()(1)

k l l l k k k l C C l k

-+-+--==

-++-∑ 1

11

11111

1111(1)(1)(1)k k l l l k k k l l C C l k k --+++====-+-+-∑∑ 111211111(1)1k l l

k k n k l b C b b k k k k

+---==+-=+=+

+-∑ 11

12k

==+

++……… 再作(3)中的运算

00

111(1)(1)(1)2n n

k k k k

n n n n k k a C b C n k ==-==-=-+++∑∑…

2-7-16 逐步调整

在涉及到有限多个元素的系统中,系统的状态是有限的,因而总可以经过有限次调整,把系统调整到所要求的状态(常常是极值状态)。

例2-162 已知二次三项式2

()f x ax bx c =++的所有系数都是正的且1a b c ++=,求证:对于任何满足121n x x x =...的正数组12,,,n x x x ...,都有12()()()1n f x f x f x ≥ (1)

证明 由(1)1f a b c =++=知,若121n x x x ====… (2) 则(1)中等号成立。

若12,,,n x x x …不全相等,则其中必有1,1i j x x ><(不妨设i j >),由

()()(1)()i j i j f x f x f f x x -

22

22()()()()i i

j j i j i

j

a x

b x

c a x b x

c a b c a x x b x x c

=++++-++++ 2

2

(1)(1)(1)(1)(1)(1)0i j i j i j i j abx x x x ac x x bc x x =--------->

可作变换 '(,)','1k k i

i j j x x k i k j x x x x =≠≠???==??

则12121212'''1

(')(')(')()()()

n n n n x x x x x x f x f x f x f x f x f x ==??

当12',',,'n x x x …不全相等时,则又进行同样的变换,每次变换都使12,,,n x x x …中等于1的个

数增加一个,至多进行1n -次变换,必可将所有的i x 都变为1,从而

1212()()()(')(')(')(1)(1)(1)1n n f x f x f x f x f x f x f f f >>>=①…………

此题中逐步调到平衡状态的方法也叫磨光法,所进行的变换称为磨光变换。 例2-163 平面上有100条直线,它们之间能否恰有1985个不同的交点。

解 100条直线若两两相交,可得2

1004950C =个交点,现考虑从这种状态出发,减少交点的个数,使恰好为1985。办法是使一些直线共点或平行。

设直线有k 个共点的直线束,每一束中直线的条数为12,,,(3,1,2,,)k i n n n n i k ≥=……有

12100k n n n +++≤…

这时,每一束的交点数下降了2

1i n C -个,为使

(推荐)高中数学奥赛辅导

数列与递进 知识、方法、技能 数列是中学数学中一个重要的课题,也是数学竞赛中经常出现的问题. 所谓数列就是按一定次序排列的一列数.数列的一般形式是a 1, a 2, …,a n , …通常简记为{a n }.如果数列{a n }的第n 项a n 与n 之间的函数关系可用一个公式来表示,这个公式就叫做这个数列的通项公式. 从函数的角度看,数列可以看做是一个函数,定义域是自然数集或自然数集的一个有限子集,函数表达式就是数列的通项公式. 对于数列{a n },把S n =a 1+a 2+…+a n 叫做数列{a n }的前n 项和,则有 ?? ?≥-==-). 2(),1(11 n S S n S a n n n I .等差数列与等比数列 1.等差数列 (1)定义:.2 )(2 11++++==-n n n n n a a a d a a 或常量 (2)通项公式:a n =a 1+(n -1)d . (3)前n 项和公式:.2 ) 1(2)(11d n n na a a n S n n -+=+= (4)等差中项:.2 21+++= n n n a a a (5)任意两项:a n =a m +(n -m)d. (6)性质: ①公差为非零的等差数列的充要条件是通项公式为n 的一次函数; ②公差为非零的等差数列的充要条件是前n 项和公式为n 的不含常数项的二次函数; ③设{a n }是等差数列,如果m 、n 、p 、q ∈N*,且m+n=p+q ,那么a m +a n =a p +a q ; ④设S n 是等差数列{a n }的前n 项和,则S m , S 2m -S m , S 3m -S 2m , …, S pm -S (p -1)m (m>1,p ≥3,m 、p ∈N*)仍成等差数列; ⑤设S n 是等差数列{a n }的前n 项和,则}{ n S n 是等差数列; ⑥设{a n }是等差数列,则{λa n +b}(λ,b 是常数)是等差数列;

高中数学竞赛系列辅导材料 集合

集合(一) 内容综述: 本讲先介绍了以下一些重要的概念:集合、子集、两集合相等、真子集、并集、交集、相对补集,然后介绍了著名的容斥原理,接着介绍了以下几个定律:零律、分配律、排中律、吸收律、补交转换律、德·摩根律。 然后通过6道例题分析了一部分集合题目的解题方法与技巧,同学们应在熟悉以上定义、定理、定律的基础上仔细分析例题材解法,争取可以独立解决训练题。 要点讲解: §1.基本理论 除了课内知识外,我们补充以下知识 相对补集:称属于A而不属于B的全体元素,组成的集合为B对A的相对补集或差集,记作A-B。 容斥原理:以表示集合A中元素的数目,我们有 ,其中为n个集合称为A的阶。 n阶集合的全部子集数目为。 A,B,C为三个集合,就有下面的定律。 (1)分配律 (2)零律

(3)排中律 (4)吸收律 (5)补交转换律 (6)德·摩根律的相对形式 例题分析: 例1:对集合{1,2,…,n}及其每一个非空了集,定义一个唯一确定的“交替和”如下:按照递减的次序重新排列该子集,然后交替地减或加后继的数所得的结果,例 如,集合的“交替和”是9-6+4-2+1=6.的“交替和”是6-5=1,的交替和是2。那么,对于n=7。求所有子集的“交替和”的总和。 分析;n=7时,集合{7,6,5,4,3,2,1}的非空子集有个,虽然子集数 目有限,但是逐一计算各自的“交替和”再相加,计算量仍然巨大,但是,根据“交替和”的定义,容易看到集合{1,2,3,4,5,6,7}与{1,2,3,4,5,6}的“交替 和”是7;可以想到把一个不含7的集和A与的“交替和”之和应为7。那么,我们也就很容易解决这个问题了。 解:集合{1,2,3,4,5,6,7}的子集中,除去{7}外还有个非空子集合,把这个非空子集两两结组后分别计算每一组中“交替和”之和,结组原则是设 这是把结合为一组,显然,每组中,“交替和”之和应为7,共有组.所以,所有“交替和”之和应该为 。

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

高一数学竞赛培训讲座之函数的基本性质

函数的基本性质 基础知识: 函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的. 关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题: 1. 已知f(x)=8+2x -x 2,如果g(x)=f(2-x 2 ),那么g(x)( ) A.在区间(-2,0)上单调递增 B.在(0,2)上单调递增 C.在(-1,0)上单调递增 D.在(0,1)上单调递增 提示:可用图像,但是用特殊值较好一些.选C 2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤ 23时,f(x)=x ,则f(2003)=( ) A.-1 B.0 C.1 D.2003 解:f(x +6)=f(x +3+3)=-f(x +3)=f(x) ∴ f(x)的周期为6 f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A 3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有 101个不同的实数根,那么所有实数根的和为( ) A.150 B.2303 C.152 D.2 305 提示:由已知,函数f(x)的图象有对称轴x = 23 于是这101个根的分布也关于该对称轴对称.

即有一个根就是23,其余100个根可分为50对,每一对的两根关于x =2 3对称 利用中点坐标公式,这100个根的和等于 23×100=150 所有101个根的和为 23×101=2303.选B 4. 实数x ,y 满足x 2=2xsin(xy)-1,则x 1998+6sin 5 y =______________. 解:如果x 、y 不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x -sin(xy))2+cos 2(xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=7 5. 已知x =9919+是方程x 4+bx 2+c =0的根,b ,c 为整数,则b +c =__________. 解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x -9919= ∴ x 2-219x +19=99 即 x 2-80=219x 再平方得x 4-160x 2+6400=76x 2 即 x 4-236x 2+6400=0 ∴ b=-236,c =6400 b + c =6164 6. 已知f(x)=ax 2+bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根, 求证:a >4. 证法一:由已知条件可得 △=b 2-4ac≥0 ① f⑴=a +b +c >1 ②

高中数学奥赛的技巧(上篇)

奥林匹克数学的技巧(上篇) 有固定求解模式的问题不属于奥林匹克数学,通常的情况是,在一般思维规律的指导下,灵活运用数学基础知识去进行探索与尝试、选择与组合。这当中,经常使用一些方法和原理(如探索法,构造法,反证法,数学归纳法,以及抽屉原理,极端原理,容斥原理……),同时,也积累了一批生气勃勃、饶有趣味的奥林匹克技巧。在2-1曾经说过:“竞赛的技巧不是低层次的一招一式或妙手偶得的雕虫小技,它既是使用数学技巧的技巧,又是创造数学技巧的技巧,更确切点说,这是一种数学创造力,一种高思维层次,高智力水平的艺术,一种独立于史诗、音乐、绘画的数学美。” 奥林匹克技巧是竞赛数学中一个生动而又活跃的组成部分。 2-7-1 构造 它的基本形式是:以已知条件为原料、以所求结论为方向,构造出一种新的数学形式,使得问题在这种形式下简捷解决。常见的有构造图形,构造方程,构造恒等式,构造函数,构造反例,构造抽屉,构造算法等。 例2-127 一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋。 证明:用n a 表示这位棋手在第1天至第n 天(包括第n 天在内)所下的总盘数(1,2,77n =…),依题意 127711211132a a a ≤<<≤?=… 考虑154个数: 12771277,,,21,21,21a a a a a a +++…,?, 又由772113221153154a +≤+=<,即154个数中,每一个取值是从1到153的自然数,因而必有两个数取值相等,由于i j ≠时,i i a a ≠ 2121i j a a +≠+ 故只能是,21(771)i j a a i j +≥>≥满足 21i j a a =+ 这表明,从1i +天到j 天共下了21盘棋。 这个题目构造了一个抽屉原理的解题程序,并具体构造了154个“苹果”与153个“抽屉”,其困难、同时也是精妙之处就在于想到用抽屉原理。 例 2-128 已知,,x y z 为正数且()1xyz x y z ++=求表达式()()x y y z ++的最最小值。 解:构造一个△ABC ,其中三边长分别为a x y b y z c z x =+??=+??=+? ,则其面积为 1?= 另方面2()()2sin x y y z ab C ?++==≥ 故知,当且仅当∠C=90°时,取值得最小值2,亦即222()()()x y y z x z +++=+

高一数学必修1函数综合试题

函数单元测试 一、选择题:(本题共12题,每小题5分,满分60分) 1.若a 、b 、c ∈R + ,则3a =4b =6c ,则 ( ) A . b a c 111+= B . b a c 122+= C .b a c 221+= D .b a c 212+= 2.集合}5,4,3,2,1{},1,0,2{=-=N M ,映射N M f →:,使任意M x ∈,都有 )()(x xf x f x ++是奇数,则这样的映射共有 ( ) A .60个 B .45个 C .27个 D .11个 3.已知()1 a x f x x a -=--的反函数...f -1 (x )的图像的对称中心是(—1,3),则实数a 等于 ( ) A .2 B .3 C .-2 D .-4 4.已知()|log |a f x x =,其中01a <<,则下列不等式成立的是 ( ) A .11()(2)()43f f f >> B .1 1 (2)()()3 4 f f f >> C .11 ()()(2)43 f f f >> D .11()(2)()34 f f f >> 5.函数f (x )=1-x +2 (x ≥1)的反函数是 ( ) A .y =(x -2)2+1 (x ∈R) B .x =(y -2)2+1 (x ∈R) C .y =(x -2)2+1 (x ≥2) D .y =(x -2)2+1 (x ≥1) 6.函数y =lg(x 2-3x +2)的定义域为F ,y =lg(x -1)+lg(x -2)的定义域为G ,那么 ( ) A .F ∩G=? B .F=G C .F G D .G F 7.已知函数y =f (2x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是 ( ) A .(0,+∞) B .(0,1) C .[1,2] D .[2,4] 8.若()()25log 3log 3x x -≥()()25log 3log 3y y ---,则 ( ) A .x y -≥0 B .x y +≥0 C .x y -≤0 D .x y +≤0 9.函数)),0[(2 +∞∈++=x c bx x y 是单调函数的充要条件是 ( ) A .0≥b B .0≤b C .0b

高中数学值得推荐的辅导书 看完都上清华北大

高中数学值得推荐的辅导书看完都上清华北大 很多同学进入高中后都会想要几本好的教辅书,下面是小编推荐的高中数学最好的辅导书,希望能对大家有所帮助。 ? ?高考数学最好的辅导书 1.《高中数学精编?代数》《高中数学精编解析 几何、立体几何》郑日锋浙江教育出版社这套书上世纪八十年代就已经风靡一时了,堪称经典。之前一直是四本,后来改成了两本,内容上也有更新,目前还是四校学生争先恐后刷掉的第一套书,可见其在高中教辅之中的地位。可作为同步教辅。2.《多功能题典?高中数学》(第三版)况亦军华东师范大学 出版社该书主编况亦军为上海中学数学教研组组长,各章编写者大多为华东师范大学第二附属中学的老师,可以保证该书品质。该书非常厚(1000页),每个题目后配有详细解析,非常适合有一定基础之后再进行阅读,否则只看解析不动笔做容易造成眼高手低的状况。3.《高中五星级题库?数学(课改版)》《高中五星级题库难题解析数学(课改版)》(红皮)沈子兴上海科技教育出版社还有一套蓝皮的五星级题库不推荐给各位,因为那本书是全国教材的编写顺序,而红皮的是上海教材的编写顺序。该书为华师大二附中学生用于提高的教辅,部分五星题目达到高中联赛难度。4.《华东师大版一课一练》华东师 范大学出版社该书为部分中学同步教辅,号称改革开放以来最具影响力的300本书之一,经常遇到学生问到该书上的问题,如果学校要求做就做,不 要求做的话建议刷《精编》。5.《龙门专题高中数学》(12本专题+1思想方法)付荣强龙门书局高中教辅精五门之一(精编,五星级题库,龙门专题),这是 高中常规体系教辅材料里面少有的分专题呈现的教辅,专题之间穿插很多,综合性强,不适合作为同步教辅,当然学习能力非常强的学生可用该书自学。

高中数学竞赛讲义

高中数学竞赛资料 一、高中数学竞赛大纲 全国高中数学联赛 全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。 全国高中数学联赛加试 全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是: 1.平面几何 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。 2.代数 周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角函数。递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。 第二数学归纳法。平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。 复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。 n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。 函数迭代,简单的函数方程* 3.初等数论 同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题 圆排列,有重复元素的排列与组合,组合恒等式。组合计数,组合几何。抽屉原理。容斥原理。极端原理。图论问题。集合的划分。覆盖。平面凸集、凸包及应用*。 注:有*号的内容加试中暂不考,但在冬令营中可能考。 二、初中数学竞赛大纲 1、数 整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。 2、代数式 综合除法、余式定理;因式分解;拆项、添项、配方、待定系数法;对称式和轮换对称式;整式、分工、根式的恒等变形;恒等式的证明。 3、方程和不等式 含字母系数的一元一次方程、一元二次方程的解法,一元二次方程根的分布;含绝对值的一元一次方程、一元二次方程的解法;含字母系数的一元一次不等式的解法,一元二次不等式的解法;含绝对值的一元一次不等式;简单的多元方程组;简单的不定方程(组)。 4、函数 二次函数在给定区间上的最值,简单分工函数的最值;含字母系数的二次函数。 5、几何 三角形中的边角之间的不等关系;面积及等积变换;三角形中的边角之间的不等关系;面积及等积变换;三角形的心(内心、外心、垂心、重心)及其性质;相似形的概念和性质;圆,四点共圆,圆幂定理;四种命题及其关系。 6、逻辑推理问题 抽屉原理及其简单应用;简单的组合问题简单的逻辑推理问题,反证法;

苏教版高一数学必修1综合复习试题

高一数学必修1综合复习试题 一、填空题 1.集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(?R B )= . 2.已知函数20()10x x f x x x ?=?->?,≤,,,若1()2f a =,则实数a = . 3.方程)2(log )12(log 255-=+x x 的解集为 . 4.函数23 )(-=x x f 的定义域为 . 5.已知函数()f x 是R 上的奇函数,且当0x >时,32()2f x x x =-,则0x <时,函数()f x 的表达式为()f x = . 6.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为 . 7.已知定义在R 上的奇函数)(x f 满足),()2(x f x f -=+则)6(f =_________. 8.若2()2(1)2f x ax a x =+-+在(3,3)-为单调函数,则a 的取值范围是 . 9 .函数y 的单调递减区间为 . 10.函数)86lg()(2++-=a ax ax x f 的定义域为R ,则实数a 的取值范围是 . 11.若关于x 的方程a a x -+= 523)43(有负实数解,则实数a 的取值范围为 . 12.如果函数()223f x x x =-+在[]0,m 上有最大值3,最小值2,则m 的范围是 .

13.已知定义域为()(),00,-∞+∞U 的偶函数()f x 在(0)+∞,上为增函数,且(1)0f =,则 不等式()0x f x ?>的解集为 . 14.不等式012 ≥+-ax x 对所有]2,1[∈x 都成立,则实数a 的取值范围 . 二、解答题 15.设集合{}2|lg(2)A x y x x ==--,集合{}|3||B y y x ==-. ⑴ 求B A ?和A B U ; ⑵ 若{}|40C x x p =+<,C A ?,求实数p 的取值范围. 16.计算下列各式的值: (1)3212833)21() 32(??? ??--+-- ; (2) 2lg 2lg3111lg 0.36lg823 +++.

如何学习数学竞赛

你知道数学竞赛怎么学 点击:248次,时间:2016-11-12 14:08:55 搞竞赛要找好苗子,首先他是热情的,勤奋的,其次是有抱负的,不畏艰难的;当然不能是临时抱佛脚的。冰冻三尺,非一日之寒。应该从高一前的暑假就开始不停的学习、训练。细细地说来,注意事项还有很多。 1、学习进度方面 要在高一开学之前的那个暑假里把整个高中的数学内容全部学完,并在高一上学期应该完成像高三一样的两轮复习,基础太重要了,第一试占了150分,不可小视。然后,就是竞赛内容了,不要以为看几本竞赛书就可以了,因为那些书上讲得太粗略;这时候,对老师的要求就更高。老师不但要对竞赛内容非常熟悉,还要不断地总结重要的思想方法,使学生能够灵活运用。 2、入门书单 首先如果要涉猎竞赛,最基本的高中课程是一切的基础。接下来的书就是建立在此基础上的。我们最先做的当然是补全差距:课标大纲和竞赛大纲之间的差距。 1)《新编中学数学解题方法全书》,即基础衔接书。 2)《奥数教程》 经典奥数蓝皮书。优点是与课本知识联系紧密,适合你在第一遍学习高中数学知识的同时同步提高,帮助你打下坚实的基础,以讲解为主,以测试为辅。(与《培优教程》二选一即可,小编认为《培优》稍难,但很散,推荐《奥数教程》。) 3、提高书单 1)《奥赛小丛书》 专而精,很多专题非常精彩,难度涵盖联赛和冬令营,读起来也容易让同学们感兴趣。如果仅以省级国一为目标,其中概率、几何不等式可以不看,图论、组合几何、数论编的不错,集合变换、三角与几何虽然写的很好但不实用;其它的如函数、集合还好,可以看看。这套书中代数只有两本不等式,而且很不实用,不推荐。至于数学归纳法里面题很经典,不过很综合,可以放在该套书后面看。对于这套书要尽快看完,里面题要自己做,可能比较辛苦。总的来说这套书值得一看,要尽早开始看。 2)《奥赛经典》 内容比较全面,例题选取也比较新,难度也较高,适合着眼于联赛二试和冬令营的同学们;代数部分可以做为《奥赛小丛书》的补充。几何还可以,但定理可以只记最基本的,拓展的可以不记。组合,数论有时间可以看看,不过很多都和小丛书重复,没时间就算了。 3)《命题人讲座》 适合系统学习,冲刺冬令营,但没必要每本都做,挑其中较好的做便可。如《解析几何》、《函数迭代与函数方程》、《数列与数学归纳法》、《组合问题》、《三角函数与复数》、《向量与立体几何》、《初等数论》。 其中《初等数论》是目前数论方面非常系统、难度较高的一本书,很多学生读后也感觉受益匪浅。数论方面当然不能不提两位先生,一位是潘承彪教授,一位是余红兵教授,潘老师的《初等数论》是我们读书时的必读教材,也是大学里的教材,不仅仅局限于竞赛范畴;余老师关于数论的小册子《数学竞赛中的数论问题》,非常经典! 另外华罗庚的《数论导引》则非常优秀,适合看完《初等数论》后再深化学习。此外非常值得推荐的是《哈代数论》,值得永世珍藏。 4)《数学竞赛研究教程(套装上下册)》 本书是参加数学竞赛的教练员和选手的必备用书。国内数学竞赛研究方面的权威参考书。 5)关于几何 《初等数学复习及研究平面几何》、《初等数学复习及研究立体几何》。有助于深化系统自己的几何基础。 6)关于组合 推荐单樽老师的《组合几何》《趣味图论》,以上均为上面提到过的数学奥赛辅导丛书的书,那一个系列基本上都非常出色,适合永世珍藏。

学高中数学竞赛辅导计划

学高中数学竞赛辅导计 划 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

2016年高中数学竞赛辅导计划 为搞好2016年全国数学联赛备考工作,并以此为契机,培养我校学生数学学习的积极性,进一步提高我校的办学品位,特举办本届高中数学联赛辅导班。 一、指导思想: 以科学发展观、新课程理论为指导;以提高学生学习数学、应用数学的兴趣,提高学生的数学素养为宗旨;坚持以生为本、有利于学生的终生发展的原则,立足实际、因材施教,开展数学竞赛辅导班工作。 二、目标要求 1、适当拓宽学生数学知识视野,注重渗透一些常用的数学思想方法、加深对数学本质的认识。 2、注重培养学生良好的思维品质,提高学生的探究知识及运用数学知识和数学思想方法分析、解决问题的能力。 3、注意培养学生的应用意识、创新意识、协作意识,培养学生良好的科学态度。 4、使学生在探究知识,解决问题的过程中,感受数学文化的博大精深和数学方法的巨大创造力,感受数学的魅力,增强对数学的向往感;从而激发学生学习数学的热情。培养学生不畏困难、敢于攀登科学高峰的勇气。 5、力争在2016年高中数学联赛中至少有两人次取得省级三等以上的奖项,在本市同层次学校中名列前茅,为学校争光。 三、管理措施: 1、依据全国数学联赛考试大纲,结合近几年数学联赛试题特点,根据教学进度和学生认知结构特点,精心选择、合理安排教学内容,循序渐进,逐步提高。 2、精心准备,讲究实效。认真编写讲义(或教案),上课前一周将讲义制好并分发给学生。认真上好每一节辅导课,使学生真正学有所得。 3、以集体讲解与学生自主学习和小组合作学习相结合的学习形式组织学习,充分调动学生学习的积极性,保障学生的主体地位。 4、精编课后巩固练习与强化,及时检查、及时批改、及时反馈,确保质量。 5、制定辅导班班规,严格考勤制度。 6、争取学校有关领导、班主任及数学教师的支持,确保后勤保障。 五、学生选拔:先由学生本人自愿报名,经家长同意后,由有关班主任、任课教师协商并推荐人选,通过选拔考试择优录取50名。 六、辅导教师: 七、活动时间: 八、活动地点: 注: 1、若有特殊情况须作临时调整,则另行通知。 2、本计划有不周之处或未尽事宜,将在执行过程中进行不断完善。 年月日2016年高中数学联赛辅导课安排表

高中数学奥林匹克竞赛

高中数学奥林匹克竞赛 奥数学林匹克竞竞~竞称奥数。年和年~竞竞竞始在列格勒宁和莫斯科竞竞中竞竞~学数学19341935 并冠以数学奥林匹克的名~称年在布加勒斯特竞竞第一届国数学奥竞竞竞竞林匹克。竞竞竞竞国数学奥1959 林匹克作竞一竞竞性竞事~由竞国国数学教育竞家命竞。 我的高中竞竞分三竞,每年国数学月中旬的全竞竞~次年一月的国;冬令竞,~次年三10CMO月竞始的家国集竞竞的竞竞竞拔。与 “全高中竞竞国数学”;竞竞于年,~承竞方式初中竞竞相同~每年与月竞行~分竞一竞和198110二竞~在竞竞竞竞中取得竞成竞的全竞异国名生有竞格加由中主竞的“学参国数学会中林国数学奥90 匹克;,竞全中生冬令竞”;每年元月,。国学数学CMO 全竞竞分竞一竞、加竞国数学(即称俗的“二竞”)。各省自己竞竞的“初竞”、个份“初竞”、“竞竞”等等~都不是正式的全竞竞名及程序。国称一竞 全高中竞竞的一竞竞竞大竞~完全按照全日制中《大竞》中所竞定的要求国数学学数学教学教学 和容~高考所竞定的知竞范竞和方法~在方法的要求上略有提高~其中率和内即概微竞分初步 不考。 二竞 平面何几 基本要求,掌握初中竞竞大竞所定的所有容。确内

竞充要求,面竞和周竞方法。 几个重要定理,梅涅竞斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极竞,到三角形三竞点距之和最小的点离——竞竞点。到三角形三竞点距的离平方 和最小的点重心。三角形到三竞距之竞最大的点重心。——内离—— 几何不等式。 竞竞的等周竞竞。了解下述定理, 在周竞一定的竞形的集合中~正竞形的面竞最大。n n 在周竞一定的竞竞竞曲竞的集合中~竞的面竞最大。 在面竞一定的竞形的集合中~正竞形的周竞最小。nn 在面竞一定的竞竞竞曲竞的集合中~竞的周竞最小。 几运何中的竞,反射、平移、旋竞。 竞数方法、向量方法。* 平面凸集、凸包及竞用。 代数 在一竞大竞的基竞上外要求的容,另内 周期函数与周期~竞竞竞竞的函的竞像。数三倍角公式~三角形的一些竞竞的恒等式~三角不 等式。 第二竞竞法。竞竞~一竞、二竞竞竞~数学特征方程法。 函迭代~求数次迭代~竞竞的函方程数。n** 个竞元的平均不等式~柯西不等式~排序不等式及竞用。n 竞的指形式~数数欧拉公式~美弗定理棣~竞位根~竞位根的竞用。竞排列~有重竞的排列竞合。竞竞的与竞合恒等式。

高一数学必修一综合

老梁试卷高一数学必修一综合 一.选择题(共10小题,满分50分,每小题5分) 1.(5.00分)已知集合A={x|x2<16},B={x|4﹣2x>0},则A∩B=() A.(﹣4,2) B.(﹣4,4) C.(﹣2,2) D.(﹣2,4) 2.(5.00分)函数f(x)=ln||的大致图象是() A.B.C.D. 3.(5.00分)已知函数是奇函数,则f(a)的值等于() A.B.3 C.或3 D.或3 4.(5.00分)已知奇函数f(x),当x>0时单调递增,且f(1)=0,若f(x﹣1)>0,则x的取值范围为() A.{x|0<x<1或x>2}B.{x|x<0或x>2} C.{x|x<0或x>3}D.{x|x<﹣1或x>1} 5.(5.00分)已知函数f(x)=log a x(0<a<1)的导函数为f'(x),记A=f'(a),B=f(a+1)﹣f (a),C=f'(a+1),则() A.A>B>C B.A>C>B C.B>A>C D.C>B>A 6.(5.00分)已知函数,若x,y满足,则的取值范围是() A.B.C.(﹣1,1) D.[﹣1,1] 7.(5.00分)已知点(m,8)在幂函数f(x)=(m﹣1)x n的图象上,设 ,则a,b,c的大小关系为() A.a<c<b B.a<b<c C.b<c<a D.b<a<c 8.(5.00分)已知函数f(x)=,g(x)=e x(e是自然对数的底数),若关于x的方程g(f(x))﹣m=0恰有两个不等实根x1、x2,且x1<x2,则x2﹣x1的最小值为()

A.(1﹣ln2)B.+ln2 C.1﹣ln2 D.(1+ln2) 9.(5.00分)某公司拟投资开发新产品,估计能获得10万元至100万元的投资收益,为激发开发者的潜能,公司制定产品研制的奖励方案:奖金y(万元)随投资收益x(万元)的增加而增加,同时奖金不超过投资收益的20%,奖金封顶9万元,若采用以下函数模型拟合公司奖励方案,则较适合的函数是() A.y=+2 B.y= C.y=+D.y=4lgx﹣3 10.(5.00分)在下列图象中,二次函数y=ax2+bx+c与函数y=()x的图象可能是() A.B.C.D. 二.填空题(共4小题) 11.已知log2x=log3y=log5z<0,则、、由小到大排序为. 12.已知函数(a>0,且a≠1),若f(﹣3)<f(4),则不等式f(x2﹣3x)<f(4)的解集为. 13.函数f(x)=,关于x的方程f(x)=kx﹣k至少有两个不相等的实数根,则实数k的取值范围为. 14.已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是. 三.解答题(共6小题) 15.已知定义域为R的函数f(x)=﹣+是奇函数 (1)求a的值; (2)判断函数f(x)的单调性并证明; (3)若对于任意的t∈(1,2),不等式f(﹣2t2+t+1)+f(t2﹣2mt)≤0有解,求m的取值范围.

高中数学奥赛辅导讲课稿

数列与递进 知识、方法、技能 数列是中学数学中一个重要的课题,也是数学竞赛中经常出现的问题. 所谓数列就是按一定次序排列的一列数.数列的一般形式是a 1, a 2, …,a n , …通常简记为{a n }.如果数列{a n }的第n 项a n 与n 之间的函数关系可用一个公式来表示,这个公式就叫做这个数列的通项公式. 从函数的角度看,数列可以看做是一个函数,定义域是自然数集或自然数集的一个有限子集,函数表达式就是数列的通项公式. 对于数列{a n },把S n =a 1+a 2+…+a n 叫做数列{a n }的前n 项和,则有 ???≥-==-).2(),1(11n S S n S a n n n I .等差数列与等比数列 1.等差数列 (1)定义:.2)(211++++= =-n n n n n a a a d a a 或常量 (2)通项公式:a n =a 1+(n -1)d . (3)前n 项和公式:.2 )1(2)(11d n n na a a n S n n -+=+= (4)等差中项:.2 21+++=n n n a a a (5)任意两项:a n =a m +(n -m)d. (6)性质: ①公差为非零的等差数列的充要条件是通项公式为n 的一次函数; ②公差为非零的等差数列的充要条件是前n 项和公式为n 的不含常数项的二次函数; ③设{a n }是等差数列,如果m 、n 、p 、q ∈N*,且m+n=p+q ,那么a m +a n =a p +a q ; ④设S n 是等差数列{a n }的前n 项和,则S m , S 2m -S m , S 3m -S 2m , …, S pm -S (p -1)m (m>1,p ≥3,m 、p ∈N*)仍成等差数列; ⑤设S n 是等差数列{a n }的前n 项和,则}{n S n 是等差数列; ⑥设{a n }是等差数列,则{λa n +b}(λ,b 是常数)是等差数列;

(推荐)高中数学竞赛基本知识集锦

高中数学竞赛基本知识集锦 一、三角函数 常用公式 由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。但是由于现在的教材中常用公式删得太多,有些还是不能不写。先从最基础的开始(这些必须熟练掌握): 半角公式 α αααααα cos 1sin sin cos 1cos 1cos 12tan +=-=+-±= 积化和差 ()()[]βαβαβα-++=sin sin 2 1cos sin ()()[]βαβαβα--+=sin sin 2 1sin cos ()()[]βαβαβα-++=cos cos 2 1cos cos ()()[]βαβαβα--+-=cos cos 2 1sin sin 和差化积 2 cos 2sin 2sin sin βαβ αβα-+=+ 2 sin 2cos 2sin sin βαβαβα-+=- 2 cos 2cos 2cos cos βαβαβα-+=+ 2 sin 2sin 2cos cos βαβαβα-+-=- 万能公式 α αα2tan 1tan 22sin += α αα22tan 1tan 12cos +-= α αα2tan 1tan 22tan -= 三倍角公式 ()()αααααα+-=-= 60sin sin 60sin 4sin 4sin 33sin 3 ()() αααααα+-=-= 60cos cos 60cos 4cos 3cos 43cos 3 二、某些特殊角的三角函数值

三、三角函数求值 给出一个复杂的式子,要求化简。这样的题目经常考,而且一般化出来都是一个具体值。要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去 举个例子 求值:7 6cos 74cos 72cos πππ++ 提示:乘以72sin 2π,化简后再除下去。 求值:??-?+?80sin 40sin 50cos 10cos 22 来个复杂的 设n 为正整数,求证n n n i n i 21212sin 1+=+∏=π 另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲 四、三角不等式证明 最常用的公式一般就是:x 为锐角,则x x x tan sin <<;还有就是正余弦的有界性。 例 求证:x 为锐角,sinx+tanx<2x 设12π ≥≥≥z y x ,且2π =++z y x ,求乘积z y x cos sin cos 的最大值和最小值。 注:这个题目比较难

高一数学必修一综合测试卷

高一数学必修一综合测试卷 一、选择题(本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集{}{} 043|,2|2 ≤-+=->=x x x T x x S ,则()T S C R ?=( ) A .(]1,2- B .(]4,-∞- C .(]1,∞- D .[)+∞,1 2.函数x x y 22)23lg(-+-=的定义域是( ) A .??????1,32 B .??????1,32 C .??? ??1,32 D .?? ? ??1,3 2 3.设函数???>-≤+=)0( 2) 0( 1)(2x x x x x f ,若01f(x)=,则x 等于( ) A .3或﹣3或﹣5 B .3或﹣3 C .﹣3或﹣5 D .﹣3 4.已知b a bx ax x f +++=3)(2 是偶函数,定义域为[]a a 2,1-,则?? ? ??21f 等于( ) A . 31 B .0 C .1213 D .2 1 5.已知集合{} { }A B A m B m A =?==,,1,,3,1,则m 等于( ) A .0或3 B .0或3 C .1或3 D .1或3 6.已知函数14)(2 +-=mx x x f ,在(]2,-∞-上递减,在[)+∞-,2上递增,则)(x f 在[]2,1上的值域为 ( ) A .[]49,21 B .[]21,15- C .[]49,15- D .[]21,1 7.设m b a ==52,且 21 1=+b a ,则m =( ) A .10 B .10 C .20 D .100 8.奇函数)(x f 在()+∞,0上的解析式是)1()(x x x f -=,则在()0,∞-上,函数)(x f 的解析式是( ) A .)(x f =)1(x x -- B .)(x f =)1 (x x + C .)(x f =)1(x x +- D .)(x f =)1(-x x 9.函数x x f x 32)(+=的零点所在的一个区间是( ) A .()1,2-- B .()0,1- C .()1,0 D .()2,1 10.若函数)(x f 在()2,1内有一个零点,要使零点的近似值满足精确度为0.01,则对区间()2,1至少二等分( ) A .5次 B .6次 C .7次 D .8次 二、填空题(本大题共5小题,每小题5分,共25分) 11.函数)2(log 2 3x x y -=的单调减区间是_____________。 12.若)1,0(13 log ≠>,则实数m 的取值范围是___________。 15.若)(x f y =在()),0(0,+∞?∞-上为奇函数,且在()+∞,0上为增函数,0)2(=-f , 则不等式 0)(

高中数学教辅资料推荐

江苏考生必看!哪些教辅适合江苏高考数学 高中孩子的时间紧,精力有限,市面上教辅繁多,所以选择一两本合适的教辅就非常重要了,能让孩子把有限的时间花在“刀刃”上,那如何来选择适合江苏考生的数学资料呢?主要考虑如下五个方面: 1、要有针对性:现在市面上的教辅主要分为4个版本:人教版(最多),苏教版(江 苏),北师大版(陕西),未说明版(通用),我们选择时候一定要看清楚是苏教版, 少数的通用版本也可以选择。 2、书不在多,在于适用和实用,不要盲目贪多,精选一到两本,一般一本基础的概念解 析教辅作为初学,一本拔高练习题集作为复习就够了。 3、出版时间和版次,一般选择在两年内出版,江苏高考每年都有变化和新题,教辅资料 一定要注意更新迭代,不然跟不上时代,其中重版的次数越多,说明越完善。 4、对书的质量的判断侧重例题和习题,不侧重答案讲解。应选择带重点题型例题讲解 的辅导书,其他带有详细答案的,不一定就是好的辅导书。 5、切忌盲目选择,不要被书的名目所迷惑。也不要被书店的店员推荐所误导,因为那 个店员可能就是某出版社的促销员。 讲完以上的方法,具体哪些辅导书值得我们选择呢?下面就给大家梳理下市面上常见教辅: 1、《重难点手册》 说明:总结重难点为题比较到位,比较针对性,但不适合初学者,用于复习时候补 漏拔高。 2、《江苏数学5年经典》 说明:优点是大部分都是江苏题型,比较有针对性,和小题狂做都属于恩波教育,南京本地的出版商,其中的一位主编是金陵中学的资深教师。属于题集形式,适合 用来复习。恩波教育的其他书籍如:《小题狂做》,《大题精做》,《优化38+2》等等 都是很好的江苏本地选择,就不一一介绍了。

江苏省金湖县实验中学高中数学 奥赛辅导 构造一次方程组的技巧

- 1 - 一、利用同类项的定义构造: 例1:已知m n m n b a --31999 1和1079999+-m n a b 是同类项,则.________22=+n m 二、利用二元一次方程的定义构造: 例2:若243724953=+--++n m n m y x 是二元一次方程,则n m 的值等于________. 三、利用方程组的解的定义构造: 例3:若???==12y x 是方程组???=+=-5 213by ax y ax 的解,求b a 、的值. 四、利用相反数的性质构造: 例4:已知a 的相反数是12+b ,b 的相反数是13+a ,则.________22=+b a 五、利用非负数性质构造: 例5:如果实数y x ,满足()022=++-y x x ,那么.________=y x 六、利用多项式恒等性质构造: 例6:已知多项式682322 2-+--+y x y xy x 可以分解为()()n y x m y x +-++22的形式,那么.________1 123=++n m 七、利用一次方程的解的特征构造: 例7:已知关于x 的方程()()()15133+=++-x x b x a 有无穷多个解,那么.________________,==b a 八、取特殊值构造: 例8:设b ax x x ++-2 32除以()()12+-x x 所得的余式为12+x ,那么.________________,==b a 九、弱化某些未知数构造: 例9:若,073, 0452=-+=++z y x z y x 则.________=-+z y x 十、利用新运算的定义构造: 例10:对于实数y x ,定义一种新运算*:,c by ax y x ++=*其中c b a 、、为常数,等式右边是通常的加法与乘法运算. 已知:,2874, 1553=*=*那么.________11=*

相关文档
最新文档