二氧化钛

二氧化钛
二氧化钛

纳米二氧化钛光催化剂制备方法研究进展

摘要:纳米二氧化钛作为一种新型的高性能材料,已受到了国内外研究人员的关注,并广泛应用于催化剂、半导体、传感材料、电子陶瓷等领域。主要介绍了近年来国内外纳米二氧化钛制备工艺的研究状况,根据反应体系的物理形态将制备工艺分成气相法、液相法、固相法分别进行阐述,在此基础上分析比较了不同制备工艺的优缺点,并对其发展前景进行了展望。

关键词:纳米二氧化钛;光催化剂;气相;液相;固相

纳米TiO2粉体性质稳定、无毒,催化活性高,价格低廉,氧化能力强,耐化学腐蚀性好,是优良的光催化剂、传感器的气敏元件、催化剂载体或吸附剂,也是制备功能陶瓷、高级涂料的重要原料,是目前应用最为广泛的纳米光催化材料之一。

1纳米TiO2的制备方法

1.1气相法

1.1.1物理气相沉积法(PVD)

目前PVD法多用于TiO2薄膜的制备,其中应用较多的是溅射法。溅射法是以2块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两极间充入氩气,施加的电压为0.3一1.5 kV。两极间的辉光放电使氩离子形成。在电场作用下,氩离子冲击阴极靶材表面,使靶上的TiO2蒸发出来,经惰性气体冷却凝结成纳米TiO2粉末。唐晓山等采用溅射法在玻璃衬底上制备TiO2纳米薄膜,薄膜表面TiO2粒径在30nm左右,颗粒大小均匀、致密。PVD法制备纳米TiO2的过程中不伴随化学反应,所制得的纳米TiO2纯度高、粒径小、晶型结构好、分散性好;但是对设备和技术要求高,回收率较低,成本较高。

1.1.2化学气相沉积法(CVD)

CVD法是采用与PVD法相同的加热源,将含钛化合物、金属或合金原料在真空条件下或氩气、氮气等惰性气体中转化成气相,然后在底物表面进行化学反应,成核生长得到纳米粒子的过程。

1)激光诱导法。该法采用聚焦脉冲CO2激光辐照TiCl4+O2体系,制得非晶态纳米TiO2。M.Grujic-Brojcin等以异丙基醇钛作前驱体,经载气乙烯通入反应

器中,用脉冲CO2激光器辐照,与氧气充分混合反应得到TiO2粉末,500℃下煅烧4 h后得到锐钛矿型粉体。激光诱导法制备的纳米TiO2粉末具有粒子大小可控、无团聚、粒径分布均匀、表面活性好等特点,并容易制备出非晶态或晶态的纳米微粒;缺点是产率较低、原材料消耗大、激光利用率低、反应必须在低压环境下进行、制备装置复杂。

2)扩散火焰法。该法以TiCl4、醇钛盐、O2和燃料气体(H2,CH4等)等为原料,将前驱体导入扩散火焰反应器内,燃料气体由烧嘴喷入空气中,借助扩散互相混合而燃烧,过程中发生气相水解、氧化等反应,经成核、晶核生长、晶型转化等步骤制得纳米TiO2。刘秀红等以TiCl4为前躯体,利用自制的扩散火焰燃烧反应器,通过调节TiCl4进料浓度和中心环氧气含量,分别制得了粒径为9.4~15.5 nm和11 nm可控的TiO2纳米微粒。扩散火焰法制得的纳米TiO2纯度高、粒径小、表面活性大、分散性好、团聚程度较小,且制备过程较短,自动化程度高;缺点是反应温度高、设备材质要求严格、工艺参数精度要求高、产品成本高。

3)热等离子体法。在Ar,H2或N2等离子体的高温射流中存在着大量的高活性原子、离子或分子,它们高速到达前驱体表面,使其熔融、气化、反应,然后成核、生长,最后利用等离子体高温区与周围环境巨大的温度梯度,经急速冷却后收集得到纯度较高的纳米颗粒。目前应用较多的热等离子体制备TiO2的方法为电弧等离子体法、射频等离子体法和微波等离子体法。热等离子体法制得的粉末纯度较高、粒度较细、粒径分布窄;但存在处理量小、工程放大困难等不足。

4)钛醇盐气相水解法(气溶胶法)。该法以氦气、氮气或空气作载体,将钛醇盐Ti(OR)4气化成蒸气或经过喷嘴雾化成小的液滴,然后和水蒸气分别导入反应器的反应区,在有效区域内进行瞬间混合和快速水解;通过改变各种蒸汽的流速、浓度、物质的量比以及反应温度来调节和控制TiO2的形状和粒径。钛醇盐气相水解法制备的纳米TiO2微粒具有纯度高、比表面积大、分散性好等优点。但该方法所需的原料钛醇盐较贵,生产成本高。

5)气相氧化法。该法分为TiCl4气相氧化法和钛醇盐气相氧化法。TiCl4气相氧化法以TiCl4为原料,以N2或Ar为载气,以O2为氧源,在高温条件下(900一1 400 ℃)使TiCl4和O2反应生成纳米TiO2;钛醇盐气相氧化法以钛酸异丙醇酯(TTIP)为反应前驱体,以空气为载气,携带着TTIP蒸气由内管进入反应区,

甲烷和氧气作为燃料进入火焰区,经燃烧产生的能量用来预热空气和TTIP,并控制反应区的温度,制得纳米TiO2。气相氧化法的优点是自动化程度高,可以制备出优质的TiO2粉体;缺点是TiO2粒子遇冷结疤的问题较难解决,对设备要求高,技术难度大,在生产过程中排出有害气体Cl2,对环境污染严重。

6) TiCl4气相氢氧火焰法。将TiCl4气体通人氢氧火焰中,气相水解生成纳米TiO2粒子。采用该法制得的纳米TiO2粒子晶型为锐钛矿和金红石的混合型,产品纯度高,分散性好,但该法对温度要求高,同时反应生成的氯化氢对反应器有一定的腐蚀。H.D.Jang等对该法进行了改进,将TiCl4气体和氩气导入氢氧火焰中,高温分解合成纳米TiO2。改进后的方法有效降低了HCl的浓度,减轻了对反应器的腐蚀。

7)钛醇盐气相热解法。该法以钛醇盐为原料,经加热气化,用氮气、氦气或氧气作载气把钛醇盐蒸气经预热后导人热分解炉,进行热分解反应。P.P.Ahonen 等将TTIP导人垂直气相反应器进行热解反应。研究表明,在900~1 200℃时有面状颗粒出现,所得的纳米TiO2主要为锐钛矿型,600℃以上为单晶,1 200℃时有少量金红石型出现。钛醇盐气相热解法可实现连续生产,反应速度快,所得的TiO2为无定形粒子,分散性好、表面活性大;但纳米粒子的收集及存放比较困难。

1.2液相法

1.2.1水解法

水解法是将TiCl4溶液稀释到一定浓度,再加入少量稀硫酸溶液作为添加剂以抑制TiCl4溶液的水解,然后在磁力搅拌条件下沸腾回流,可得到锐钛矿型纳米TiO2。张青红等用TiCl4为原料,在冰水浴条件下将其溶液溶于蒸馏水或硫酸铵水溶液,在不同的温度下恒温水解1 h,然后用1:5的稀氨水中和至pH约为7,得到的粉体经水洗、醇洗后,110℃下烘干,制得纳米TiO2粉体。

1.2.2微乳液法

微乳液法是在表面活性剂作用下使两种互不相溶的溶剂形成一个均匀的乳液,经反应可得到无定型的TiO2,再经煅烧、晶化得到TiO2纳米晶。K.D.Kim 等以钛酸丁酯、氨水为原料,以NP-5/环己膨水相组成W/O微乳液体系,成功制备了纳米TiO2。微乳液法具有无需加热、操作简单、粒径可控、粒径分布范围

窄、粒子分散性好、易于实现高纯化等特点。但是,由于使用了大量的表面活性剂,很难从获得粒子的表面除去这些有机物。

1.2.3溶胶一凝胶法

溶胶一凝胶法是液相合成制备纳米TiO2的典型方法。该法通常以含钛无机盐或钛醇盐为原料,将其溶于有机溶剂中形成均相溶液,添加无机酸或有机酸作水解抑制剂,经水解缩聚后形成溶胶,经陈化转变为凝胶,湿凝胶经干燥除去残余水分、有机溶剂后得到干凝胶,再经煅烧、研磨得到纳米TiO2颗粒。溶胶一凝胶法的关键是要选择好钛醇盐品种和抑制剂种类,并控制好钛醇盐浓度、水醇盐摩尔比、有机溶剂量、搅拌速度、加料方式和速度等参数。近年来不少研究者尝试对传统溶胶一凝胶工艺进行改进以制备更高性能的纳米TiO2。溶胶一凝胶法制备纳米TiO2纯度高、粒径小、分布均匀、分散性好、煅烧温度低、反应易控制、副反应少、工艺操作简单;但由于要以钛醇盐为原料,又要加人大量的有机试剂,因此成本高,同时有机试剂不易逸出,干燥、烧结过程易产生碳污染。1.2.4水热法

水热法是在高压釜中采用水溶液作为反应介质,高温、高压的反应环境中,使通常难溶或不溶物质溶解并且重结晶得到纳米TiO2。Peng Tianyou等以十六烷基三甲基溴化铵(CTAB)为模板剂,Ti(SO4)2为前驱体,将CTAB/Ti(S04)2/水的混合液充分搅拌30 min,混合均匀后于室温下陈化12 h后转至高压釜中,在100℃下水热处理72 h,得到TiO2粉末,冷却至室温。经离心分离、水和乙醇的清洗以及120℃下干燥过夜后得到纳米TiO2颗粒。水热法能直接制得结晶良好且纯度高的粉体,不需经高温灼烧处理,避免了粉体的硬团聚,而且通过改变工艺条件,可实现对粉体粒径、晶型等特性的控制;然而水热法是高温、高压下的反应,对设备要求高、操作复杂、能耗较大,因而成本偏高。

1.2.5喷雾热分解法

喷雾热分解法制备TiO2,薄膜多采用有机钛化合物为原料,一般采用乙醇溶液为前驱体溶液,通过雾化器对溶液进行雾化,以恒定的速率喷涂到加热的基片上。武光明等以钛酸丁酯为原料,无水乙醇和乙酰丙酮为溶液,硝酸为稳定剂,采用喷雾热分解法制备锐钛矿相纳米TiO2薄膜,其表面TiO2为球形颗粒,粒径约为20 nm,分布比较均匀,样品光催化的效率较高,具有良好的光催化活性。

喷雾热分解的优点是仪器设备相对简单,不需要真空系统,具有较高的沉积速率,且容易控制薄膜的组成,得到的薄膜的微粒粒径分布均匀。

1.2.6沉淀法

沉淀法一般以四氯化钛、硫酸氧钛、硫酸钛为原料,先制成可溶性盐溶液,再加入沉淀剂,一定温度下水解形成不溶性的水和氧化物或氢氧化物沉淀,经抽滤、洗涤、烘干、焙烧得纳米TiO2粒子。直接沉淀法得到沉淀物一般为胶状物,洗涤、过滤比较困难,且产品易引入杂质,现在已很少使用;均匀沉淀法是选择一种在溶液中能缓慢、均匀地释放出构晶离子的沉淀剂,使其逐渐生成无定形Ti(OH)4沉淀,避免杂质共沉淀,得到的TiO2粒子颗粒均匀、致密,粒径分布窄。雷闫盈等以TiOSO4为原料,以尿素为沉淀剂,制得的纳米TiO2粒径在30—80 nm。

1.2.7超声法

超声波化学合成法是近几年发展起来的一种制备纳米TiO2的新方法。在纳米TiO2的制备中,超声波可以有效地促进固体新相的生成,控制颗粒的尺寸和分布,产物粒径小且分布均匀,不易发生团聚,比表面积大。与常规方法所合成的材料相比,超声法制备的纳米TiO2在光学、磁学、催化等方面具有一些优异的性能。国伟林等在超声波作用下以钛酸四丁酯为原料,在液相中直接合成锐钛矿相纳米TiO2,其纳米晶粒为短柱状,宽约5 nm,长约9 nm,粒径分布范围较窄且单分散性好;在以TiCl4为原料时,可得到金红石型纳米TiO2,其粒子为长柱状,宽约3 nm,长约12 nm,且粒子之间相互取向连生形成羽状的枝蔓晶。1.2.8离子液体化学合成法

离子液体是指在室温或近室温下完全由阴、阳离子组成的液体,一般由特定的、体积相对较大的、结构不对称的有机阳离子和体积相对较小的无机阴离子组成。最常用的离子液体是咪唑盐、吡啶盐、烷基铵盐、烷基磷酸盐等。Ding Kunlun 等¨列以异丙醇钛为前驱体、离子液体1-丁基-3-甲基咪唑四氟硼酸盐为介质,通过微波加热,在20 min内即得到了尺寸、形貌可控的锐钛矿TiO2纳米晶体。李丽等以钛酸丁酯为原料,在离子液体(1-丁基-3-甲基咪唑六氟磷酸盐)、水和无水乙醇所组成的混合溶剂中采用溶胶一凝胶法及微波干燥制备了硫掺杂纳米TiO2光催化剂。

1.3固相法

1.3.1机械研磨法

机械研磨法也称球磨法,依靠机械力的作用对固体材料进行研磨粉碎制得产品。该法工艺简单、成本低、产率高,可大批量生产。早期的固相法存在难制出1 μm以下超细粉体、过程中易引入杂质等缺点;近年来随着机械工艺的改进,采样高能球磨法可制备出超细TiO2。A.Gajovic等采用行星式高能球磨机以99%(质量分数)锐钛矿的TiO2作为原料,制备了混合相纳米TiO2晶体。

1.3.2固相反应法

室温固相合成法是将固体反应物研磨后直接混合,在机械作用下发生化学反应,进而制得纳米颗粒。该方法具有工艺简单、产率高、反应条件易控制、颗粒稳定性好等优点,已成为近年来合成纳米材料的一种新方法。章金兵等以TiOSO4·2H2O和Na2C2O4为原料,用室温固相法首先合成出前驱体草酸氧钛,然后在500℃下热分解2 h,经纯化后得到纳米TiO2。该纳米TiO2为锐钛矿型结构,平均粒径为25 nm,粒径分布比较集中。

总结与展望

制备纳米TiO2的方法很多,而且各有其优缺点。气相法所得TiO2的粒度小、晶型结构和活性好、纯度高,但该法对设备和技术要求高,且回收率低;液相法原料价格低、来源广、易操作、设备简单,制备出的纳米TiO2具有粒子团聚少、化学活性高,粒径分布窄、形貌均一等特性,具有工业化的开发前景;固相法制备工艺简单,操作易行,但所得TiO2粒径分布较宽,催化活性低,该制备方法近几年逐渐被淘汰。目前制备纳米TiO2的方法大多停留在实验室阶段,一些小批量工业化生产的工艺尚不能有效解决纳米粒子团聚的问题。因此,今后在寻找成本低、污染小、操作简单、所得粉体粒径分布窄、分散度高的工艺和有效的表面活性剂解决团聚的同时,还应对现有的合成工艺进行改进。同时,进一步深入研究纳米粉末微观结构,研究影响纳米TiO2合成过程中颗粒成核生长情况和成品性能优劣的参数,以便研发具有经济实用价值的工艺装置和工艺条件,从而加快纳米TiO2工业化生产。

参考文献:

[1]马军委,张海波。董振波,等.纳米二氧化钛制备方法的研究进展[J].无机盐工业,2006,38(10):5-7.

[2]唐晓山,李达.溅射法制备二氧化钛纳米薄膜的光催化杀菌性能[J].环境与健康杂志,2009,26(11):1009-1010.

[3] Grujie—Bmjtin M,Scepanovic M J,Dohcevic—Mitrovic Z D,eta1.Infrared study of laser synthesized anataaa TiO2 nanopow—ders[J].J.Phys.D:Appl.Phys.,2005,38(9):1415—1420.

[4]刘秀红,赵尹,姜海波,等.扩散火焰法控制TiO:纳米晶粒径和晶型研究[J].非金属矿,2006,29(4):19-21,33.

[5] Lee J E,Oh s M,Park D W.Synthesis of nsno-sized A1 dopedTi02 powders using thermal plasma[J].Thin Solid Films,2004,457(1):230-234.

[6] Li J G,Kamiyama H,Wang X H,et a1.Ti02 nanopowders viaradio-frequency thermal plasma oxidation of organic liquid precur-gOrs:synthesis and characterization[J].J.Eur.Ceram.Soc.,2006,26(4/5):423-438.

[7] Jang H D,Kim S K.Controlled synthesis of titanium dioxidenano-particles in a modified diffusion flame reactor[J].Mathefi-als Research Buulletin,2001,36(3/4):627—637.

[8] 姚超,吴凤芹,林西平,等.纳米二氧化钛的气相合成[J].现代化工,2004,24(9):14-17.

[9]张青红,高濂,郭景坤.四氯化钛水解法制备二氧化钛纳米晶的影响因素[J].无机材料学报,2000,15(6):992-998.

[10]Kim K D,Kim S H,Kim H T.Applying the taguchi method to theoptimization for the synthesis of Ti02 nanoparticles by hydrolysisofTEOT in micelles[J].Coll.Surf.A.,2005,254(1/3):99-105.

[11] Peng Tianyou,Zhao De,Dai Ke,et a1.Synthesis of titaniumdioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity[J].J.Phys.Chem.B,2005,109(11):4947-4952.

[12] 武光明,邢光建。江伟,等.喷雾热分解法制备Ti02薄膜及光催化性能的研究[J].纳米科技,2008,5(4):23-26,66.

[13] 雷同盈,俞行.均匀沉淀法制备纳米二氧化钛工艺条件研究[J].无机盐工业,2001,33(2):3-5.

[14] 国伟林,杨中喜。王西奎,等.纳米二氧化钛的超声化学法合成[J].硅酸盐学报,2004,32(8):1008-101l。1015.

[15] Ding Kunlun,Miao Zhenjiang,Liu Zhimin.Facile synthesis ofhigh quality Ti02 nanacrystals in ionic liquid via S microwave-assisted process[J].Journal of Americal Chemistry Society.2007,129:6362-6363.

[16] 李丽,王昭,毕先钧.离子液体中微波辅助制备硫掺杂纳米Ti02光催化剂[J].工业催化,2008,16(6):65-68.

[17] Gajovic A,Fufic K,Tomasic N,et a1.Mechanochemical prepara-tion of nanoerystalline Ti02 powders and their behavior athish temperatures[J].J.Alloys Compd.,2005,398(1/2):188-199.

[18] 章金兵,许民,周小英.固相法合成纳米二氧化钛[J].有色金属:冶炼部分,2005(6):42-43,45.

二氧化钛及其应用

编辑本段

编辑本段应用特性 纳米TiO2的功能及用途 纳米TiO2具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。纳米TiO2还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中。 2.1.杀菌功能 在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。在涂料中添加纳米TiO2可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。因此,纳米TiO2能净化空气,具有除臭功能。 1)纳米二氧化钛抗菌特点: 1 对人体安全无毒,对皮肤无刺激性。 2 抗菌能力强,抗菌范围广。 3 无臭味、怪味,气味小。 4耐水洗,储存期长。 5热稳定性好,高温下不变色,不分解,不挥发,不变质。

6即时性好,纳米二氧化钛抗菌剂仅需1h就能发挥效果,而其他银系抗菌剂效果则需约24h。 7纳米二氧化钛是一种永久性维持抗菌效果的抗菌剂。 8具有很好的安全性,科用于食品添加剂等,与皮肤接触无不良影响。 2)纳米二氧化钛的抗菌原理: 纳米二氧化钛在光催化作用下使细菌分解而达到抗菌效果的。由于纳米二氧化钛的电子结构特点为一个满 TiO2的价带和一个空的导带 ,在水和空气的体系中 , 纳米二氧化钛在阳光尤其是在紫外线的照射下 ,当电 子能量达到或超过其带隙能时 ,电子就可从价带激发到导带 ,同时在价带产生相应的空穴 ,即生成电子、空穴对 ,在电场的作用下 ,电子与空穴发生分离 ,迁移到粒子表面的不同位置 ,发生一系列反应 : TiO2 + hν e —— + h H2O + h——·OH+ H O2 +e——O2 · O2 ·+ H——HO2· 2HO2· —— O2 + H2O2 H2O2 +O2 · ——·OH+OH +O2 吸附溶解在 TiO2 表面的氧俘获电子形成O2 ·, 生成的超氧化物阴离子自由基与多数有机物反应(氧化) ,同时能与细菌内的有机物反应 ,生成CO2和 H2O;而空穴则将吸附在 TiO2 表面的 OH 和H2O氧化成·OH,·OH 有很强的氧化能力 ,攻击有机物的不饱和键或抽取 H原子产生新自由基 ,激发链式反应 ,最终致使细菌分解。 TiO2 的杀菌作用在于它的量子尺寸效应 ,虽然钛白粉(普通 TiO2)也有光催化作用 ,也能够产生电子、空穴对 ,但其到达材料表面的时间在微秒级以上 ,极易发生复合 ,很难发挥抗菌效果,而达到纳米级分散程度的TiO2 ,受光激发的电子、空穴从体内迁移到表面 ,只需纳秒、皮秒、甚至飞秒的时间 ,光生电子与空穴的复合则在纳秒量级 ,能很快迁移到表面 ,攻击细菌有机体 ,起到相应的抗菌作用。 惠尔牌纳米二氧化钛具有很高的表面活性,抗菌能力强,产品易于分散。经试验表明,惠尔牌纳米二氧化钛对绿脓杆菌、大肠杆菌、金黄色葡萄球菌、沙门氏菌和曲霉菌等具有很强的杀菌能力,已广泛应用于纺织、陶瓷、橡胶、医药等领域的抗菌产品,深受广大用户的欢迎。 3)国内外对纳米二氧化钛抗菌性的研究及应用实例 1 农田抗菌剂:日本开发了一种新型无菌杀菌剂。其主要成分为纳米二氧化硅、纳米二氧化钛和银、铜等离子,可用于土壤中,对所有的细菌都有很强的抗菌性。改杀菌剂是陶瓷类微量混合金属离子,并在含有相同离子的催化剂作用下,具有使土壤中的氧活化之功能,该功能能持续时间长达2-5年。

二氧化钛的化学性质

二氧化钛的化学性质 化学性质 二氧化钛无毒,化学性质很稳定,常温下几乎不与其他物质发生反应,是一种偏酸性的两性氧化物。与氧、硫化氢、二氧化硫、二氧化碳和氨都不起反应,也不溶于水、脂肪酸和其他有机酸及弱无机酸,微溶于碱和热硝酸,只有在长时间煮沸条件下才能完全溶于浓硫酸和氢氟酸。 其反应方程式如下: TiO2 + 6HF = H2TiF6 + 2H2O TiO2+ 2H2SO4 = Ti(SO4)2 + 2H2O TiO2+ H2SO4 = TiOSO4 + H2O 其溶解速度与水合二氧化钛的煅烧温度有关,煅烧温度越高溶解速度越慢。为了加速溶解,可在硫酸中加入硫酸铵、碱金属硫酸盐或过氧化氢。这是因为硫酸铵等的加入,使硫酸的沸点增高,加速了二氧化钛的溶解。 与酸式硫酸盐(如硫酸氢钾)或焦硫酸盐(如焦硫酸钾)共熔,可转变微可溶性的硫酸氧钛或硫酸钛: TiO2+ 2KHSO4 = TiOSO4 +K2SO4 + H2O TiO2+ 4K2S2O7 = Ti(SO4)2 +4K2SO4 + 2SO3 能熔于碱,与强碱(氢氧化钠、氢氧化钾)或碱金属碳酸盐(碳酸钠、碳酸钾)熔融,可转化为可溶于酸的钛酸盐: TiO2 + 4NaOH = Na4TiO4 + 2H2O 在高温下,如有还原剂(碳、淀粉、石油焦)存在,二氧化钛能被氯气氯化成四氯化钛,其反应方程式如下: TiO2 +2C +2Cl2 = TiCl4 + 2CO 这个反应就是氯化法生产钛白粉的理论基础,但是此反应若无还原剂混配,即使在1800℃下,也不会与氯气发生氯化反应。同样二氧化钛与氯化硫蒸汽共热,或与COCl2、CCl4、SiCl4、POCl3等作用,也能被氯化成四氯化钛。 二氧化钛在高温下可被氢、钠、镁、铝、锌、钙及某些变价元素的化合物还原成低价钛的化合物,但很难还原成金属钛。如将干燥的氢气通入赤热的二氧化钛,可得到Ti2O3;在2000℃、15.2MPa的氢气中,也只能获得TiO,但是若将金红石型钛白粉喷入等离子室中,则可与氢气反应而被还原成金属钛。反应方程式如下:

水热法合成二氧化钛及研究进展

水热法合成二氧化钛及研究进展 摘要:水热法合成了不同晶型、形貌、大小和研定形貌的二氧化钛。究了pH值、水热反应温度和水热反应时间对纳米二氧化钛晶型、形貌和晶粒尺寸的影响,对TiO2晶形影响光催化活性的原因进行了探讨。同时从二氧化钛水解制氢、废水处理、空气净化、抗菌、除臭方面介绍了纳米二氧化钛在环境治理方面的应用和发展趋势,并对纳米二氧化钛的制备方法与应用作出展望。 关键词:二氧化钛;晶型;水热法;光催化;制备;应用 纳米二氧化钛(TiO2)具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能。纳米TiO2是一种重要的无机功能材料, 可应用于随角异色涂料、屏蔽紫外线、光电转换、光催化等领域,在光催化领域环境治理方面具有举足轻重的地位,可应用在环保中的各个领域,它在环境污染治理中将日益受到人们的重视,具有广阔的应用前景,因此制备高光催化性能的纳米TiO2,拓展纳米二氧化钛的应用也是学者研究的重点。水热法合成纳米TiO2粉体具有晶粒发育完整、粒径分布均匀、不需作高温煅烧处理、颗粒团聚程度较轻的特点。 1.TiO2的制备方法、材料的性能 1.1不同晶型纳米二氧化钛的水热合成 1.1.1实验方法 边搅拌边将2mol·L- 1的四氯化钛水溶液缓慢滴加到115mol·L- 1的氢氧化钠水溶液中,保持30℃反应,生成纳米TiO2前驱体,反应终点的pH值分别控制为110、310、510、810、1110、1210。把纳米TiO2前驱体装入内衬聚四氟乙烯的不锈钢反应釜中进行水热反应,120℃~200℃反应1h~48h,反应结束后,冷却至室温,产物经过滤和蒸馏水洗至滤液中无Cl-,在100℃下鼓风干燥10h,粉碎后得到不同结构的纳米TiO2 粉体。选择不同的特征峰(金红石型选110面、锐钛矿型选101面,板钛矿型选121面),根据特征衍射峰的半高宽,利用Scherrer 公式展宽法估算出其晶粒尺寸。 1.1.2研究与开发 1.1. 2.1pH值对纳米TiO2晶型和形貌的影响 在水热反应温度为200 ℃和水热反应时间24 h的条件下。当pH = 1.0时,产

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

二氧化钛的化学及光学性质

二氧化钛的化学性质 二氧化钛的化学性质极为稳定,是一种偏酸性的两性化合物。几乎不与其它元素和化合物作用,不溶于水、稀酸、脂肪酸和其它有机酸及弱无机酸,只微溶于氢氟酸,在长时间高温煮沸下能溶于浓硫酸。 光学性质 1.不透明度 二氧化钛具有极高的不透明度,这是优越白色颜料的基本性质。其不透明度主要取决于其折射率和粒度,其光学本质是颜料与周围介质折射率之差造成的。当颜料的折射率与基料的折射率相等时就透明,当两者折射率之差越大,不透明度越高。不透明度与颜料粒度分布有关。 2.折射率 二氧化钛的折射率比金刚石还高,它的光泽和亮度超过金刚石,但硬度比金刚石差,所以其使用价值不高。 3.散射力 光的散射即漫反射,是白色颜料的重要物理性质之一,又是形成白色颜料重要光学效应-----着色力和遮盖力的物理原因。 散射主要包括反射、折射和衍射。光的散射能力R大小与颜料n2和基料n1的折射率关系为: R=[(n2-n1)/(n2+n1)]2 散射力还与粒径与分散性有关。 4.光泽度

物体的光泽度是指物质对投射来的光的反射能力,反射能力超强,光泽度越大。颜料在涂料中的光泽度与其折射率、粒度、分散性有关。 5.耐候性 耐候性是指含有二氧化钛的涂膜暴露在日光下,受光、氧、水、热等的综合作用下,避免变黄、失光和粉化的能力。二氧化钛表面有晶格投降,可吸收405nm以下的光波,将水、氧转变为高度活性的游离基,从而导致有机物降解。 锐钛型二氧化钛的光化学活性比金红石型二氧化钛高10倍。 颜料性质 1.白度 白度综合了色调和亮度二种光学效果。影响二氧化钛白度的主要因素是杂质含量与粒径分布。金红石二氧化钛较锐钛型二氧化钛对杂质的敏感度大得多。如铁含量30ppm时,金红石就显色,而锐钛要大于90ppm时才显色。 由于金红石型钛白粉在蓝光波段有轻微的吸收,产品略带黄相,锐钛略带蓝相。当二氧化钛平均粒径在0.2um左右时,对可见光短波有较强的散射能力,产品带蓝相,当粒径达0.35um左右时,对红光有较强的散射能力,产品带红相。 2.遮盖力 遮盖力又叫盖底力,是指每克颜料所能遮盖单位面积数。遮盖力

纳米TiO2的制备与应用

1.1纳米材料概述 纳米材料是指其结构单元的尺寸介于1纳米~100纳米范围之间的材料。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,因此其所表现的特性如具有量子尺寸效应、表面效应和宏观量子隧道效应等。从而使得熔点、磁性、光学、导热、导电特性等等往往不同于该物质在整体状态时所表现的性质。 纳米材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。而现在,纳米材料已经渗透入医药化工、电子计算机和电子工业、环境保护、纺织工业、机械工业等多个领域,展现了其非凡的特性和广阔的发展的前景[1-13]。 二、纳米材料的发现和发展 1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。 1959年12月29日理查德?费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲。虽然没有使用“”纳米这个词,但他实际上介绍了纳米技术的基本概念。 1963年,Uyeda用气体蒸发冷凝法制的了金属纳米微粒,并对其进行了电镜和电子衍射研究。 1984年德国萨尔兰大学(Saarland University)的Gleiter以及美国阿贡实验室的Siegal相继成功地制得了纯物质的纳米细粉。Gleiter在高真空的条件下将粒子直径为6nm的铁粒子原位加压成形,烧结得到了纳米微晶体块,从而使得纳米材料的研究进入了一个新阶段。 1974年日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。 1990年7月在美国召开了第一届国际纳米科技技术会议 (International Conference on Nanoscience&Technology),正式宣布纳米材料科学为材料科学的一个新分支。 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材

锐钛型二氧化钛与金红石型二氧化钛的区分

1、(锐钛型二氧化钛与金红石型二氧化钛)的区分 1.1 方法 利用X射线衍射仪得到XRD图谱进行分析 1.2用到的仪器 X射线衍射仪 X射线产生原理: 高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高 1.2.1 X射线管的结构 阴极:又称灯丝(钨丝),通电加热后便能释放出热辐射电子。 阳极:又称靶,通常由纯金属制成(Cr,Fe,Co,Ni,Cu,Mo,Ag, W等),使电子突然减速并发射X射线。阳极需要水强制冷却。 窗口:是X射线射出的通道,维持管内高真空,对X射线吸收 较少,如金属铍、含铍玻璃、薄云母片 X射线管中心焦点

在X射线衍射中,总希望有较小的焦点(提高分辨率)和较强的X射线强度(缩短爆光时间)。 一般采用在与靶面成一定角度的位置接受X射线,这样可以达到焦点缩小,X射线相应增强的目的。 1.2.2 X射线特点

1.2.3理论基础:布拉格方程 1.2.4具体方法 用X射线衍射分析法中的粉末法来分析两种结构。 只有满足Bragg方程,才能产生衍射现象,因此用粉末法对测定的晶体样品,不改变λ,要连续改变θ。: ?用单色的X射线照射多晶体试样,利用晶体的不同取向来改变θ,以满足 Bragg方程。试样要求:粉末,块状晶体。 ?特点:试样容易获得,衍射花样反映晶体的全面信息。

粉末法:由于多晶体由无数取向无规的单晶组成,相当于单晶绕所有取向的轴转动,晶体内某等同晶面族{HKL}的倒易点,形成-相应倒易矢量gHKL为半径的倒易球。一系列的倒易球与反射球相交,其交集是一系列园,则相应的衍射线束分布于以样品为中心、入射方向为轴、上述交线园为底的园锥面上。 1.2.5 两者结构分析 晶胞结构的不同 金红石型二氧化钛及锐钛型二氧化钛结晶类型均为正方结晶,前者为R型,后者为A型。金红石型二氧化钛晶格结构致密,比较稳定,光化学活性小,因而耐久性由于锐钛型二氧化钛。另外,金红石型二氧化钛晶体结构是细长的成对的孪生晶体,每个金红石晶胞含有2个二氧化钛分子,以两个棱相连,这比锐钛型二氧化钛八面体的形式体积更小、结构更密,因而硬度和密度增大,介电常数和导热性增加,所以耐候性好,不易粉化 (a)金红石型 (b)锐钛型 金红石型和锐钛型晶胞中TiO2分子数分别是2和4。晶胞参数分别是:金红石型a:4.593A,c=2.959A;锐钛型a=3.784A,c=9.515^。金红石型二氧化钛比锐钛型二氧化钛稳定而致密,有较高的硬度、密度、介电常数及折射率,其遮

液相法制备纳米二氧化钛及其应用(1)(2)

纳米TiO2的液相法制备及其研究现状 摘要:作为一种新型的无机材料,纳米TiO2以其稳定的化学性质、催化效率高、无毒、耐腐蚀性强而倍受关注,制备方法主要有气相法、液相法和固相法三大类,重点介绍了纳米TiO2的液相制备法及其研究现状,并对纳米TiO2粉体的应用情况进行了概述。 关键词:纳米TiO2;液相法;研究;应用 0.前言 纳米材料[1]指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,一般直径在1~100nm之间。由于纳米微粒具有量子尺寸效应、小尺寸效应、表面效应以及量子隧道效应,从而展现多种特殊性质。而纳米TiO2是纳米材料中的重要一员,包括纳米颗粒、纳米线、纳米薄膜、纳米块材料和纳米复合材料[2,3]。由于纳米TiO2化学性质稳定、氧化能力强、无毒无害、价格便宜催化能力强而且没有二次污染等诸多优点而在气体净化、抗菌除臭涂料表面自清洁等领域具有特别重要的应用价值和发展前景,因此倍受关注,其开发与制备更是现在研究纳米TiO2的热点之一。 1.纳米TiO2的制备 纳米TiO2粉体的制备方法分为气相法、液相法和固相法。但是液相法是现在最常采用的,主要原因[4,5]在于:气相法中原子移动起来过于自由,容易因为碰撞而改变方向,影响反应的持续高效进行,而在固相法中原子则基本不改变位置,且固相间的反应是通过混合固体颗粒来实现的,这样混合的效果极其粗糙,仍需进一步的细化,但是在液体中自由程度相对比较适中。因此,液相法相比之下更加合理,并且液相法原料来源广泛、设备简单得到的颗粒的活性好。 液相法制备氧化物的基本原理[6]是将可溶于水或有机溶剂的金属盐按化学计量比制备成溶液,然后用沉淀剂或通过水解、蒸发升华等方式使金属离子均匀沉淀或析出,最终经过干燥得到相应的氧化物。对于组分比较复杂的材料同样容易得到均匀的分散性较好的粉末。该法制备TiO2通常有:溶胶-凝胶法(sol-gel)、液相沉淀法(LPD法)、水热合成法、微乳液法。

纳米二氧化钛的应用

纳米二氧化钛的应用 纳米二氧化钛作为一种高效、无毒的光催化剂,在环保领域的应用越来越 受到人们的广泛关注和重视。抗菌材料纳米TiO2以其优异的抗菌性能成为开发研 究的热点之一,以期应用于水处理装置、医疗设备、食品包装、建材(如抗菌地砖、抗菌陶瓷卫生设施、抗菌砂浆、抗菌涂料等)、化妆品、纺织品、日用品以及家用电器等各个领域。1、气体净化环境有害气体可分为室内有害气体和大气污染气体。室内有害气体主要有装饰材料等放出的甲醛及生活环境中产生的甲硫醇、硫化氢及氨气等。TiO2通过光催化作用可将吸附于其表面的这些物质分解氧化,从而使空气中这些物质的浓度降低,减轻或消除环境不适感。大气污染气体,主要是由汽车尾气与工业废气等带来的氮氧化物和硫氧化合物。利用纳米TiO2的催化作用将这些气体氧化成蒸汽压低的硫酸和硝酸,在降雨过程中除去,从而达到降低大气污染的目的。在居室、办公室窗玻璃、陶瓷等建材表面涂敷TiO2光催化薄膜或在房间内安放TiO2光催化设备,均可有效地降解污染物,净化室内空气。利用纳米TiO2开发出来的一种抗剥离光催化薄板,可利用太阳光有效去除空气中的NOx气体,而且薄板表面生成的HN03可由雨水冲洗掉,保证了催化剂活性的稳定。2、抗菌除臭抗菌是指纳米TiO2在光照下对环境中微生物的抑制或杀灭作用。TiO2光催化剂对绿脓杆菌、大肠杆菌、金黄色葡萄球菌等具有很强的杀能力。当细菌吸附于由纳米二氧化钛涂敷的光催化陶瓷表面时,2被紫外光激发后产生的活性超氧离子自由基(·O2-)和羟基自由基(·OH)能穿透细菌的细胞壁,破坏细胞膜质,进入菌体,阻止成膜物质的传输,阻断其呼吸系统和电子传输系统,从而有效地杀灭细菌,并抑制细菌分解有机物产生臭味物质(如H2S、SO2、硫醇等)。因此,纳米TiO2能净化空气,具有除臭功能。3、处理有机污水工业污水和生活污水中含有大量的有机污染物,尤其是工业污水中含有大量的有毒、有害的有机物质,这些污染物用生物处理技术很难消除。许多学者对水中有机污染物光催化分解进行了系统的研究,结果表明以TiO2为光催化剂,在光照的条件下,可使水中的烃类、卤代物、羧酸等发生氧化还原反应,并逐步降解,最终完全氧化为环境友好的CO2和H2O等无害物质。4、处理无机污水除有机物外,许多无机物在TiO2表面也具有光学活性,例如无机污水中的Cr6+接触到TiO2催化剂表面时,能够捕获表面的光生电子而发生还原反应,使高价有毒的Cr6+降解为毒性较低或无毒的Cr3+,从而起到净化污水的作用;一些重金属离子如Pt4+,Hg2+,Au3+等,在催化剂表面也能够捕获电子而发生还原沉淀反应,可回收污水的无机重金属离子。5、防雾、自清洁功能TiO2薄膜在光照下具有超亲水性和超永久性,因此其具有防雾功能。如在汽车后视镜上涂覆一层氧化钛薄膜,即使空气中的水分或者水蒸气凝结,冷凝水也不会形成单个水滴,而是形成水膜均匀地铺展在表面,所以表面不会发生光散射的雾。当有雨水冲过,在表面附着的雨水也会迅速扩散成为均匀的水膜,这样就不会形成分散视线的水滴,使得后视镜表面保持原有的光亮,提高行车的安全性。阅读会员限时特惠 7大会员特权立即尝鲜 如果把高层建筑的窗玻璃、陶瓷等这些建材表面涂覆一层氧化钛薄膜,利用氧化钛的光催化反应就可以把吸附在氧化钛表面的有机污染物分解为CO2和O2,同剩余的无机物一起可被雨水冲刷干净,从而实现自清洁功能。 6、抗菌塑料 在日常生活中人们是离不开塑料制品的,如卫生间设施、桌面、垃圾箱、厨房用具、家用电器的塑料外壳、食品包装袋等等,由于温度、湿度合适,非常容易滋生感染细菌。因此!,对此类材料进行抗菌处理是极其必要的。 徐瑞芬等【2】 利用纳米TiO2作为无机抗菌剂,研制抗菌广谱长效的功能塑料。结果表明:采用锐钛矿

纳米二氧化钛的制备及性质实验

南京信息工程大学综合化学实验报告 学院:环境科学与工程学院 专业:08应用化学 姓名:章翔宇 潘婷 袁成 钱勇 2010年6月25号

纳米二氧化钛的制备及性质实验 1、实验目的 熟悉溶胶凝胶法制备纳米二氧化钛的方法及相关操作; 理解二氧化钛吸附实验的原理和操作; 掌握数据处理的方法 2、溶胶凝胶法制备纳米二氧化钛 2.1 需要的仪器 恒压漏斗、茄行烧瓶、量筒、移液管、铁架台、磁力搅拌、磁子、冷凝管、温度计、烘箱、研钵 2.2 需要的试剂 钛酸丁酯异丙醇浓硝酸蒸馏水 2.3 实验步骤 1.50ml钛酸丁酯溶16ml的异丙醇中,摇匀(在恒压漏斗中进行) 得到溶液A 2.取200ml 的蒸馏水,加入0.32 ml 的浓硝酸,摇匀(在茄行烧瓶中进行),得到 溶液B 3.将烧瓶固定在铁架台上,进行磁力搅拌,将溶液A 逐滴滴加至溶液B中,使两溶液 缓慢接触,并进行水解反应,得到溶液C 溶液C室温回流,记载下当时的室温 4.回流分若干天进行,保证回流时间不少于48小时,得到溶液D 5.蒸干方式:将溶液D进行水浴加热85度并不断搅拌将水分蒸发干,得E 6.将E放入烘箱100烘干 7.研磨至粉末状; 2.4 实验结果 1、回流分4天进行,总计回流时间50小时,室温为15℃。 2、经研磨,得到白色细粉末状固体。称量得二氧化钛质量为11.233g,理论产量不小于11.785g,损失为产品转移过程中损失。 3、纳米二氧化钛性质实验 3.1 二氧化钛吸附试验 1、仪器:烧杯(500mL),容量瓶(1000mL),样品瓶(6个),电子天平,磨口瓶,超 声波清洗机,玻璃注射器,过滤器,分光光度计 2、试剂:二氧化钛粉末,染料X-3B(分子量615),蒸馏水 3、实验步骤: 1、用电子天平称取60mg染料,配成1000mL的60mg/L溶液(避光保存)。 2、将烧杯润洗后,倒入100ml染料溶液,再倒入称量好的50mg的二氧化钛粉末。 静置后置于超声波清洗机中(70℃超声40分钟,注意避光)。剩余原液取样保存编

二氧化钛吸附研究及应用概述

二氧化钛吸附研究及应用概述 江默语 (昆明理工大学材料科学与工程学院,云南昆明 650093)摘要:近年来,随着理论计算方法的发展和计算能力的提高,以及纳米技术的发展,借助投射电镜等各种研究设备,人们对二氧化钛(TiO2)的了解逐渐加深。二氧化钛(TiO2)由于其具有的独特性质,开始在光催化、CO氧化以及太阳能电池等多个领域被广泛应用。尤其是对二氧化钛(TiO2)吸附以及催化特性的研究与应用,在环境污染治理、医学研究、化工等领域具有不可替代的作用。 关键词:二氧化钛,表面吸附,镉离子污染,有机物污染 Research and Applications of Titanium Dioxide Adsorption JIANGmo-yu (School of Materials and Engineering, Kunming University of Science and Technology, Kunming, 650093, China) Abstract:Recently, with the development of theoretical calculation method, calculation ability and nanotechnology , scientists are getting to know more about Titanium dioxideunder the help oftransmission electron microscope. Titanium dioxide, due to its unique properties, is playing an important part in photochemical catalysis, oxidization of carbonic oxide and the development of solar cell. Specially,studies about externaladsorption andCatalytic properties of Titanium dioxide, is becoming more and more important in pollution administration, medical research, chemical industry and so on. Keywords: Titanium dioxide,externaladsorption, Cadmium ionpollution, organic pollution

二氧化钛的性质

二氧化钛的性质、用途和未来发展趋势1.二氧化钛的性质 2.二氧化钛的用途 钛白粉有两种首要结晶形态:锐钛型(Anatase),简称A型和金红石型(Rutile),简称R型。 漆片工业是钛白粉的熬头大用户,出格是金红石型钛白粉,大部门被漆片工业所消耗。随着中国汽车工业和建筑业发展,漆片工业不仅从数目上需要更多的钛白粉,而且对品种和质量也有更高的要求。用钛白粉打造的漆片,色彩艳丽,遮盖力高,着色力强,用量省,品种多,对媒质的物理稳定性可起到保护作用,并能增强漆膜的机械强度和黏着力,防止裂纹,防止紫外线和水分透过,延长漆膜生存的年限。 分子化合物塑料工业是钛白粉的第二大用户。在塑猜中插手钛白粉,可以提高分子化合物塑料制品的耐热、耐光、耐候性,使分子化合物塑料制品的物理化学机能获得改善,增强制品的机械强度,延长施用生存的年限。 造纸工业是钛白粉第三大用户。钛白粉作为纸张填料,首要用在高级纸张和薄型纸中。在纸张中插手钛白粉,可以使纸张具备较好的白度,光泽好,强度高,薄而平滑,印刷时不穿透,质量轻。造纸用钛白粉一般施用未经表面措置惩罚的锐钛型钛白粉,可以起到荧光增白剂的作用,增长纸张的白度。但层压纸要求施用经过表面措置惩罚的金红石型钛白粉,以满足耐光、耐热的要求。 钛白粉是高级油墨中不可缺乏的白色颜料。含有钛白粉的油墨经久不变色,表面润湿性好,易于分离。油墨行业所用的钛白粉有金红石型,也有锐钛型。 纺织和化学纤维行业是钛白粉的另外一个重要应用范畴。化纤用钛白粉首要作为消光剂。因锐钛型比金红石型软,是以一般施用锐钛型。化纤用钛白粉一般不需表面措置惩罚,

但某些特殊品种为了降低二氧化钛的光化学作用,避免纤维在二氧化钛光催化的作用下降解,需举行表面措置惩罚。 钛白粉在橡胶工业中既作为着色剂,又具备补强、防老化、填充作用。在白色和彩色橡胶制品中插手钛白粉,在日采光射下,耐日晒,不开裂、不变色,且舒展率大及耐酸碱。橡胶用钛白粉,首要用于汽车轮胎和胶鞋、橡胶地板、手套、运动器材等,一般以锐钛型为主。但用于汽车轮胎出产时,常插手绝对是量的金红石型产品,以增强其抗臭氧和抗紫外线能力。 钛白粉在化妆品、食品和医药方儿面的应用也日趋广泛。因为钛白粉无毒,远比铅白优胜,所以各种香粉几乎都用钛白粉来代替铅白和锌白。香粉中只须插手5-8%的钛白粉就能够获得永久白色,使香料更滑腻,有黏着力、接收力和遮盖力。在水粉和冷霜中钛白粉可减弱油腻及透明的觉得。其它各种香料、防晒霜、皂片、白色香皂、剃须膏和牙膏中往往也用钛白粉。在食品和医药施用钛白粉也是利用了它的无毒和高遮盖力等特点。 用钛白粉制得的瓷釉透明度强,具备质量轻、抗打击力强、机械机能好、色彩艳丽、不容易污染等特点。是以,钛白粉在陶瓷、搪瓷中也有至关多的施用。 另外,在电焊条、玻壳及电子方面也有应用。 3.二氧化钛最新研究 3.1纳米二氧化钛粉末及铈掺杂二氧化钛纤维的制备

介孔二氧化钛的合成及应用

介孔二氧化钛的合成及应用 摘要介孔二氧化钛是一种多孔材料,它具有巨大的比表面积,发达的孔道结构,因而在光电转换领域,光催化降解,光催化制氢等环境能源领域表现广泛的应用前景而备受瞩目。目前,国内外对制备介孔二氧化钛材料的方法的研究主要集中在模板法制备,此外,还有非模板法等方法也有研究。 关键词介孔二氧化钛,光催化,模板法 1 前言 多孔材料,因具有空旷结构和巨大的表面积,而被广泛应用于催化剂和吸附载体。按孔径的大小,多孔材料可分为:微孔材料(孔径<2nm),介孔材料(孔径2~50nm),大孔材料(孔径50nm~1μm)和宏孔材料(孔径>1μm)等。按材料的结构特征,多孔材料又可以分为三类:无定形、次晶和晶体。介孔材料因孔径范围较大,存在着孔道形状不规则、孔径尺寸分布范围大等优点,是良好的催化剂载体[1]。 介孔TiO2包括有序、无序两大类,其中有序介孔材料又分为纳米量级和宏观尺度两类。因其具有高比表面积,发达有序的孔道结构,孔径尺寸在一定范围内可调,表面易于改性等特点,可以有效地增强TiO2光催化、光电转换等功能,使其在水处理、空气净化、太阳能电池、纳米材料微反应器、生物材料等方面表现出广阔的应用前景而备受瞩目。为科学家从微观角度研究纳米材料的尺寸效应、表面效应及量子效应等性能提供了物质基础[2]。 2 影响介孔材料孔径大小的因素 介孔材料的合成过程中一个关键参数是孔径大小及尺寸分布,孔径大小的控制及影响因素一般包括以下几个方面[2]。 1) 表面活性剂碳链的长度,孔径大小的粗略控制可通过调节表面活性剂的碳链长度来达到。因为表面活性剂的碳链越长,形成棒状胶束时直径越大,若碳链大于l8,表面活性剂溶解度下降,故较少用于介孔材料的制备。 2) 辅助有机物的添加,通过添加憎水性有机物,可将辅助有机物进入表面活性剂胶束的憎水基团内部,使胶束的直径变大,达到增加介孔材料尺寸的目的。此类有机物一般包括饱和链烷烃、芳香烃、醇类。当然,表面活性剂不同,合成过程的作用机理和合成介孔材料的性能可能是有差异的。 3) 合成过程的影响,一般合成过程包括反应时间、温度、溶液的组成、表面活性剂和共溶剂种类、pH值、表面活性剂的萃取条件及煅烧条件等。 比如在碱性溶液中,反应物在进行分段热处理时,介孔材料在壁厚和稳定性不变的

二氧化钛的形貌及其应用

- 1 - 第3期 2018年6月No.3 June,2018 TiO 2因其毒性低、价廉、耐强酸强碱、耐紫外线腐蚀、耐强氧化剂腐蚀而普遍应用于环境治理,成了最有前途的材料,得到了科研人员的重视。1991年,日本学家Iijima [1]发现了碳纳米管,开启了TiO 2一维形貌研究的大门。随着研究的深入,众多科技领域开始了对TiO 2形貌结构的研究,TiO 2材料因其结构不同而具有不同的性能及应用,本研究综述了不同制备方法对其形貌特征的影响。1 TiO 2的合成及形貌结构 TiO 2是最早作为光催化剂的材料之一,相比较其他光催化剂,它的发展更为完善,目前合成出的比较成熟的形貌有球形、微球形、中空球形、纳米纤维、纳米管状、片状、棒状、花形等。Pal 等[2]在氮气氛围和室温下,将四丁氧基钛和乙二醇配置的溶液磁力搅拌水解8 h ,然后再加入丙酮进行剧烈搅拌,就制备出了球形TiO 2。吕玉珍等[3]以草酸钛钾和过氧化氢为原料制备了TiO 2 粉末,采用水热法在150 ℃下加热0.5 h ,TiO 2粉末初步变成图1中的带状花结构,再在此温度下延长加热5 h ,形成图1中所示的棒状花结构。 常用的TiO 2合成方法包括:反应热炉热裂解法[4];水热法,Wang [5]采用水热法一步合成了2-D TiO 2,他们发现二维TiO 2的禁带宽度比TiO 2减小很多,Eg 大约为1.8 eV ,在较大程度上提高了光催化剂的催化活性;溶剂热法[6-7],而溶剂热法又分为有无模板,王红侠等[6]采用无模板溶剂热法合成了TiO 2中空微球(以钛酸丁酯为钛源),发现它具有良好的光催化活性。除了这些方法,还有很多其他的制备方法。Li [8]考虑到了TiO 2回收的问题,制备合成了多孔TiO 2陶瓷颗粒。在人们发现氧空穴对提高TiO 2的光催化性能有一定贡献后,An 等[9]将TiO 2纳米管与p25纳米粒子进行偶联,合成了分级纳米结构的TiO 2,具有较大的比表面积,较多的氧空穴和良好的光活性。2 TiO 2的其他应用2.1 电池领域应用 随着社会科技、经济的发展,不可再生能源的逐渐减少,能源问题也越来越突出,人们开始探究新能源—太阳能。 太阳能因其储存量大、绿色无污染成为最有前途的能源 之一。1991年,Gr?tzel 教授[10]制备出了光电转化效率为7.1%的太阳能电池后,染料敏化太阳能电池便开始备受关注,因为它的成本低廉、易制作等优点,大多数人们开始研究这样一种新型太阳能电池。 (a )在150 ℃下加热0.5 h TiO 2的SEM 照片 (b )在150 ℃下加热5 h TiO 2的SEM 照片图1 在150 ℃下加热的SEM照片 2.2 抗菌 Liu 等[11]发现多面体TiO 2纳米晶上构建的{101}-{001}表面异质结有利于光生电子与空穴的分离,所形成的自由电子和空穴可以促进活性氧(ROS )的产生,这可能用于消灭活细菌。研究发现,这些多面体TiO 2纳米晶体比球形TiO 2纳米晶体更容易产生活性氧,对在模拟日光照射下的大肠杆 作者简介:郭宇萱(1996— ),女,汉族,河北邯郸人,本科生;研究方向:光催化。 二氧化钛的形貌及其应用 郭宇萱,李 坤,张伊晗,王 璐 (河北农业大学 渤海校区,河北 沧州 061100) 摘 要:本文介绍了二氧化钛的形貌及其合成方法。形貌不同,使其具有不同的用途。扼要阐述了二氧化钛在染料敏化太阳能 电池、锂离子电池、抗菌、气体传感器、处理废水等领域的应用。最后,对未来二氧化钛的应用做出了展望。关键词:二氧化钛;形貌;应用现代盐化工 Modern Salt and Chemical Industry

锐钛矿TiO2转变为金红石TiO2机制和性能

锐钛矿TiO2转变为金红石TiO2机制和性能 摘要:TiO2 是多相光催化研究中使用较多的一种材料。其在自然界存有3种不同的晶型:锐钛矿、金红石、板钛矿相。锐钛矿相转变为金红石相的过程是扩散相变。金红石是热力学稳定相, 锐钛矿是亚稳相, 并且从锐钛矿相到金红石相的相变是亚稳相到稳定相的不可逆相变。而煅烧时间与煅烧温度会影响其晶型的转变。在众多影响光催化性能的因素中,晶型是较为重要的一个因素。 关键字:锐钛矿、金红石、TiO2、相变、光催化 光催化降解是一门新型的并正在迅速发展的科学技术。研究表明,在适当的条件下,许多有机物污染物经光催化降解,可生成无毒无味的CO2、H2O及一些简单的无机物。目前,在光催化降解领域所采用的光催化剂多为N型半导体材料, 如TiO2、ZnO、Fe2O3、SnO2、WO3和CdS 等, 其中TiO2以其无毒、价廉、稳定和特殊的光、电性能等优点倍受人们青睐,成为最受重视的一种光催化剂[1]。 1.二氧化钛的结构 近年来, TiO2纳米材料制备、表征及改性一直是光催化研究领域的重点。同一种半导体可能具有不同的晶型,晶型的不同实际上就是组成物质的原子不同的空间构型有序的排布。二氧化钛是白色粉末状多晶型化合物, 自然界有锐钛矿型, 金红石型和板钛型三种晶 型结构, 但板钛型二氧化钛极不稳定且无实用价值[2]。所以目前的研究一般都主要为金红石相及锐钛矿相。TiO2晶体基本结构是钛氧八面体( TiO6)。钛氧八面体连接形式不同而构成锐钛矿相、金红石相和板钛矿相。锐钛矿型和金红石型均属于四方晶系,二者均可用相互连接的Ti06八面体表示,但八面体的畸变程度和连接方式各不不同。板钛矿型属正交晶系,一般难以制备,目前研究很少。如图1所示,金红石型(a)的八面体不规则,微显斜方晶;锐钛矿(b)呈明显的斜方晶畸变,对称性低于前者。从图2[3]中可以看出锐钛矿TiO2的Ti-Ti键长比金红石大,而Ti-O键比金红石小。 TiO2晶体基本结构——钛氧八面体有两种连接方式。如图3所示,分别为共边连接与共顶角连接。从图4[4]中可以看到锐钛矿中每个八面体与周围8个八面体相联(四个共边,四个共顶角)。金红石中的每个八面体与周围10个八面体相联(其中两个共边,八个共顶角)。 图1 金红石、锐钛矿和板钛矿的TiO6八面体结构

浅谈二氧化钛讲解

浅谈纳米二氧化钛 纳米二氧化钛(Ti0 2 )是一种重要的无机功能材料,由于其粒子具有表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应等性质;其晶体具有防紫外线、光吸收性好、随角异色效应和光催化等性能;而且它的耐候性、耐用化学腐蚀性和化学稳定性较好,因此纳米二氧化钛被广泛应用于光催化、太阳能电池、有机污染物降解、涂料等领域。但纳米二氧化钛也有一定的局限性,可在纳米二氧化钛中添加合适的物质(如树脂、聚苯胺、偶联剂、氟碳树脂等),对其进行改性。 1. 纳米TiO 2的制备(纳米TiO 2 溶胶) 纳米TiO 2的制备方法一般分为气相法和液相法。由于气相法制备纳米TiO 2 有诸多缺点如:能耗大、成本高、设备复杂等,且条件苛刻,大大限制了其发展。液相法主要包括水解法、沉淀法、溶胶-凝胶法、水热法、微乳液法、微波感应等离子体法等制备技术。而液相法能耗小、设备简单、成本低,是实验室和工业上广泛使用的制备方法。由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂,在此仅介绍用溶胶-凝胶法制备纳米TiO 2 溶胶。 溶胶一凝胶法制备纳米TiO 2:是以钛的醇盐Ti(OR) 2 ,(R为-C 2 H 5 、-C 3 H 7 、-C 4 H 9 等烷基)为原料。其主要步骤为:钛醇盐溶于溶剂中形成均相溶液,以保证钛醇盐的水解反应在分子均匀的水平上进行,由于钛醇盐在水中的溶解度不大,一般选用醇(乙醇、丙醇、丁醇等)作为溶剂;钛醇盐与水发生水解反应,同时失去水和失醇缩聚反应,生成物聚集成1nm左右的粒子并形成溶胶;经陈化、溶胶形成三维网络而成凝胶;干燥凝胶以除去残余水分、有机基团和有机溶剂,得到干凝胶;干凝胶研磨后煅烧,除去化学吸附的羟基和烷基团,以及物理吸附的有机溶剂和水,得到纳米TiO 2 粉体。因为钛醇盐的水解活性很高,所以需添加抑制剂来减缓其水解速度,常用的抑制剂有盐酸、醋酸、氨水、硝酸等。但在制备过程中要注意加水方式、水量、pH值、溶剂量、反应温度、拌速度等因素对凝胶形成的影响。

(I-2)纳米TiO2的合成及应用

第一部分内容:纳米TiO2的合成 一.目的要求: 1.了解和掌握纳米材料的基本合成方法,纳米材料技术的发展动向和基本应用. 2.了解均匀沉淀法和Sol-gel技术中各种合成因素对纳米TiO2材料性质的影响. 3.熟悉扫描电镜、X光衍射和激光粒度仪等纳米材料的表征技术. 二. 前言 纳米材料,是指颗粒粒径小于100m的材料,它处于微观粒子与宏观物体之间的过渡状态,具有一系列奇特的物理化学性质,已在精细陶瓷、催化剂、电子、冶金、能源、化工、材料、国防等领域显示出广泛的应用前景。 超细纳米TiO2是80年代开发成功的产品。它的出现与其他金属化合物(如:氧化物,碳化物,氮化物等)的超细粒子的出现一样,引起了有关人员的高度重视。 由于TiO2颗粒的尺寸的细微化,随着其面积与体积的比例增大,物质内部的原子和物质表面的原子所处的晶场环境与结合能不同,导致粒子表面有很大的化学活性,表面能大大增加,这些均属“表面效应”。而纳米粒子的“体积效应”,使粒子中包含的原子数减少,能带中间能级增大,导致纳米TiO2的电磁、热等物质性能发生变异。所以,纳米TiO2具有(1)高比表面积;(2)大表面张力;(3)低熔点;(4)强磁性和(5)强紫外线吸收能力等诸多独特性. 近年来,纳米TiO2作为一种新型无机材料,由于其独特的禁带宽度(约3.2eV)和表面活性,使其具有良好的湿敏、光敏、气敏和压敏等特性,尤其是它的光催化特性,使其在光催化降解污染物、太阳能电池、光电转换器和各种传感器等领域都有着诱人的应用前景。 目前,制备纳米TiO2的方法很多,基本上可归纳为物理法和化学法。物理法又称为机械粉碎法,对粉碎设备要求很高.化学法又可分为气相法〔CVD〕、液相法和固相法。本实验用液相法中的溶胶-凝胶法合成纳米TiO2. 三. 溶胶-凝胶法合成纳米TiO2的理论基础 1 实验原理与分析 在Sol-gel过程中钛酸丁脂的水解-缩聚反应速度极快,会立即生成沉淀,影响TiO2的细化。大量研究表明,可以通过加螯合剂,配制滴加液,并控制滴加速度等方法来抑制沉淀的

相关文档
最新文档