离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案

离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案
离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案

第一章命题逻辑基本概念课后练习题答案

1.将下列命题符号化,并指出真值:

(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;

(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;

(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;

(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;

(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.

2.将下列命题符号化,并指出真值:

(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;

(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;

(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;

(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;

(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;

3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;

(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.

4.因为p与q不能同时为真.

5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:

(1)p→q,真值为1(不会出现前件为真,后件为假的情况);

(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);

(3)p q,真值为1;

(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.

返回

第二章命题逻辑等值演算

本章自测答案

5.(1):∨∨,成真赋值为00、10、11;

(2):0,矛盾式,无成真赋值;

(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;

7.(1):∨∨∨∨?∧∧;

(2):∨∨∨?∧∧∧;

8.(1):1?∨∨∨,重言式;

(2):∨?∨∨∨∨∨∨;

(3):∧∧∧∧∧∧∧?0,矛盾式.

11.(1):∨∨?∧∧∧∧;

(2):∨∨∨∨∨∨∨?1;

(3):0?∧∧∧.

12.A?∧∧∧∧?∨∨.

第三章命题逻辑的推理理论

本章自测答案

6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系

(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确

(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为

(p→q)∧p→q(记作*1)

在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.

可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ? q

(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为

(p→q)∧p→q(记作*2)

可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等

(p→q)∧q→p

?(┐p∨q) ∧q →p

?q →p

?┐p∨┐q

??∨∨

从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.

9.设p:a是奇数,q:a能被2整除,r:a:是偶数

推理的形式结构为

(p→q┐)∧(r→q)→(r→┐p) (记为*)

可以用多种方法证明*为重言式,下面用等值演算法证明:

(p→┐q)∧(r→q)→(r→┐p)

?(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)

?(p∨q)∨(┐p∧r)∨┐q∨┐r

?(┐p∨q)∨(┐q∧┐r)

?┐p∨(q∨┐q)∧┐r

?1

10.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.

推理的形式结构为

(p→q)∧┐p→(┐q∧┐r)

?(┐p∨q) ∧┐p→(┐q∧┐r)

?┐p→(┐q∧┐r) (使用了吸收律)

?p∨(┐q∧┐r)

?∨∨∨

由于主析取范式中只含有5个W极小项,故推理不正确.

11.略

14.证明的命题序列可不惟一,下面对每一小题各给出一个证明

① p→(q→r)前提引入

② P前提引入

③ q→r①②假言推理

④ q 前提引入

⑤ r③④假言推理

⑥ r∨s前提引入

(2)证明:

① ┐(p∧r)前提引入

② ┐q∨┐r①置换

③ r前提引入

④ ┐q ②③析取三段论

⑤ p→q前提引入

⑥ ┐p④⑤拒取式(3)证明:

① p→q前提引入

② ┐q∨q①置换

③ (┐p∨q)∧(┐p∨p) ②置换

④ ┐p∨(q∧p③置换

⑤ p→(p∨q) ④置换

15.(1)证明:

① S结论否定引入

② S→P前提引入

③ P①②假言推理

④ P→(q→r)前提引入

⑤ q→r③④假言推论

⑥ q前提引入

⑦ r⑤⑥假言推理(2)证明:

① p附加前提引入

② p∨q①附加

③ (p∨q)→(r∧s)前提引入

④ r∧s②③假言推理

⑤ s④化简

⑥ s∨t⑤附加

⑦ (s∨t)→u前提引入

⑧ u⑥⑦拒取式

16.(1)证明:

① p结论否定引入

② p→ ┐q前提引入

③ ┐q ①②假言推理

④ ┐r∨q前提引入

⑤ ┐r③④析取三段论

⑥ r∧┐s前提引入

⑦ r⑥化简

⑧ ┐r∧r⑤⑦合取

(2)证明:

① ┐(r∨s)结论否定引入

② ┐r∨┐s①置换

③ ┐r②化简

④ ┐s②化简

⑤ p→r前提引入

⑥ ┐p③⑤拒取式

⑦ q→s前提引入

⑧ ┐q④⑦拒取式

⑨ ┐p∧┐q⑥⑧合取

⑩ ┐(p∨q)⑨置换

口p∨q前提引入

⑾①口┐(p∨q) ∧(p∨q) ⑩口合取

17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。

前提:(p∧┐q) →r , p ,q →s , ┐s

结论:r

证明:

① q→s 前提引入

② ┐s 前提引入

③ ┐q ①②拒取式

④ p 前提引入

⑤ p∧┐q ③④合取

⑥(p∧┐q)→r 前提引入

⑦ r ⑤⑥假言推理

18.(1)设 p:今天是星期六,q:我们要到颐和园玩,s:颐和园游人太多。

前提:p→(p∨r) , s→┐q , p , s

结论:r

证明:

① s→┐q前提引入

② s前提引入

③ ┐q①②假言推理

④ p前提引入

⑤ p→(q∨r)前提引入

⑥ q∨r④⑤假言推理

⑦r③⑥析取三段论

(2)设p:小王是理科学生,q:小王数学成绩好,r:小王是文科学生。

前提:p→q ,┐r→p ,┐q

结论:r

证明:

① p→q前提引入

② ┐q前提引入

③┐p①②拒取式

④ ┐r→p前提引入

⑤ r③④拒取式

第四章 (一阶)谓词逻辑基本概念

本章自测答案

4.(1)┐x(F(x)∧ ┐G(x))?x( F (x) →G (x) ),其中,F(x):x是有理数,G(x) :x能表示成分数;

(2)┐x( F (x) →G (x) ) ?x(F(x)∧ ┐G(x)),其中,F (x):x在北京卖菜,G (x) :x是外地人;

(3)x( F (x) →G (x) ),其中,F (x):x是乌鸦,G (x) :x是黑色的;

(4)xF(x)∧ G(x)),其中,F (x):x是人,G (x) :x天天锻炼身体。

因为本题中没有指明个体域,因而使用全总个体域。

5.(1)x y (F(x) ∧ G( y ) → H(x,y)),其中,F(x):x是火车,G(y) :y是轮船,H(x,y):x比y快;

(2)x y (F(x) ∧ G( y ) → H(x,y)),其中,F(x):x是火车,G(y) :y是汽车,

H(x,y):x比y快;

(3)┐x(F(x)∧y(G (y) → H (x,y)))?x(F(x) → y(G(y) ∧ ┐H(x,y))),其中,F(x):x是汽车,G (y) :y是火车,H(x,y):x比y快;

(4)┐x(F(x)→y(G(y) → H(x,y)))?x y(F(x)∧G(y)∧┐H(x,y))),其中,F(x):x是汽车,G(y) :y是火车,H(x,y):x比y慢。

6.各命题符号化形式如下:

(1)x y (x .y = 0);

(2)x y (x .y = 0);

(3)x y (y =x+1)

(4)x y(x .y = y.x)

(5)x y(x .y =x+ y)

(6)x y (x + y <0 )

9.(1)对任意数的实数x和y,若x <y,则x ≠ y;

(2)对任意数的实数x和y,若x–y = 0,则x<y;

(3)对任意数的实数x和y,若x<y,则x–y≠0;

(4)对任意数的实数x和y,若x–y <0,则x=y.

其中,(1)(3)真值为1(2)与(4)真值为0.

11.(1)、(4)为永真式,(2)、(6)为永假式,(3)、(5)为可满足式。

这里仅对(3)、(4)、(5)给出证明。

(3)取解释I 为:个体域为自然数集合N,F(x,y):x ≤ y,在下,x y F(x,y)为真,而x y F(x,y)也为真(只需取x =0即可),于是(3)中公式为真,取解释为:个体域仍为自然数集合N,而F(x,y):x = y。此时,x yF(x,y)为真(取y为x即可),可是x yF(x,y)为假,于是(3)中公式在下为假,这说明(3)中公式为可满足式。

(4)设I为任意一个解释,若在I下,蕴涵式前件xy F(x,y)为假,则

x yF(x,y)→y xF(x,y)为真,若前件x yF(x,y)为真,必存在I的个体域D1中的个体常项x0,使yF(x0,y)为真,并且对于任意

y∈,F(x0,y)为真,由于有x0∈,F(x0,y)为真,所以xF(x,y)为真,又其中y是任意个体变项,所以y xF(x,y )为真,由于I的任意性,所以(4)中公式为永真式(其实,次永真式可用第五章的构造证明法证明之)。

(5)取解释为:个体域为自然数集合,F(x,y):x = y在下,(5)中公式为真,而将F(x,y)改为F(x,y):x < y,(5)中公式就为假了,所以它为可满足式。

13.(1)取解释为:个体域为自然数集合N,F(x):x为奇数,G(x):x为偶数,在下, x(F(x)∨G(x))为真命题。

取解释为:个体域为整数集合Z,F(x):x为正整数,G(x):x为为负整数,在下, x(F(x)∨G(x))为假命题。

(2)与(3)可类似解答。

14.提示:对每个公式分别找个成真的解释,一个成假的解释。

第五章谓词逻辑等值演算与推理

本章自测答案

2.(1) (F(a)∧ F(b)∧ F (c)) ∧ (G (a )∨G (b)∨G (c))

(2) (F(a)∧ F(b)∧ F (c)) ∨ (G (a)∧G (b)∧G (c))

(3) (F(a)∧ F(b)∧ F (c)) → (G (a)∧G (b)∧G (c))

(4) (F(a ,y) ∨ F(b,y)∨ F (c,y)) → (G (a)∨G (b)∨G (c))

5.提示:先消去量词,后求真值,注意,本题3个小题消去量词时,量词的辖域均不能缩小,经过演算真值分别为:1,0,1 .

(1) 的演算如下:

x yF(x,y)

?x (F(x,3)∨F(x,4))

?(F(3,3)∨F(3,4))∧(F(4,3)∨F(4 ,4))

?1∧1?1

6.乙说得对,甲错了。本题中,全称量词的指导变元为x ,辖域为(F (x)→G(x,y)),其中F(x )与G(x,y)中的x都是约束变元,因而不能将量词的辖域缩小。

7.演算的第一步,应用量词辖域收缩与扩张算值式时丢掉了否定联结词“ ┐”。演算的第二步,在原错的基础上又用错了等值式,即

(F(x)∧(G(y)→ H(x,y))) ≠(F(x) ∧G(y)→H (x,y))

12.公式的前束范式不唯一,下面每题各给出一个答案。

(1) x y (F(x)→ G(z,y));

(2) x t (x,y) → G(x,t,z));

(3) x4 ((F(,y) →G(,y))∧(G(,y) →F(x4,y)));

(4) ((F()→G(,)) → (H () → L(,)));

(5) (F(,)→(F() → ┐G (,))).

13.(1)x y(F(x) ∧G(y) ∧H(x ,y)),其中,F(x):x是汽车,G(y):y是火车,H(x,y):x比y跑的快;

(2)x y(F(x) ∧G(y)→H(x ,y)),其中,F(x):x是火车,G(y):y是汽车,H(x,y):x比y跑的快;

(3)x y(F(x) ∧G(y) ∧┐H(x ,y)),其中,F(x):x是火车,G(y):y是汽车,H(x,y):x比y跑的快;

(4)x y(F(x) ∧G(y) → ┐H(x ,y)),其中,F(x):x是飞机,G(y):y是汽车,H(x,y):x比y慢;

14.(1)对F(x) → xG(x)不能使用EI规则,它不是前束范式,首先化成前束范式。

F(x) → xG(x) <=> x(F(y)→G(x))

因为量词辖域(F(y)→G(x))中,除x外还有自由出现的y,所以不能使用EI规则。

(2)对x F(x) → y G(y)也应先化成前束范式才能消去量词,其前束范式为x y(F(x) →G(y)),要消去量词,既要使用UI规则,又要使用EI 规则。

(3)在自然推理系统F中EG规则为

A(c)/∴x(x)

其中c为特定的个体常项,这里A(y) = F(y) →G(y)不满足要求。

(4)这里,使F(a)为真的a不一定使G(a)为真,同样地使G(b)为真的b不一定使F(b)为真,如,F(x):x为奇数,G(x):x为偶数,显然F(3)∧G(4)为真,但不存在使F(x)∧G(x)为真的个体。

(5)这里c为个体常项,不能对F(c)→G(c)引入全称量词。

15.(1)证明:①xF(x) 前提引入

②xF(x)→ y((F(y)∨G(y)) →R(y)) 前提引入

③y((F(y)∨G(y)) →R(y) ①②假言推理

④F(c) ①EI

⑤(F(c)∨G(c))→R(c) ③UI

⑥F(c)∨G(c)④附加

⑦R(c)⑤⑥假言推理

⑧xR(x) ⑦EG

(2)证明①xF(x) 前提引入

②x((F(x)→G(a)∧R(x)))前提引入

③F(c)①EI

④F(c)→G(a)∧R(a)②UI

⑤G(a)∧R(c)③④假言推理

⑥R(c)⑤化简

⑦F(c)∧R(c)③⑥合取

⑧x(F(x)∧R(x))⑦EG

(3)证明:①┐xF(x) 前提引入

②x┐F(x)①置换

③┐F(c)②UI

④x(F(x)∨G(x))前提引入

⑤F(c)∨G(c)④UI

⑥F(c)③⑤析取三段论

⑦xF(x) ⑥EG

(4)证明①x(F(x)∨G(x))前提引入

②F(y)∨G(y)①UI

③x(┐G(x)∨┐R(x))前提引入

④┐G(y)┐R(y)③UI

⑤x R(x) 前提引入

⑥R(y)⑤UI

⑦┐G(y)④⑥析取三段论

⑧F(y)②⑦析取三段论

⑨xF(x) ⑧UG

17.本题不能用附加前提证明法.

20.(1)与(2)均可用附加前提证明法。

22.(1)设F(x):x为偶数,G(x):x能被2整除。

前提:x(F(x)→G(x)),F(6)

结论:G(6)

(2)设F(x):x是大学生,G(x):x是勤奋的,a:王晓山。

前提:x(F(x)→G(x)),┐G(a)

结论:┐F(a)

23.(1)设F(x):x是有理数,G(x):x是实数,H(x):x是整数。

前提:x( F(x)→G(x)),x(F(x)∧H(x))

结论:x(G(x)∧H(x))

证明提示:先消存在量词。

(2)设F(x):x是有理数,G(x):x是无理数,H(x):x是实数,I(x):x是虚数。

前提:x((F(x)∨G(x)) →H(x)),x( I(x)→┐H(x))

结论:x(I(x)→(┐F(x)∧┐G(x)))

证明①x(I(x)→(┐H(x))前提引入

②I(y)→H(y)①UI

③x((F(x)∨G(x))→H(x))前提引入

④(F(y)∨G(y))→H(y)③UI

⑤┐H(y)→(┐F(y)∧┐G(y))④置换

⑥I(y)→(┐F(y)∧┐G(y))②⑤假言三段论

⑦x(I(x)→(┐F(x)∧┐G(x))⑧UG

24.设F(x):x喜欢步行,G(x):x喜欢骑自行车,H(x):x喜欢乘汽车。

前提:x(┐F(x)→┐G(x)),x(G(x)∨H(x)),x┐H(x)

结论:x┐F(x)

证明①x┐H(x)前提引入

②┐H(c)①UI

③x(G(x)∨H(x))前提引入

④G(c)∨H(c)③UI

⑤G(c)②④析取三段论

⑥x(F(x) →G(x))前提引入

⑦F(c)→┐G(c)⑥UI

⑧┐F(c)⑤⑦拒取式

⑨x┐F(x)⑧UG

25.设F(x):x是科学工作者,G(x):x是刻苦钻研的,H(x):x是聪明的,I(x):x在事业中获得成功。

前提:x(F(x)→G(x)),x(G(x)∧H(x)→I(x)),a:王大海,F(a),H(a)

结论:I(a)

证明①F(a)前提引入

②x(F(x)→G(x))前提引入

③F(a)→G(a)②UI

④G(a)①③假言推理

⑤H(a)前提引入

⑥x(G(x)∧H(x)→I(x))前提引入

⑦G(a)∧H(a)→I(a)⑥UI

⑧G(a)∧H(a)④⑤合取

⑨I(a)⑦⑧假言推理

返回

第六章集合代数

本章自测答案

4.(1) ③ (2) ④ (3) ⑤ (4) ⑦ (5) ⑧

6.只有(2)为真,其余为假。

9.(1) {4};(2) {1,3,5,6};(3) {2,3,4,5,6};(4) {, { 1 }};(5) {{ 4 },{1,4}}.

11.(1); (2) {1,4,5}.

22.(2)、(3)、(4)、(8)、(10)为真,其余为假。

24.(1)为真,其余为假,因为

(P-Q) = P ? (P-Q)∩Q = P∩Q ?= P∩Q

(2)(3)(4)的反例:P ={1} ,Q ={2}

26.(A–B)∪(B–A) = (A∩B)∪(B∩A)

=(A∪B)∩(B∪B)∩(A∪A)∩(B∪A)

=(A∪B)∩E∩(A∩B)=(A∪B)-(A∩B)

27.(1)(A-B)-C = A∩B∩ C =A∩(B∪C) = A-(B∪C)

(2)(A-C)-(B-C)A∩C∩(B∩C)

=A∩C∩(B∪C) = (A∩C∩B)∪(A∩C∩C)

=A∩∩C=(A–B)- C

(3)(A–B-C=A∩B∩ C =A∩C∩B=(A–C)–B

28.(1)A∩(B∪A) = (A∩B)∪(A∩A) =(A∩B)∪

=A∩B=B∩A

(2)((A∪B)∩A) = (A∪B)∪ A

=(A∩B)∪A = A

29.由第26题有(A-B)∪(B-A)=(A∪B)–(A∩B),故(A-B)∪(B-A)A∪B。假若x∈A∩B,那么x∈A∪B,因此x(A∪B)-(A∩B),与(A-B)∪(B-A) = (A∪B)-(A∩B) = A∪B矛盾.

30.A B?x(x∈A→x∈B)?x(x B→x A)

?x(x∈B→x∈A)?B A

A B ?A∪A A∪B ? E A∪B

而A∪B E,因此A B ?A∪B=E反之,

A∪B = E ? A∩(A∪B)= A ? A∩B = A ? A B

综合上述,A B?A∪B = E

A B ? A-B =? A-B B

反之A-B B ? (A-B)∪B B ? A∪B B ? A∪B = B ? A B

综合上述A B?A-B B

31.任取x ,x∈A ? {x} A=>{x}∈P(A)=>{x}∈P(B)=>{x}B ? x∈B

32.先证C A∧C B ? C A∩B,任取x,x∈C ? x∈C∧x∈C ? x∈A∧x∈B ? x∈A∪B,从而得到C A∪B.再证C A∩B ? C A∧C B,这可以由C A∩B A,C A∩B B得到。

33.P Q ? P-Q=? P-Q P,反之,P-Q P ?P∩(P-Q)P∩P ? P-Q=? P Q

34.令X=,则有∪Y =,即Y = .

35.A B ? A∪A B∪ A ? E B∪A因为E为全集,B∪A E综合上述B∪A=E.

36.由A∩C B∩C,A-C B-C,利用A∪C B∪D有:

(A∩C)∪(A-C) (B∩C)∪(B-C)

? (A∩C)∪(A∩C)(B∩C)∪(B∩C)

? (A∩(C∪C)(B∩(C∪C) ? A∩E B∩E ? A B

37.恒等变形法

B=B∩(B∪A)=B∩(AB)=B∩(AC)

=(B∩A)∪(B∩C)=(A∩C)∪(B∩C)

=(A∪B)∩C=(A∪C)∩C=C

39.任取x,有x∈P(A) ? x A ? x B ? x∈P(B),因此P(A)P(B).

40.(1)任取x有

x∈P(A)∩P(B)?x∈P(A)∧x∈P(B)?x A∧x B

?x A∩B?x∈P(A∩B)

(2)任取x有

x∈P(A)∪P(B)?x∈P(A)∨x∈P(B)?x A∧x B

? x A∪B?x∈P(A∪B)

注意与(1)的推理不同,上面的推理中有一步是“ ?”符号,而不是“?”符号。

(3)反例如下:A = {1},B = {2},则

P(A)∪P(B)= {,{1},{2}}

P(A∪B)={,{1},{2},{1,2}}

返回

第七章二元关系

本章自测答案

3.(1) 任取< x,y >,有

∈(A ∩ B)×(C ∩ D) <=>x∈A ∩ B ∧ y ∈C ∩ D

?x ∈A∧x ∈ B∧y ∈C∧y ∈ D

?(x ∈A∧y ∈C )∧(x∈B∧y∈D)

?∈A×C∧< x,y >∈B×D

?∈(A×C)∩(B×D)

(2)都为假,反例如下:

A ={1},

B ={1,2},

C ={2},

D ={3}

4.(1)为假,反例如下:A ={1}, B =,C = {2};

(2)为真,证明如下:任取

∈A×(B∩C)×(C∩D)?x∈A∩B∧y∈B∧y∈C

?(x∈A∧y∈B)∧(x∈A∧y∈C)

?∈A×B∧∈A×C?∈(A×B)∩(A×C)

(3)为真,令A = 即可;

(4)为假,反例如下: A =

7.={<2,2>,<3,3 >,<4,4>}

={<2 . 3>,<2,4>,<3,2>,<3,4>,<4,2>,<4,3>} ∪

L A={<2,2>,<2,3>,<2,4>,<3,3>,<3,4>,<4,4>}

D A={<2,2>,<2,4>,<3,3>,<4,4>}

9.(1){<1,2>,<1,4>,<1,6>,<2,1>,<2,2>,<2,4> <2,6>,<4,1>,<4,2>,<4,4>, <4,6> <6,1>, <6,2>,<6,4> <6,6>}

(2){<1,2>,<2,1>};

(3){<1,1>,<2,1>,<4,1>,<6,1>,<2,2>,<4,2>,<4,4>,<6,6>}

(4){<1,2>,<2,2>,<4,2>,<6,2>}

12.(略)

13.A∩B = {<1,2>,<2,4>,<3,3>,<1,3>,<4,2>}, A ∩ B ={<2,4>}

domA = {1,2,3},domB = {1,2,4},dom(A ∪ B) = {1,2,3,4}

ranA = {2,3,4},ranB = {2,3,4},ran(A ∪ B) = {4},fld(A - B) = {1,2,3}

14.R R = {<0,2>,<0,3>,<1,3>}

R= {<1,0>,<2,0>,<3,0>,<2,1>,<3,1>,<3,2>}

R{0,1} = {<0,1>,<0,2>,<0,3>,<1,2>,<1,3>}

R[{1,2}] = {2,3}

18.(1)F(G∪H) = F G∪F H

任取 ,有

∈F (G∪H)?t(∈F∧∈G∪H)

?t(∈F∧(∈G∨∈H))

?t((∈F∧∈G)∨(∈F∧∈H))

?t(∈F∧∈G)∨t(∈F∧∈H))

?∈F G∨∈F H?∈F G∪F H

(2)和(4)类似可证

19.(2)任取y,有

y∈R[T∪W]?x(x∈T∪W∧∈R)

?x((x∈T∨x∈W)∧∈R

?x((x∈A∧∈R)∨(x∈W∧∈R))

?x(x∈T∧∈R)∨x(x∈W∧∈R)

?y∈R[T]∨y∈R[W]?y∈R[T]∩R[W]

(3)任取,有

∈F(A∩B)?x∈A∩B∈F

?x∈A∧x∈B∧∈F

?(x∈A∧∈F)(x∈B∧∈F)

?∈F A∧∈F B

?∈F A∩F B

20.(1)任取,有

∈(∪) <=>∈∪

?∈∨

?∈∨

?∈∪

(2)和(1)类似可证.

21.只有对称性,因为1+1≠10,<1,1>R,R不是自反的,又由于<5,5>∈R,因此R不是反自反的,根据xRy?x+y = 10=>yRx ,可知R是对称的,又由于<1,9>,<9,1>都是属于R,因此R不是反对称的, <1,9>,<9,1>都属于R,如果R是传递的,必有<1,1>属于R.但这是不成立的,因此R也不是传递的.

22.(1)关系图如图7.15所示; (P148)

(2)具有反自反性、反对称性、传递性.

26.(1)R={<3,3>,<3,1>,<3,5>}, = {<3,3>,<3,1>,<3,5>}

(2)r(R)={<1,1>,<1,5>,<2,2>,<2,5>,<3,3>,<3,1>,<4,4>,<4,5>,<5,5>,<6,6>}

s(R)={<1,5>,<5,1>,<2,5>,<5,2>,<3,3>,<3,1>,<1,3>,<4,5>,<5,4>}

T(R)={<1,5>,<2,5>,<3,3>,<3,1>,<3,5>,<4,5>}

31.(1)R = {<2,3>,<3,2>,<2,4>,<4,2>,<3,4>,<4,3>}∪;(2)R; (3)R.

32.(1)不是等价关系,因为<1,1> R,R不是自反的;

(2)不是等价关系,因为R不是传递的,1R3,3R2但是没有1R2;

(3)不是等价关系,因为<2,2> R,R不是自反的;

(4)不是等价关系,因为R不是传递的。

(5)是等价关系。

33.关系图如图7.17说示 (P151)

[a] = [b] ={a,b},[c] = [d] = {c,d}

38.现取x,有x∈A ? ∈R ? ∈R∧∈R

? ∈R∧∈? ∈R∩R

任取,有∈ R∩ ? ∈R∧

? ∈∧∈R ? ∈R∩R

任取,,有

∈R∩ ∧∈R∩

? ∈R∧∈∧∈R∧

? (∈R∧∈R)∧(∈∧

? ∈R∧∈R? ∈R∩R

42.x,x∈A ? ∈R ? ∈R∧∈R ? ∈T,T是自反的。

x,y∈A,∈T?∈R∧∈R

?∈R∧∈R ? ∈T,T是对称的。

x,y,z∈A,∈T∧∈T

?∈R∧∈R∧∈R∧∈R

? ∈R∧∈R∧∈R∧∈R

? ∈R∧∈R ? ∈T

T是传递的。

43.哈斯图如下图所示.

44.(a)偏序集,A={1,2,3,4,5},R={<1,3>,<1,5>,<2,4>,<2,5>,<3,5>,<4,5>}∪

(b)偏序集,A={a,b,c,d,e,f},R={,,}∪

(c)偏序集,A={1,2,3,4,5}, R={<1,2>,<1,4>,<1,5>,<1,3>,<2,4>,<2,5>,<3,4>,<3,5>,<4,5>}∪

45.(a)A={a,b,c,d,e,f,g}, ={,,,,,,, ,,}∪ (b)A = {a,b,c,d,e,f,g},R口 = {,,,,,,}∪

46.哈斯图如图7.19所示(P153)

(1)极大元e,f;极小元a,f;没有最大与最小元。

(2)极大元a,b,d,e;极小元a,b,c,e;没有最大与最小元。

返回

第八章函数

本章自测答案

2. = {,,… }

= {<1,a>,<2,a>}, = {<1,a>,<2,b>}, = {<1,a>,<2,c>}

= {<1,b>,<2,a>}, = {<1,b>,<2,b>}, = {<1,b>,<2,c>}

= {<1,c>,<2,a>}, = {<1,c>,<2,b>}, = {<1,c>,<2,c>}

3.(1)双射,反函数=,f({8}=|8|),({4}={4};

(2)双射,反函数:R→ R,(x)= logx, ({1}) = {2}, ({1,2}) ={0,1};

(3)单射,({5}) = {<5,6>}, ({2,3}) = {2};

(4)单射,({2,3}) = {5,7}, ({1,3}) = {0,1};

(5)单射,({-1,2}) = {1,2}, ({1}) = {-1,1};

(6)单射,((0,1)) = (1/4,3/4),([1/4,1/2]) = [0,1/2];

(8)单射,((0,1)) = (1,+∞),({2,3}) = {1/2,1/3}.

4.(1) 单射 (2) 不单射,也不满射 (3) 不单射,也不满射 (4) 满射 (5) 单射 (6) 不单射,也不满射.

5.(1) 为真,其余都为假.

7.(1) 结果不唯一,={,,,};

(2) 结果不唯一,={,,,}

(3) 不能

(4) 存在单射还书的充要条件是m ≤ n ,存在满射函数的充要条件是m ≥ n,

存在双射函数的充要条件是m = n .

9.双射函数与单射函数都是n!个

10.(1)不是单射,不是满射,也不是双射;

(2){<1,1>,<0,2>,<2,0>};

(3){3,5,7}

17.f g(x)=2x +7, b f(x) =2x +4, f f(x) =x +6, g g(x) =4x +3,

h f(x)=x/2 +3, g h(x) = x +1/2, f h(x) =(x +5)/2 g h f(x) =x +7/2

18.f f(n) =n+2, g f(n)=2n+1, f g(n)=2n+2, g h(n) =0

h g(n)=, h g f(n)=.

19.(1)g f(x)=x+8x +14, f g(x)=x+2

(2)都不是单射,也不是满射和双射。

(3)g和h有反函数,g:R→R,g(x) = x–4; h:R→R,h(x)=

20.

(1)f g:N→N, f g(x)

(2)不是单射,不是满射,也不是双射。

21.(1)单射,假设f() = f(),那么<,+1> = <,+1>。根据有序对相等的条件得=,因此f是单射的,但是f不是满射的,因为<0,0>ran

(2)不存在反函数

(3)ran={|n∈N}

24.这些函数都是不唯一的,以下只是一个可能的结果。

(1)f = {<1,a>,<2,b>,<3,c>}

(2)f(x) = 2x

(3)f(x) = |x| - 1

(4)f(x) = e

返回

第九章集合的基数

本章自测答案

1.令:P(A)→2,(T) = Xт, 假如,∈P(A),且≠,那么存在x只属于和之中的一个集合,不妨设x∈∧x,因此∈(),∈(),

于是()≠(),从而证明了是单射的,对于任意g∈2,令B={x|x∈A,g(x) = 1},则B∈P(A), 且(B)= Xв = g.

2.令:[1,2] →[0,1],(x) = x – 1,则为[1,2]到[0,1]的双射函数.

3.令:A→N,(x) = x/2 , 则为双射函数.

6.提示:根据A ≈ C,B ≈ D,存在双射:A→C,g:B→D,构造函数h:A×B→C×D,h() = <(a),g(b)>容易证明h的双射性。

7.A = {2n|n∈N},B = {2|k∈N},C=Z

9.(1) 3∪6 = 6, 2∩5 = 2;

(2)4–3 ={3},3⊕1 = {1,2}

(3)∪4 = 3, ∩1 = 0

(4)1×4 = {<0,0>,<0,1>,<0,2>,<0,3>},2= {,,,},其中:

={<0,0>,<1,0>} = {<0,0>,<1,1>}

={<0,1>,<1,0>} = {<0,1>,<1,1>}

10.(1)3, (2), (3), (4), (5), (6),

返回

第十章代数系统

本章自测答案

3.(1)可以,A = {-1,0,1}.

(2)不可以.

4.(1)封闭 (2)不封闭 (4)加法不封闭,乘法封闭 (5)不封闭 (7)封闭 (9)加法不封闭,乘法封闭

5.(1)没有交换律、结合律,对于一个运算不能考虑分配律;

(3)加法满足交换律、结合律,乘法满足结合律,乘法对加法满足分配律;

(4)乘法满足结合律

(6)加法和乘法都满足交换律、结合律,乘法对加法满足分配律;

(7)满足结合律;

(8)乘法满足交换律、结合律;

(9)乘法满足交换律、结合律;

(10)乘法满足交换律、结合律。

6.(1)没有单位元、零元,没有可逆元素。

(3)n阶全0矩阵是加法单位元,也是乘法的零元;n阶单位矩阵是乘法单位元;加法没有零元。任意n阶矩阵M对于加法都是可逆元,起逆元为– M;只有n阶可逆矩阵(行列式不为0)对乘法是可逆元,其逆元为M .

(4) 乘法单元为n阶单位矩阵,没有零元。每个矩阵M都有逆元M .

(6) 加法单位元0,没有零元,每个元素x都可逆,其逆元是它的相反数– x 。

当n = 1时,乘法有单位元1,只有两个可逆元素:1 = 1, ( - 1) = - 1.

当n>1时乘法没有单位元和可逆元素。

(7)没有单位元和零元,也没有可逆元素。

(8)乘法单位元为1,只有1是可逆元素,1 = 1

(9)乘法单位元为1,只有1是可逆元素,1 = 1

(10)乘法没有单位元、零元以及可逆元素。

8.(1)不可交换。反例:<0,1> * <1,2> = <0,1>,<1,2> * <0,1> = <0,3>.

可结合,因为,,∈Q × Q

( * ) * = *

=

* ( * ) = *

=

不是幂等的,因为<1,1> * <1,1> = <1,2>

(2) 容易严整<1,0>为单位元,没有零元,当a≠0 时,的逆元为<1/ a,- b/a>

11.(1)能构成代数系统。满足交换律、结合律、无单位元,零元是1;

(3)能构成代数系统。满足交换律、结合律,单位元是10,零元是1。

15.(1)能 (2)不能 (3)不能 (4)能

返回

第十一章半群与群

本章自测答案

2.(1)构成半群、独异点和群;

(3)构成半群,不构成独异点,也不构成群;

(4)构成半群、独异点和群

5.(1)假设a*b ≠ b*a,那么或者a*b = a , a = b ;或者a*b = b , b*a = a。若为前者,则

(a*b)*a = a*a = b , a*(b*a) = a*b = a

与结合律矛盾,若为后者,有

(a*b)* a = b*a = a ; a*(b*a) = a*a = b

也与结合律矛盾。

(2) 假设b*b = a ,那么或者a*b = b*a = a,或者a*b = b*a = b 。若为前者,则

(b*a)*a = a*a = b ; b*(a*a) = b*b = a

与结合律矛盾,若为后者,有

(b*a)*a = b*a = b ; b*(a*a) = b*b = a

也与结合律矛盾。

7.任取a + bi , c + di∈G , 有

(a + bi)+(c + di)=(a + c)+(b + d)i∈G

任取a + bi , c + di , e + i ∈G ,有

((a + bi)+(c + di))+(e + i)=(a + c)+(b + d)i +(r + i)

= (a + c + e) + (b + d + ) i

同理

(a + bi)+((c + di)+(e + i))=(a + c + e) + (b + d + ) i

单位元是0,a + bi的逆元是– a – bi .

9. 能构成群,运算封闭。x , y , z ∈A , 有

(x y)z = (x + y - 2) z = (x + y - 2) + z – 2 = x + y + z – 4

x(y z) = xо(y + z - 2) = x + (y + z - 2) – 2 = x + y + z – 4

结合律成立,单位元是2,x的逆元是4 – x。

11.设矩阵A=, B=, C=, D=,

那么运算表如表11.7所列

· A B C D

A B C D A B C D

B A D C

C D A B

D C B A

13.(2)a,b∈G有

(ab)(b a)=a(bb)a=aa=e

(b a)(ab)=b(a a)b=b b=e

因此b a 是ab的逆元,根据逆元唯一性,命题得证.

(4) 当m,n为自然数时任意给顶n,对m进行归纳,a∈G,有

m = 0,(a)= e = a

假设(a)= a,则

(a)=(a)a=a a=a= a

根据归纳法,命题得证.

下面对n或m小于0的情况进行验证,不妨设n<0,m≥0,则n=-t,t>0

(a)=(a)=((a))=(a)=a=a

其他类似情况可以类似加以验证.

(5)设G为交换群,当n为自然数时对n归纳。

N = 0,(ab)= e = ee = a b

假设(ab)= a b ,则

(ab)= (ab)(ab) =(a b)ab = a(b a)b

= a(ab)b = (a a)(b b) = a b

根据归纳法,命题得证.

若n<0,令n=-m,m>0 ,那么有

(ab)=(ba)=(ba)=((ba))=(a b)

=(a)(b) =a b=a b

16.若x∈G有x= e,因此x∈G有x= x.x ,y∈G,有

xy = (xy) = y x = yx

17.设a是幕等元,则aa = a,即aa = ae.根据消去律必有a = e.

19.由x=e?|x|=1或2,换句话说。对于G中元素x,如果|x|>2,必有x≠x,由于|x|=|x|,阶大于2的元素成对出现,共有偶数个,那么剩下的1阶元总共应该是偶数个,1阶元只有1个,就是单位元,从而证明了G中必有的2阶元.

22.a∈N(a),N(a)≠,任取x,y∈N(a),有

ay = ya ? a(ay)a= a(ya)a? ya = a y

(xy)a = x(y a) = x(a y) = x(ya)

= x(ay ) = (xa)y = a(xy )

根据判定定理,N(a)为G的子群。

30.(1)是同态,不是单同态,也不是满同态。() = {-1,1},ker = 2Z;

(2)是同态,不是单同态,也不是满同态。() = {cosx + i·sinx|x∈Z},ker = {0};

(3)是同态,不是单同态,是满同态,()={cosx + i·sinx|x∈R}= A,ker ={2kπ|k∈Z}

31.设:→ ,:→ ,因此:→ ,

x,y∈,有

(xy) =((xy)) =((x)(y))

=((x))((y)) =(x)(x)

因此是到的同态。

32.由于:→ 是双射,因此:→ 也是双射。

x,y∈,a,b∈,使得(a) = x,(b) = y.从而得到

(x)= a,(y) = b

(xy) =((a)(b)) = ((ab)) = ab =(x)(y)

33.设是循环群,a,a∈

a a=a =a =aa

因此G是Abel群,但是Abel群不一定是循环群,例如KIein四元群是Abel群,但不是循环群。

34.设=,:→ ,y∈(),a∈,使得(a)=y

y=(a)=()=()=((a))

因此(a)是生成元,即()=<(a)>.

35.(1)生成元为a,a,a,a,a,a,a,a

(2)子群为={e},=G,={e,a,a,a,a},={e,a,a},

36.(1)στ=,τσ=,σ=,τ=,στσ=

(2)στ= (1 4 2 3 ),τ = (1 4 2 5 3 ),στσ = (1 5 2 4 3 )

(3)στ = (1 4)(1 2)(1 3)奇置换

τ = (14)(12)(15)(13)偶置换

στσ = (15)(12)(14)(13) 偶置换

返回

第十二章环与域

本章自测答案

4.(1)是环,是整环,也是域;

(2)不是环,因为关于加法不封闭;

(3)是环,不是整环和域,因为乘法没有么元;

(4)不是环,因为正整数关于加法的负元不存在,关于加法不构成群;

(5)不是环,因为关于乘法不封闭。

6.(1) ( - a )( - a) = - - (a a) = 1 , ( - a)( - a ) = - - ( a a ) = 1

因此 - a 是( - a)的逆元,根据逆元的唯一性得( - a) = - a

(2) (b a )(a b) = b (a a) b = 1 , (ab) (b a ) = a (b b ) a = 1

因此b a 是ab的逆元,根据逆元唯一性有(a b) = b a .

返回

(完整版)离散数学试卷及答案

离散数学试题(A卷答案) 一、(10分)求(P↓Q)→(P∧?(Q∨?R))的主析取范式 解:(P↓Q)→(P∧?(Q∨?R))??(?( P∨Q))∨(P∧?Q∧R)) ?(P∨Q)∨(P∧?Q∧R)) ?(P∨Q∨P)∧(P∨Q∨?Q)∧(P∨Q∨R) ?(P∨Q)∧(P∨Q∨R) ?(P∨Q∨(R∧?R))∧(P∨Q∨R) ?(P∨Q∨R)∧(P∨Q∨?R)∧(P∨Q∨R) ? M∧1M ? m∨3m∨4m∨5m∨6m∨7m 2 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解设设P:王教授是苏州人;Q:王教授是上海人;R:王教授是杭州人。则根据题意应有: 甲:?P∧Q 乙:?Q∧P 丙:?Q∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为:

((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?'R 。由定理4.15和由定理4.16得sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。 综上可知,tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 四、(15分)集合A ={a ,b ,c ,d ,e }上的二元关系R 为R ={}, (1)写出R 的关系矩阵。 (2)判断R 是不是偏序关系,为什么? 解 (1) R 的关系矩阵为: ??? ??? ? ? ? ?=100001100010100 10110 11111 )(R M (2)由关系矩阵可知,对角线上所有元素全为1,故R 是自反的;ij r +ji r ≤1,故R 是反对称的;可计算对应的关系矩阵为:

离散数学第三版课后习题答案

离散数学辅助教材 概念分析结构思想与推理证明 第一部分 集合论

离散数学习题解答 习题一(第一章集合) 1. 列出下述集合的全部元素: 1)A={x | x ∈N∧x是偶数∧x<15} 2)B={x|x∈N∧4+x=3} 3)C={x|x是十进制的数字} [解] 1)A={2,4,6,8,10,12,14} 2)B= 3)C={0,1,2,3,4,5,6,7,8,9} 2. 用谓词法表示下列集合: 1){奇整数集合} 2){小于7的非负整数集合} 3){3,5,7,11,13,17,19,23,29} [解] 1){n n∈I∧(?m∈I)(n=2m+1)}; 2){n n∈I∧n≥0∧n<7}; 3){p p∈N∧p>2∧p<30∧?(?d∈N)(d≠1∧d≠p∧(?k∈N)(p=k?d))}。 3. 确定下列各命题的真假性: 1) 2)∈ 3){} 4)∈{} 5){a,b}{a,b,c,{a,b,c}} 6){a,b}∈(a,b,c,{a,b,c}) 7){a,b}{a,b,{{a,b,}}} 8){a,b}∈{a,b,{{a,b,}}} [解]1)真。因为空集是任意集合的子集; 2)假。因为空集不含任何元素; 3)真。因为空集是任意集合的子集; 4)真。因为是集合{}的元素; 5)真。因为{a,b}是集合{a,b,c,{a,b,c}}的子集; 6)假。因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;

7)真。因为{a,b}是集合{a,b,{{a,b}}}的子集; 8)假。因为{a,b}不是集合{a,b,{{a,b}}}的元素。 4. 对任意集合A,B,C,确定下列命题的真假性: 1)如果A∈B∧B∈C,则A∈C。 2)如果A∈B∧B∈C,则A∈C。 3)如果A B∧B∈C,则A∈C。 [解] 1)假。例如A={a},B={a,b},C={{a},{b}},从而A∈B∧B∈C但A∈C。 2)假。例如A={a},B={a,{a}},C={{a},{{a}}},从而A∈B∧B∈C,但、A ∈C。 3)假。例如A={a},B={a,b},C={{a},a,b},从而ACB∧B∈.C,但A∈C。5.对任意集合A,B,C,确定下列命题的真假性: 1)如果A∈B∧B C,则A∈C。 2)如果A∈B∧B C,则A C。 3)如果A B∧B∈C,则A∈C。 3)如果A B∧B∈C,则A C。 [解] 1)真。因为B C x(x∈B x∈C),因此A∈B A∈C。 2)假。例如A={a},B={{a},{b}},C={{a},{b},{c}}从而A∈B∧B C,但A C。 3)假。例如A={a},B={{a,b}},C={{a,{a,b}},从而A B∧B∈C,但A C。 4)假。例如A={a},B={{a,b}},C={{a,b},b},从而A B∧B∈C,但A C。 6.求下列集合的幂集: 1){a,b,c} 2){a,{b,c}} 3){} 4){,{}} 5){{a,b},{a,a,b},{a,b,a,b}} [解] 1){,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}} 2){,{a},{{b,c}},{a,{a,b}}} 3){,{}} 4){,{},{{}},{,{}}}

离散数学课后习题答案

习题参考解答 习题 1、(3)P:银行利率降低 Q:股价没有上升 P∧Q (5)P:他今天乘火车去了北京 Q:他随旅行团去了九寨沟 Q P? (7)P:不识庐山真面目 Q:身在此山中 Q→P,或~P→~Q (9)P:一个整数能被6整除 Q:一个整数能被3整除 R:一个整数能被2整除 T:一个整数的各位数字之和能被3整除 P→Q∧R ,Q→T 2、(1)T (2)F (3)F (4)T (5)F (6)T (7)F (8)悖论 习题 1(3) ) ( ) ( ) ( ) ( ) ( ) ( R P Q P R P Q P R Q P R Q P → ∨ → ? ∨ ? ∨ ∨ ? ? ∨ ∨ ? ? ∨ →

(4) ()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右 2、不, 不, 能 习题 1(3) (())~((~)) (~)()~(~(~))(~~)(~) P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、 主合取范式 ) ()()()()()()()()()()()()()())(())(()()(()) ()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧?∧∨?∧?∧∨∧?∧?∨?∧∧?∨?∧?∧?=∧∧∨?∧∧∨∧?∧∨?∧?∧∨∧?∧?∨∧?∧?∨?∧∧?∨?∧?∧?=∨?∧∧∨∨?∧?∧∨∨?∧∨?∧?=∧∨?∧∨?=∨?∧∨?=→∧→ ————主析取范式 (2) ()()(~)(~) (~(~))(~(~))(~~)(~)(~~) P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨Q 2、 ()~() (~)(~) (~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价 3、解:根据给定的条件有下述命题公式: (A →(CD ))∧~(B ∧C )∧~(C ∧D ) (~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D ) ((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨ (~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

离散数学习题解答

习题一 1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道? (1)中国有四大发明. 答:此命题是简单命题,其真值为1. (2)5是无理数. 答:此命题是简单命题,其真值为1. (3)3是素数或4是素数. 答:是命题,但不是简单命题,其真值为1. x+< (4)235 答:不是命题. (5)你去图书馆吗? 答:不是命题. (6)2与3是偶数. 答:是命题,但不是简单命题,其真值为0. (7)刘红与魏新是同学. 答:此命题是简单命题,其真值还不知道. (8)这朵玫瑰花多美丽呀! 答:不是命题. (9)吸烟请到吸烟室去! 答:不是命题. (10)圆的面积等于半径的平方乘以π. 答:此命题是简单命题,其真值为1. (11)只有6是偶数,3才能是2的倍数. 答:是命题,但不是简单命题,其真值为0. (12)8是偶数的充分必要条件是8能被3整除. 答:是命题,但不是简单命题,其真值为0. (13)2008年元旦下大雪. 答:此命题是简单命题,其真值还不知道. 2.将上题中是简单命题的命题符号化. 解:(1)p:中国有四大发明. (2)p:是无理数. (7)p:刘红与魏新是同学. (10)p:圆的面积等于半径的平方乘以π. (13)p:2008年元旦下大雪. 3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值. (1)5是有理数. 答:否定式:5是无理数.p:5是有理数.q:5是无理数.其否定式q的真值为1.

(2)25不是无理数. 答:否定式:25是有理数. p :25不是无理数. q :25是有理数. 其否定式q 的真值为1. (3)2.5是自然数. 答:否定式:2.5不是自然数. p :2.5是自然数. q :2.5不是自然数. 其否定式q 的真值为1. (4)ln1是整数. 答:否定式:ln1不是整数. p :ln1是整数. q :ln1不是整数. 其否定式q 的真值为1. 4.将下列命题符号化,并指出真值. (1)2与5都是素数 答:p :2是素数,q :5是素数,符号化为p q ∧,其真值为1. (2)不但π是无理数,而且自然对数的底e 也是无理数. 答:p :π是无理数,q :自然对数的底e 是无理数,符号化为p q ∧,其真值为1. (3)虽然2是最小的素数,但2不是最小的自然数. 答:p :2是最小的素数,q :2是最小的自然数,符号化为p q ∧?,其真值为1. (4)3是偶素数. 答:p :3是素数,q :3是偶数,符号化为p q ∧,其真值为0. (5)4既不是素数,也不是偶数. 答:p :4是素数,q :4是偶数,符号化为p q ?∧?,其真值为0. 5.将下列命题符号化,并指出真值. (1)2或3是偶数. (2)2或4是偶数. (3)3或5是偶数. (4)3不是偶数或4不是偶数. (5)3不是素数或4不是偶数. 答: p :2是偶数,q :3是偶数,r :3是素数,s :4是偶数, t :5是偶数 (1) 符号化: p q ∨,其真值为1. (2) 符号化:p r ∨,其真值为1. (3) 符号化:r t ∨,其真值为0. (4) 符号化:q s ?∨?,其真值为1. (5) 符号化:r s ?∨?,其真值为0. 6.将下列命题符号化. (1)小丽只能从筐里拿一个苹果或一个梨. 答:p :小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨,符号化为: p q ∨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课. 答:p :刘晓月选学英语,q :刘晓月选学日语,符号化为: ()()p q p q ?∧∨∧?. 7.设p :王冬生于1971年,q :王冬生于1972年,说明命题“王冬生于1971年或1972年”既可以化 答:列出两种符号化的真值表:

屈婉玲版离散数学课后习题答案【1】

第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式//最后一列全为1 (5)公式类型为可满足式(方法如上例)//最后一列至少有一个1 (6)公式类型为永真式(方法如上例)// 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.

(1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r (3)(p∨(q∧r))→(p∨q∨r) 解: (1)主析取范式 (?p→q)→(?q∨p)

离散数学习题答案(耿素云屈婉玲)

离散数学习题答案 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 6、求下列公式的主合取范式,并求成假赋值: | (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ?∨∨∨∨,此即主析取范式。 ; 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨?∧ 解:公式的真值表如下:

, 由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式 1234567m m m m m m m ?∨∨∨∨∨∨ 习题三及答案:(P52-54) 11、填充下面推理证明中没有写出的推理规则。 前提:,,,p q q r r s p ?∨?∨→ 结论:s 证明: ① p 前提引入 ② p q ?∨ 前提引入 — ③ q ①②析取三段论 ④ q r ?∨ 前提引入 ⑤ r ③④析取三段论 ⑥ r s → 前提引入 ⑦ s ⑤⑥假言推理 15、在自然推理系统P 中用附加前提法证明下面推理: (2)前提:()(),()p q r s s t u ∨→∧∨→ 结论:p u → 证明:用附加前提证明法。 ' ① p 附加前提引入 ② p q ∨ ①附加 ③ ()()p q r s ∨→∧ 前提引入

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

离散数学课后习题答案(左孝凌版)

离散数学课后习题答案(左孝凌版) 1-1,1-2解: a)是命题,真值为T。 b)不是命题。 c)是命题,真值要根据具体情况确定。 d)不是命题。 e)是命题,真值为T。 f)是命题,真值为T。 g)是命题,真值为F。 h)不是命题。 i)不是命题。 (2)解: 原子命题:我爱北京天安门。 复合命题:如果不是练健美操,我就出外旅游拉。 (3)解: a)(┓P ∧R)→Q b)Q→R c)┓P d)P→┓Q (4)解: a)设Q:我将去参加舞会。R:我有时间。P:天下雨。 Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。 c) 设Q:一个数是奇数。R:一个数不能被2除。 (Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解: a)设P:王强身体很好。Q:王强成绩很好。P∧Q b)设P:小李看书。Q:小李听音乐。P∧Q c)设P:气候很好。Q:气候很热。P∨Q d)设P: a和b是偶数。Q:a+b是偶数。P→Q e)设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P Q f)设P:语法错误。Q:程序错误。R:停机。(P∨ Q)→ R (6) 解: a)P:天气炎热。Q:正在下雨。 P∧Q b)P:天气炎热。R:湿度较低。 P∧R c)R:天正在下雨。S:湿度很高。 R∨S d)A:刘英上山。B:李进上山。 A∧B e)M:老王是革新者。N:小李是革新者。 M∨N f)L:你看电影。M:我看电影。┓L→┓M g)P:我不看电视。Q:我不外出。 R:我在睡觉。 P∧Q∧R h)P:控制台打字机作输入设备。Q:控制台打字机作输出设备。P∧Q 1-3 (1)解:

离散数学试卷及答案

填空10% (每小题 2 分) 1、若P,Q,为二命题,P Q 真值为0 当且仅当。 2、命题“对于任意给定的正实数,都存在比它大的实数” 令F(x):x 为实数,L(x, y) : x y 则命题的逻辑谓词公式为。 3、谓词合式公式xP(x) xQ(x)的前束范式为。 4、将量词辖域中出现的和指导变元交换为另一变元符号,公式其余的部分不变,这种方法称为 换名规则。 5、设x 是谓词合式公式A的一个客体变元,A的论域为D,A(x)关于y 是自由的,则被称为存 在量词消去规则,记为ES。 选择25% (每小题分) 1、下列语句是命题的有()。 A、明年中秋节的晚上是晴天; C、xy 0 当且仅当x 和y 都大于0; D 、我正在说谎。 2、下列各命题中真值为真的命题有()。 A、2+2=4当且仅当3是奇数; B、2+2=4当且仅当 3 不是奇数; C、2+2≠4 当且仅当3是奇数; D、2+2≠4当且仅当 3 不是奇数; 3、下列符号串是合式公式的有() A、P Q ; B、P P Q; C、( P Q) (P Q); D、(P Q) 。 4、下列等价式成立的有( )。 A、P QQ P ; B、P(P R) R; C、P (P Q) Q; D 、P (Q R) (P Q) R。 5、若A1,A2 A n和B为 wff ,且A1 A2 A n B 则 ( )。 A、称A1 A2 A n 为 B 的前 件; B 、称 B 为A1,A2 A n 的有效结论

C 、 x(M (x) Mortal (x)) ; D 、 x(M(x) Mortal (x)) 8、公式 A x(P(x) Q(x))的解释 I 为:个体域 D={2} ,P(x) :x>3, Q(x) :x=4则 A 的 真 值为( ) 。 A 、 1; B 、 0; C 、 可满足式; D 、无法判定。 9、 下列等价关系正确的是( )。 A 、 x(P(x) Q(x)) xP(x) xQ(x); B 、 x(P(x) Q(x)) xP(x) xQ(x); C 、 x(P(x) Q) xP(x) Q ; D 、 x(P(x) Q) xP(x) Q 。 10 、 下列推理步骤错在( )。 ① x(F(x) G(x)) P ② F(y) G(y) US ① ③ xF(x) P ④ F(y) ES ③ ⑤G(y) T ②④I ⑥ xG(x) EG ⑤ A 、②; B 、④; C 、⑤; D 、⑥ 逻辑判断 30% 1、 用等值演算法和真值表法判断公式 A ((P Q) (Q P)) (P Q) 的类型。 C 、当且仅当 A 1 A 2 A n D 、当且仅当 A 1 A 2 A n B F 。 6、 A ,B 为二合式公式,且 B ,则( )。 7、 A 、 A C 、 A B 为重言式; B 、 B ; E 、 A B 为重言式。 人总是要死的”谓词公式表示为( )。 论域为全总个体域) M (x ) : x 是人; Mortal(x) x 是要死的。 A 、 M (x) Mortal (x) ; B M (x) Mortal (x)

离散数学课后答案

离散数学课后答案 习题一 6.将下列命题符号化。 (1)小丽只能从框里那一个苹果或一个梨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课. 答: (1)(p Λ?q )ν(?pΛq)其中p:小丽拿一个苹果,q:小丽拿一个梨(2)(p Λ?q )ν(?pΛq)其中p:刘晓月选学英语,q:刘晓月选学日语 14.将下列命题符号化. (1) 刘晓月跑得快, 跳得高. (2)老王是山东人或河北人. (3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组. (5)李辛与李末是兄弟. (6)王强与刘威都学过法语. (7)他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了. (12)2与4都是素数, 这是不对的. (13)“2或4是素数, 这是不对的”是不对的. 答: (1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高. (2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人. (3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服. (4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题. (5)p, 其中, p: 李辛与李末是兄弟. (6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语. (7)p∧q, 其中, p: 他吃饭, q: 他听音乐. (8)p→q, 其中, p: 天下大雨, q: 他乘班车上班. (9)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (10)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (11)p→q, 其中, p: 下雪路滑, q: 他迟到了. (12) ? (p∧q)或?p∨?q, 其中, p: 2是素数, q: 4是素数. (13) ? ? (p∨q)或p∨q, 其中, p: 2是素数, q: 4是素数. 16. 19.用真值表判断下列公式的类型: (1)p→ (p∨q∨r) (2)(p→?q) →?q

离散数学第四版课后标准答案

离散数学第四版课后答案 第1章习题解答 1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9), (10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。 分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。 本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。 其次,4)这个句子是陈述句,但它表示的判断结果是不确定。又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。这里的“且”为“合取”联结词。在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。但要注意,有时“和”或“与” 联结的是主语,构成简单命题。例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。 1.2 (1)p: 2是无理数,p为真命题。 (2)p:5能被2整除,p为假命题。 (6)p→q。其中,p:2是素数,q:三角形有三条边。由于p与q都是真 命题,因而p→q为假命题。 (7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。由于p为假命

题,q为真命题,因而p→q为假命题。 (8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不 知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。(9)p:太阳系外的星球上的生物。它的真值情况而定,是确定的。 1 (10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。 (12)p∨q,其中,p:4是偶数,q:4是奇数。由于q是假命题,所以,q 为假命题,p∨q为真命题。 (13)p∨q,其中,p:4是偶数,q:4是奇数,由于q是假命题,所以,p∨q 为假命题。 (14)p:李明与王华是同学,真值由具体情况而定(是确定的)。 (15)p:蓝色和黄色可以调配成绿色。这是真命题。 分析命题的真值是唯一确定的,有些命题的真值我们立即可知,有些则不能马上知道,但它们的真值不会变化,是客观存在的。 1.3 令p:2+2=4,q:3+3=6,则以下命题分别符号化为 (1)p→q (2)p→?q (3)?p→q (4)?p→?q

离散数学试卷及答案(1)

一、填空 20% (每小题2分) 1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =?B A 。 2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。 3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ?∨→?∧→∨?的真值= 。 4.公式P R S R P ?∨∧∨∧)()(的主合取范式为 。 5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ?→? 在I 下真值为 。 6.设A={1,2,3,4},A 上关系图为 则 R 2 = 。 7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为 则 R= 。

8.图的补图为 。 9.设A={a ,b ,c ,d} ,A 上二元运算如下: 那么代数系统的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。 10.下图所示的偏序集中,是格的为 。 二、选择 20% (每小题 2分) 1、下列是真命题的有( ) A . }}{{}{a a ? ; B .}}{,{}}{{ΦΦ∈Φ; C . }},{{ΦΦ∈Φ; D . }}{{}{Φ∈Φ。 2、下列集合中相等的有( ) A .{4,3}Φ?; B .{Φ,3,4}; C .{4,Φ,3,3}; D . {3,4}。 3、设A={1,2,3},则A 上的二元关系有( )个。

A.23 ;B.32 ;C.332?;D.223?。 4、设R,S是集合A上的关系,则下列说法正确的是() R 是自反的; A.若R,S 是自反的,则S R 是反自反的; B.若R,S 是反自反的,则S R 是对称的; C.若R,S 是对称的,则S R 是传递的。 D.若R,S 是传递的,则S 5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下 t s p R= t s ∈ =则P(A)/ R=() < > ∧ A ) (| || |} ( , {t , | s A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}} 6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“?”的哈斯图为() 7、下列函数是双射的为() A.f : I→E , f (x) = 2x ;B.f : N→N?N, f (n) = ; C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。 (注:I—整数集,E—偶数集,N—自然数集,R—实数集) 8、图中从v1到v3长度为3 的通路有()条。 A.0;B.1;C.2;D.3。 9、下图中既不是Eular图,也不是Hamilton图的图是()

最新离散数学习题答案

离散数学习题答案 习题一及答案:(P14-15) 14、将下列命题符号化: (5)李辛与李末是兄弟 解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语 解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是 p q ∧ (9)只有天下大雨,他才乘班车上班 解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p → (11)下雪路滑,他迟到了 解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→ 15、设p :2+3=5. q :大熊猫产在中国. r :太阳从西方升起. 求下列复合命题的真值: (4)()(())p q r p q r ∧∧???∨?→ 解:p=1,q=1,r=0, ()(110)1p q r ∧∧??∧∧??, (())((11)0)(00)1p q r ?∨?→??∨?→?→? ()(())111p q r p q r ∴∧∧???∨?→??? 19、用真值表判断下列公式的类型: (2)()p p q →?→? 解:列出公式的真值表,如下所示: 20、求下列公式的成真赋值:

(4)()p q q ?∨→ 解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是: ()10p q q ?∨??????00 p q ????? 所以公式的成真赋值有:01,10,11。 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ?∨∨∨∨,此即主析取范式。 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式:

离散数学试题及答案

离散数学试题及答案 一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=_____{3}______________; ρ(A) - ρ(B)= ____{{3},{1,3},{2,3},{1,2,3}}__________ . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = ___2^(n^2)________. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是____A1 = {(a,1), (b,1)}, A2 = {(a,2), (b,2)}, A3 = {(a,1), (b,2)}, A4 = {(a,2), (b,1)},_________ _____________, 其中双射的是______A3, A4__________. 4. 已知命题公式G=?(P→Q)∧R,则G的主析取式是____P∧?Q∧R (m5)____. 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为___12______,分枝点数为_______3_________. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=______{4}______; A?B=____{1,2,3,4}_________;A-B=______{1,2}_______ . 7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______自反性____________, _________对称性_________, _________传递性_____________. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有_____(1,0,0)__________, ______(1,0,1)________, ________(1,1,0)________. 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1?R2= ___{(1,3),(2,2),(3,1)}____,R2?R1 =_____{(2,4), (3,3), (4,2)}_____, R12=_______{(2,2), (3,3)}_________. 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = ______2^(m*n)___________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = _____{x | -1 ≤x < 0, x ∈R}_______ , B-A = ______{x | 1 < x < 2, x ∈R}_____ , A∩B = ______{x | 0 ≤x ≤1, x ∈R}__________ , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ ________{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}_________. 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束式是_____?y?x(P(y)→Q(x))________ _____.

相关文档
最新文档