数控车床对刀原理及方法步骤(实用详细)

数控车床对刀原理及方法步骤(实用详细)
数控车床对刀原理及方法步骤(实用详细)

数控车床对刀原理及对刀方法

对刀是数控加工中的主要操作和重要技能。在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。

仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等。 1 为什么要对刀

一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。

数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。

在图1中,O是程序原点,O'是机床回零后以刀尖位置为参照的机床原点。

编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。

所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。 2 试切对刀原理

对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。

以图2为例,试切对刀步骤如下:

①在手动操作方式下,用所选刀具在加工余量范围内试切工件外圆,记下此时显示屏中的X坐标值,记为Xa。(注意:数控车床显示和编程的X坐标一般为直径值)。

②将刀具沿+Z方向退回到工件端面余量处一点(假定为α点)切削端面,记录此时显示屏中的Z坐标值,记为Za。

③测量试切后的工件外圆直径,记为φ。

如果程序原点O设在工件端面(一般必须是已经精加工完毕的端面)与回转中心的交点,则程序原点O在机床坐标系中的坐标为

Xo=Xa-φ(1)

Zo=Za

注意:公式中的坐标值均为负值。将Xo、Zo设置进数控系统即完成对刀设置。3 程序原点(工件原点)的设置方式

在FANUC数控系统中,有以下几种设置程序原点的方式:①设置刀具偏移量补偿;

②用G50设置刀具起点;③用G54~G59设置程序原点;④用“工件移”设置程序原点。

程序原点设置是对刀不可缺少的组成部分。每种设置方法有不同的编程使用方式、不同的应用条件和不同的工作效率。各种设置方式可以组合使用。

(1)设置刀具偏移量补偿车床的刀具补偿包括刀具的“磨损量”补偿参数和“形状”补偿参数,两者之和构成车刀偏移量补偿参数。试切对刀获得的偏移一般设置在“形状”补偿参数中。

试切对刀并设置刀偏步骤如下:①用外圆车刀试车-外圆,沿+Z轴退出并保持X 坐标不变。

②测量外圆直径,记为φ。

③按“OFSET SET”(偏移设置)键→进入“形状”补偿参数设定界面→将光标移到与刀位号相对应的位置后,输人Xφ(注意:此处的φ代表直径值,而不是一符号,以下同),按“测量”键,系统自动按公式(1)计算出X方向刀具偏移量(如图3所示)。

注意:也可在对应位置处直接输人经计算或从显示屏得到的数值,按“输人”键设置。④用外圆车刀试车工件端面,沿+X轴退出并保持Z坐标不变。

⑤按“OFSET SET”键→进人“形状”补偿参数设定界面→将光标移到与刀位号相对应的位置后,输人Zo,按“测量”键,系统自动按公式(1)计算出Z方向刀具偏移量。同样也可以自行“输入”偏移量。

⑥设置的刀具偏移量在数控程序中用T代码调用。

这种方式具有易懂、操作简单、编程与对刀可以完全分开进行等优点。同时,在各种组合设置方式中都会用到刀偏设置,因此在对刀中应用最为普遍。

(2)用G50设置刀具起点

①用外圆车刀试车一段外圆,沿+Z轴退至端面余量内的一点(假定为a点)。

②测量外圆直径,记为φ。

③选择“MDI”(手动指令输入)模式,输人GO1 U一φF0. 3,切端面到中心(程序原点)。

④选择“MDI”模式,输人G50 X0 ZO,按“启动”按钮。把刀尖当前位置设为机床坐标系中的坐标(0,0),此时程序原点与机床原点重合。

⑤选择“MDI”模式,输入GO X150 2200,使刀尖移动到起刀点。该点为刀具离开工件、便于换刀的任意位置,此处假设为b点,坐标为(1.50、200)。

⑥加工程序的开头必须是G50 X150 2200,即把刀尖所在位置设为机床坐标系的坐标(150,200)。此时刀尖的程序坐标(150,200)与刀尖的机床坐标(150,200)在同一位置,程序原点仍与机床原点重合。

⑦当用G50 X150 2200设置刀具起点坐标时,基准刀程序起点位置和终点位置必须相同,即在程序结束前,需用指令GO X150 2200使基准刀具回到同一点,才能保证重复加工不乱刀。

⑧若用第二参考点G30,并在数控系统的参数里将第二参考点设为起刀点位置,能保证重复加工不乱刀,此时程序开头为:G30 UO WO; G50 X150 Z200。

⑨若不用上述③、④、⑤步骤中的GO1 U~φF0.3、G50 XO ZO.GO X150 2200指令来获得起刀点位置,也可用下述公式计算指定起刀点在机床坐标系(显示屏)中的坐标:

Xb=Xa-φ+150(2)

Zb=Za+200

然后用点动或脉冲操作,使刀尖移动到(Xb,Zb)位置。

注意:运行程序前要先将基准刀移到设定的位置。

在用G50设置刀具的起点时,一般要将该刀的刀偏值设为零。

此方式的缺点是起刀点位置要在加工程序中设置,且操作较为复杂。但它提供了用手工精确调整起刀点的操作方式,有的人对此比较喜欢。

(3)用G54~G59设置程序原点

①试切和测量步骤同前述一样。

②按“OFSET SET”键,进人“坐标系”设置,移动光标到相应位置,输入程序原点的坐标值,按“测量”或“输入”键进行设置。如图4所示。

③在加工程序里调用,例如:G55 X100 Z5...。G54为默认调用。

注意:若设置和使用了刀偏补偿,最好将G54~G59的各个参数设为0,以免重复出错。对于多刀加工,可将基准刀的偏移值设置在G54~G59的其中之一,将基准刀的刀偏补偿设为零,而将其它刀的刀偏补偿设为其相对于基准刀的偏移量。

这种方式适用于批量生产且工件在卡盘上有固定装夹位置的加工。铣削加工用得较多。

执行G54~G59指令相当于将机床原点移到程序原点。

(4)用“工件移”设置程序原点

①通过试切工件外圆、端面,测量直径,根据公式(1)计算出程序原点(工件原点)的X坐标,记录显示屏显示的原点Z坐标。

②按“OFSET SET”键,进入“工件移”设置,将光标移到对应位置,分别输入得到的X. Z坐标值,按机床MDI键盘上的“INPUT”键进行设置。如图5所示。

③使X、Z轴回机床原点(参考点),建立程序原点坐标。

“工件移”设置亦相当于将机床原点移到程序原点(工件原点)。对于单刀加工,如果设置了“工件移”,最好将其刀偏补偿设为0,以防重复出错;对于多刀加工,“工件移”中的数值为基准刀的偏移值,将其它刀具相对于基准刀的偏移值设置在相应的刀偏补偿中。4 多刀对刀

FANUC数控系统多刀对刀的组合设置方式有:①绝对对刀;②基准刀G50+相对刀偏;③基准刀“工件移”+相对刀偏;④基准刀G54~G59+相对刀偏。

(1)绝对对刀所谓绝对对刀即是用每把刀在加工余量范围内进行试切对刀,将得到的偏移值设置在相应刀号的偏置补偿中。这种方式思路清晰,操作简单,各个偏移值不互相关联,因而调整起来也相对简单,所以在实际加工中得到广泛应用。

(2)相对对刀所谓相对对刀即是选定一把基准刀,用基准刀进行试切对刀,将基准刀的偏移用G50,“工件移”或G54~G59来设置,将基准刀的刀偏补偿设为零,而将其它刀具相对于基准刀的偏移值设置在各自的刀偏补偿中。

下面以图2所示为例,介绍如何获得其它刀相对基准刀的刀偏值。

①当用基准刀试切完外圆,沿Z轴退到a点时,按显示器下方的“相对”软键,使显示屏显示机床运动的相对坐标。

②选择“MDI”方式,按"SHIFT"换档键,按"XU"选择U,这时U坐标在闪烁,按“ORIGIN”置零,如图6所示。同样将w坐标置零。

③换其它刀,将刀尖对准a点,显示屏上的U坐标、W坐标即为该刀相对于基准刀的刀偏值。此外,还可用对刃仪测定相对刀偏值。5 精确对刀

从理论上说,上述通过试切、测量、计算;得到的对刀数据应是准确的,但实际上由于机床的定位精度、重复精度、操作方式等多种因素的影响,使得手动试切对刀的对刃精度是有限的,因此还须精确对刀。

所谓精确对刀,就是在零件加工余量范围内设计简单的自动试切程序,通过“自动试切→测量→误差补偿”的思路,反复修调偏移量、或基准刀的程序起点位置和非基准刀的力偏置,使程序加工指令值与实际测量值的误差达到精度要求。由于保证基准刀程序起点处于精确位置是得到准确的非基准刀刀偏置的前提,因此一般修正了前者后再修正后者。

精确对刀偏移量的修正公式为:

记:δ=理论值(程序指令值)-实际值(测量值),则

xo2=xo1 +δx(3)

Zo2=Zo1-δZ

注意:δ值有正负号。

例如:用指令试切一直径40、长度为50的圆柱,如果测得的直径和长度分别为040.25和49.85,则该刀具在X、Z向的偏移坐标分别要加上-0.25和-0.15,当然也可以保持原刀偏值不变,而将误差加到磨损栏。6 结束语

笔者设计了一段多刀加工程序,在FANUC Oi数控车削系统上验证了上述几种组合对刀设置方式,取得了相同的效果。对其它数控系统也具有一定推广价值。

数控车床对刀原理及方法步骤实用详细

数控车床对刀原理及方法 步骤实用详细 Last revision date: 13 December 2020.

数控车床对刀原理及对刀方法 对刀是数控加工中的主要操作和重要技能。在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。 仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等。 1 为什么要对刀 一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。 数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。 在图1中,O是程序原点,O'是机床回零后以刀尖位置为参照的机床原点。 编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。 所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。 2 试切对刀原理 对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。 以图2为例,试切对刀步骤如下:

数控机床常用对刀方法与机内对刀仪

数控机床常用对刀方法与机内对刀仪 基本的坐标关系一般来讲,通常使用的有两个坐标系:一个是机床坐标系,另外一个是工件坐标系。机床坐标系是机床固有的坐标系,机床坐标系的原点称为机床原点或机床零点。 为了计算和编程方便,我们需要在机床坐标系中建立工件坐标系。将工件上的某一点作为坐标系原点(也称为程序原点)建立坐标系,这个坐标系就是工件坐标系。日常工作中,我们要尽量使编程基准与设计、装配基准重合。 通常情况下,一台机床的机床坐标系是固定的,而工件坐标系可以根据加工工艺的实际需求分别建立若干个,例如由G54、G55等来选择不同的工件坐标系。 对刀的目的进行数控加工时,数控程序所走的路径均是主轴上刀具的刀尖的运动轨迹。刀具刀位点的运动轨迹自始至终需要在机床坐标系下进行精确控制,这是因为机床坐标系是机床唯一的基准。编程人员在进行程序编制时不可能知道各种规格刀具的具体尺寸,为了简化编程,这就需要在进行程序编制时采用统一的基准,然后在使用刀具进行加工时,将刀具准确的长度和半径尺寸相对于该基准进行相应的偏置,从而得到刀具刀尖的准确位置。所以对刀的目的就是确定刀具长度和半径值,从而在加工时确定刀尖在工件坐标系中的准确位置。 常用对刀方法机外对刀 刀具预调仪是一种可预先调整和测量刀尖长度、直径的测量仪器,该仪器若和数控机床组成DNC网络后,还可以将刀具长度、直径数据远程输入加工中心NC中的刀具参数中。此种方法的优点是预先将刀具在机床外校对好,装上机床即可以使用,大大节省辅助时间。但是主要缺点是测量结果为静态值,实际加工过程中不能实时地对刀具磨损或破损状态进行更新,并且不能实时对由机床热变形引起的刀具伸缩进行测量。 试切法对刀 试切法对刀就是在工件正式加工前,先由操作者以手动模式操作机床,对工件进行一个微小量的切削,操作者以眼观、耳听为判断依据,确定当前刀尖的位置,然后进行正式加工。该方法的优点是不需要额外投资添置工具设备,经济实惠。主要缺点是效率低,对操作者技术水平要求高,并且容易产生人为误差。在实际生产中,试切法还有许多衍生方法,如量块法、涂色法等。

数控机床对刀方法

数控机床对刀方法 车床分有对刀器和没有对刀器,然而对刀原理都一样,先讲没有对刀器的吧. 车床本身有个机械原点,你对刀时一般要试切的啊,比如车外径一刀后Z向退出,测量车件的外径是多少,然后在G画面里找到你所用刀号把光标移到X输入X...按测量机床就明白那个刀位上的刀尖位置了,内径一样,Z向就简单了,把每把刀都在Z向碰一个地点然后测量Z0就能够了. 如此所有刀都有了记录,确定加工零点在工件移里面(offshift),能够任意一把刀决定工件原点. 如此对刀要记住对刀前要先读刀. 有个比较方便的方法,确实是用夹头对刀,我们明白夹头外径,刀具去碰了输入外径就能够,对内径时能够拿一量块用手压在夹头上对,同样输入夹头外径就能够了. 假如有对刀器就方便多了,对刀器就相当于一个固定的对刀试切工件,刀具碰了就记录到里面去位置了. 因此假如是多种类小批量加工最好买带对刀器的.节约时刻. 我往常用的MAZAK车床,我换一个新工件从停机到新工

件开始批量加工中间时刻一般只要10到15分钟就能够了.(包括换刀具软爪试切) ========================================= 数控车床差不多坐标关系及几种对刀方法比较 在数控车床的操作与编程过程中,弄清晰差不多坐标关系和对刀原理是两个特不重要的环节。这对我们更好地理解机床的加工原理,以及在处理加工过程中修改尺寸偏差有专门大的关心。 一、差不多坐标关系 一般来讲,通常使用的有两个坐标系:一个是机械坐标系;另外一个是工件坐标系,也叫做程序坐标系。两者之间的关系可用图1来表示。 图1 机械坐标系与工件坐标系的关系 在机床的机械坐标系中设有一个固定的参考点(假设为(X,Z))。那个参考点的作用要紧是用来给机床本身一个定位。因为每次开机后不管刀架停留在哪个位置,系统都把当前位置设定为(0,0),如此势必造成基准的不统一,因此每次开

数控机床对刀知识点整理

作为一名设计者,在设计零件图时,要保证设计的零件能在机床上加工出来,这就要求我们对工艺和机加工有一定基础。这个月重点学习了数控机床加工方面的知识。 1、机床原点与参考点 机床原点是指机床坐标系的原点,即X=0,Y=0,Z=0。机床原点是机床的基本点,它是其他所有坐标,如工件坐标系、编程坐标系,以及机床参考点的基准点。机床原点一般设置在机床移动部件沿其坐标轴正向的极限位置。 机床参考点是用于对机床工作台、滑板以及刀具相对运动的测量系统进行定标和控制的点,有时也称机床零点。机床参考点的位置是由机床制造厂家在每个进给轴上用限位开关精确调整好的,坐标值已输入数控系统中,因此参考点对机床原点的坐标是一个已知数。数控机床在工作时,移动部件必须首先返回参考点,测量系统置零之后即可以参考点作为基准,随时测量运动部件的位置,刀具(或工作台)移动才有基准。一般来说,加工中心的参考点为机床的自动换刀位置。 2、工作原点 编程坐标系是编程人员根据零件图样及加工工艺等建立的坐标系。编程人员以工件图样上某点为工作坐标系的原点,称工作原点。工作原点一般设在工件的设计工艺基准处,便于尺寸计算。 3、对刀点 对刀点就是在数控加工时,刀具相对于工件运动的起点,程序就是从这一点开始的。对刀点也可以称为“程序起点”或“起刀点”。编制程序时应首先考虑对刀点的位置选择。选定的原则如下:①选定的对刀点位置应使程序编制简单。 ②对刀点在机床上找正容易。③加工过程中检查方便。④引起的加工误差小。 对刀点可以设在被加工零件上,也可以设在夹具上,但是必须与零件的定位基准有一定的坐标尺寸联系,这样才能确定机床坐标系与零件坐标系的相互关系。对刀点最好能与工作原点重合。对刀点不仅是程序的起点而且往往又是程序的终点。 4、对刀方法 4.1 试切对刀法 在X、Y、Z三个方向上,让刀具慢慢靠近工件,是刀具恰好接触到工件表面

数控车床对刀操作方法

数控车床对刀操作方滕 一、FANUC绻统对刀操作、设置方滕 1、必须完成回零操作。 2、装夹好刀具、工件。 3、选择手动方式(JOG),使刀具接近工件。 4、选择MDI方式,输入转速如M3S400,按下启动键。 5、选择手轮方式,选择合适的位移速度。 6、选择X轴,踃整好切削深度,溿Z轴切削一段距离。 7、然后溿Z轴退回(滨意:在Z轴退回前、后,X轴方向不能移动,待输入参数后方可移动) 8、按下 键让主轴停止旋转,再按下 键进入刀补界面,接着再按下 ―→ ,此 时CRT显示如下:(滨意:第一竖列中显示应为G001,而不是WOO1) 9、用游标卡帺测量试切过的外圆直径,帆光标移到G001行中的X列,并帆测量值Φ输入为XΦ后 按下 ,完成X方向对刀设置。 10、再次在启动主轴,踃整好端面切削量,溿X轴切平端面,并溿X轴退回(Z方向不可移动)。 11、帆光标移到G001行中的Z列,输入Z0后按下 ,完成Z方向对刀设置。 12、帆刀具移至安全位置。

二、SIEMENS绻统对刀操作、设置方滕 1、必须完成回零操作。 2、装夹好刀具、工件。 3、选择手动方式(JOG),使刀具接近工件。 4、选择MDI方式,输入转速如M3S400,按下启动键 。 5、选择手轮方式,选择合适的位移速度。 6、按下JOG键,再按 键,按 键选X轴,踃整好切削深度,溿Z轴切削一段距离。 7、然后溿Z轴退回(滨意:在Z轴退回前、后,X轴方向不能移动,待输入参数后方可移动) 8、按下 键让主轴停止旋转,再按下 ―→ ,此时CRT显示如下: 9、用游标卡帺测量试切过的外圆直径,帆光标移到Φ后,输入测量值Φ如 后按 下 ―→ ,完成X方向对刀设置。 10、再次在启动主轴,踃整好端面切削量,溿X轴切平端面,并溿X轴退回(Z方向不可移动)。

数控机床FANUC系统对刀步骤

数控机床F A N U C系统对 刀步骤 Last updated on the afternoon of January 3, 2021

数控机床对刀步骤 法兰克加工中心机床 一、主轴转速的设定 ○1、将工作方式置于“MDI”模式; ○2、按下“程序键”; ○3、按下屏幕下方的“MDI”键; ○4、输入转速和转向(如“S500M03;”后按“INSRT”); ○5、按下启动键。 二、分中 1、意义:确定工件X、Y向的坐标原点。 2、X、Y平面原点的确定。 ○1、四面分中 ○2、两面分中,碰单边 ○3、单边碰数 3、抄数 ○1、意义:将分中后的机械值输入工件坐标系中,借以建立与机床坐标原点的位置关系。○2、方法: →切换到工件坐标系:OFS/SET→坐标系→选择具体的工件坐标系(如G54、G55、 G56、G57、G58、G59等)→输入“X0”后按屏幕下方的“测量”键(或直接输入机械坐标值)。 4、分中的类型 ○1、四面分中

○2、单边碰数 ○3、X轴分中,Y轴碰单边 ○4、Y轴分中,X轴碰单边 ○5、有偏数工件原点的确定,如X30Y20 5、分中的方法 试切分中 如果分中的要求不高,或工件为毛坯料,而且外形均可铣去,为了方便操作,可采用加工时所用的刀具直接进行碰刀,从而确定工作原点,其步骤如下(一四面分中为例): ○1、将所要用到的铣刀装在主轴上,并使主轴中速旋转; ○2、手动移动铣刀沿X方向靠近工件被测边,直到铣刀刚好切削刀工件材料即可; ○3、保持X、Y不变将Z轴沿+Z方向升起,并在相对值处将X轴置零; 归零方法: 按下X后按屏幕下方的“起源”或“归零”; ○4、将X轴移动到工件另一边,同样用刀具刚好切到工件材料即可; ○5、将主轴沿+Z方向升起; ○6、将X轴移到此时X轴相对值的1/2处(口算、心算或计算器); ○7、利用相同的方法测Y轴; ○8、抄数。 注:试切分中虽然比较简单,但会在工件表面留有刀痕,所以常用于铝和铜等毛坯料的分中。 6、分中棒分中: ○1、原理:采用离心力的原理。 ○2、方法及步骤:

数控车床如何对刀

数控车床如何对刀? 答:车床分有对刀器和没有对刀器,但是对刀原理都一样,先说没有对刀器。 车床本身有个机械原点,你对刀时一般要试切的啊,比如车外径一刀后Z向退出,测量车件的外径是多少,然后在G画面里找到你所用刀号把光标移到X输入X...按测量机床就知道这个刀位上 的刀尖位置了,内径一样,Z向就简单了,把每把刀都在Z向碰一个地方然后测量Z0就可以了. 这样所有刀都有了记录,确定加工零点在工件移里面(offshift),可以任意一把刀决定工件原点。 这样对刀要记住对刀前要先读刀. 有个比较方便的方法,就是用夹头对刀,我们知道夹头外径,刀具去碰了输入外径就可以,对内径时可以拿一量块用手压在夹头上对,同样输入夹头外径就可以了. 如果有对刀器就方便多了,对刀器就相当于一个固定的对刀试切工件,刀具碰了就记录进去位置了. 所以如果是多种类小批量加工最好买带对刀器的.节约时间. 数控车床基本坐标关系及几种对刀方法比较 在数控车床的操作与编程过程中,弄清楚基本坐标关系和对刀原理是两个非常重要的环节。这对我们更好地理解机床的加工原理,以及在处理加工过程中修改尺寸偏差有很大的帮助。 一、基本坐标关系 一般来讲,通常使用的有两个坐标系:一个是机械坐标系;另外一个是工件坐标系,也叫做程序坐标系。 在机床的机械坐标系中设有一个固定的参考点(假设为(X,Z))。这个参考点的作用主要是用来给机床本身一个定位。因为每次开机后无论刀架停留在哪个位置,系统都把当前位置设定为(0,0),这样势必造成基准的不统一,所以每次开机的第一步操作为参考点回归(有的称为回零点),也就是通过确定(X,Z)来确定原点(0,0)。 为了计算和编程方便,我们通常将程序原点设定在工件右端面的回转中心上,尽量使编程基准与设计、装配基准重合。机械坐标系是机床唯一的基准,所以必须要弄清楚程序原点在机械坐标系中的位置。这通常在接下来的对刀过程中完成。 二、对刀方法 1. 试切法对刀 试切法对刀是实际中应用的最多的一种对刀方法。下面以采用MITSUBISHI 50L数控系统的RFCZ12车床为例,来介绍具体操作方法。 工件和刀具装夹完毕,驱动主轴旋转,移动刀架至工件试切一段外圆。然后保持X坐标不变移动Z轴刀具离开工件,测量出该段外圆的直径。将其输入到相应的刀具参数中的刀长中,系统会自动用刀具当前X坐标减去试切出的那段外圆直径,即得到工件坐标系X原点的位置。再移动刀具试切工件一端端面,在相应刀具参数中的刀宽中输入Z0,系统会自动将此时刀具的Z坐标减去刚才输入的数值,即得工件坐标系Z原点的位置。 例如,2#刀刀架在X为150.0车出的外圆直径为25.0,那么使用该把刀具切削时的程序原点X值为150.0-25.0=125.0;刀架在Z为180.0时切的端面为0,那么使用该把刀具切削时的程序原点Z值为180.0-0=180.0。分别将(125.0,180.0)存入到2#刀具参数刀长中的X与Z中,在程序中使用T0202就可以成功建立出工件坐标系。 事实上,找工件原点在机械坐标系中的位置并不是求该点的实际位置,而是找刀尖点到达(0,0)时刀架的位置。采用这种方法对刀一般不使用标准刀,在加工之前需要将所要用刀的刀具全部都对好。

Fanuc系统数控车床对刀方法

Fanuc系统数控车床设置工件零点常用方法 一,直接用刀具试切对刀 1.用外园车刀先试车一外园,记住当前X坐标,测量外园直径后,用X坐标减外园直径,所的值输入offset界面的几何形状X值里。 2.用外园车刀先试车一外园端面,记住当前Z坐标,输入offset界面的几何形状Z值里。二,用G50设置工件零点 1.用外园车刀先试车一外园,测量外园直径后,把刀沿Z轴正方向退点,切端面到中心(X 轴坐标减去直径值)。 2.选择MDI方式,输入G50 X0 Z0,启动START键,把当前点设为零点。 3.选择MDI方式,输入G0 X150 Z150 ,使刀具离开工件进刀加工。 4.这时程序开头:G50 X150 Z150 …….。 5.注意:用G50 X150 Z150,你起点和终点必须一致即X150 Z150,这样才能保证重复加工不乱刀。 6.如用第二参考点G30,即能保证重复加工不乱刀,这时程序开头G30 U0 W0 G50 X150 Z150 7.在FANUC系统里,第二参考点的位置在参数里设置,在Yhcnc软件里,按鼠标右键出现对话框,按鼠标左键确认即可。 三,用工件移设置工件零点 1.在FANUC0-TD系统的Offset里,有一工件移界面,可输入零点偏移值。 2.用外园车刀先试切工件端面,这时Z坐标的位置如:Z200,直接输入到偏移值里。 3.选择“Ref”回参考点方式,按X、Z轴回参考点,这时工件零点坐标系即建立。 4.注意:这个零点一直保持,只有从新设置偏移值Z0,才清除。 四,用G54-G59设置工件零点 1.用外园车刀先试车一外园,测量外园直径后,把刀沿Z轴正方向退点,切端面到中心。 2.把当前的X和Z轴坐标直接输入到G54----G59里,程序直接调用如:G54X50Z50……。 3.注意:可用G53指令清除G54-----G59工件坐标系。 ==================================================== FANUC系统确定工件坐标系有三种方法。 第一种是:通过对刀将刀偏值写入参数从而获得工件坐标系。这种方法操作简单,可靠性好,他通过刀偏与机械坐标系紧密的联系在一起,只要不断电、不改变刀偏值,工件坐标系就会存在且不会变,即使断电,重启后回参考点,工件坐标系还在原来的位置。 第二种是:用G50设定坐标系,对刀后将刀移动到G50设定的位置才能加工。对到时先对基准刀,其他刀的刀偏都是相对于基准刀的。 第三种方法是MDI参数,运用G54~G59可以设定六个坐标系,这种坐标系是相对于参考点不变的,与刀具无关。这种方法适用于批量生产且工件在卡盘上有固定装夹位置的加工。 航天数控系统的工件坐标系建立是通过G92 Xa zb (类似于FANUC的G50)语句设定刀具当前所在位置的坐标值来确定。加工前需要先对刀,对到实现对的是基准刀,对刀后将显示坐标清零,对其他刀时将显示的坐标值写入相应刀补参数。然后测量出对刀直径Фd,将刀移动到坐标显示X=a-d Z=b 的位置,就可以运行程序了(此种方法的编程坐标系原点在工件右端面中心)。在加工过程中按复位或急停健,可以再回到设定的G92 起点继续加工。但如果出意外如:X或Z轴无伺服、跟踪出错、断电等情况发生,系统只能重启,重其后设定的工件

数控车床对刀方法

数控车床对刀方法 一、对刀 对刀的目的是确定程序原点在机床坐标系中的位置,对刀点可以设在零件上、夹具上或机床上,对刀时应使对刀点与刀位点重合。 数控车床常用的对刀方法有三种:试切对刀、机械对刀仪对刀(接触式)、光学对刀仪对刀(非接触式),如图3-9 所示。 1、试切对刀 1 )外径刀的对刀方法 如图3-10 所示。 Z 向对刀如(a) 所示。先用外径刀将工件端面( 基准面) 车

削出来;车削端面后,刀具可以沿X 方向移动远离工件,但不可Z 方向移动。Z 轴对刀输入:“Z0 测量”。 X 向对刀如(b) 所示。车削任一外径后,使刀具Z 向移动远离工件,待主轴停止转动后,测量刚刚车削出来的外径尺寸。例如,测量值为Φ50.78mm, 则X 轴对刀输入:“X50.78 测量”。 2 )内孔刀的对刀方法 类似外径刀的对刀方法。 Z 向对刀内孔车刀轻微接触到己加工好的基准面(端面)后,就不可再作Z 向移动。Z 轴对刀输入:“Z0 测量”。 X 向对刀任意车削一内孔直径后,Z 向移动刀具远离工件,停止主轴转动,然后测量已车削好的内径尺寸。例如,测量值为Φ45.56mm, 则X 轴对刀输入:“X45.56 测量”。 3 )钻头、中心钻的对刀方法 如图3-11 所示。 Z 向对刀如(a )所示。钻头( 或中心钻) 轻微接触到基准面后,就不可再作Z 向移动。Z 轴对刀输入:“Z0 测量”。 X 向对刀如(b )所示。主轴不必转动,以手动方式将钻头

沿X 轴移动到钻孔中心,即看屏幕显示的机械坐标到“X0.0 ”为止。X 轴对刀输入:“X0 测量”。 2、机械对刀仪对刀 将刀具的刀尖与对刀仪的百分表测头接触,得到两个方向的刀偏量。有的机床具有刀具探测功能,即通过机床上的对刀仪测头测量刀偏量。 3、光学对刀仪对刀 将刀具刀尖对准刀镜的十字线中心,以十字线中心为基准,得到各把刀的刀偏量。 二、刀具补偿值的输入和修改 根据刀具的实际参数和位置,将刀尖圆弧半径补偿值和刀具几何磨损补偿值输入到与程序对应的存储位置。如试切加工后发现工件尺寸不符合要求时,可根据零件实测尺寸进行刀偏量的修改。例如测得工件外圆尺寸偏大0.5mm ,可在刀偏量修改状态下,将该刀具的X 方向刀偏量改小0.25mm。

广州数控gsk980td车床数控系统详细对刀方法[1]

广州数控gsk980td车床数控系统详细对刀方法 为了能使你对数控车床的操作编程能快速上手,我特别编写该章节,希望能给你带来一定的帮助: 一:你应学会如何把主轴、水泵、刀架运转起来: 1)主轴的启动、停止,从目前经济型数控车床的配置来说主轴的启动基本上可分三种形式: a)主轴为机械换档,主轴电机为单速电机:这种配置时数控系统只能实现主轴的开启和停止首先把数控系统的方式切换到<手动方式>直接按主轴正转键,主 轴就可运转起来.按主轴<停止>键主轴便停止. b)主轴为机械换档,主轴电机为双速电机:这种配置时数控系统可以实现主轴的开启、停止和高低速的自动切换,首先把数控系统的方式切换到<录入方式>, 再按<程序>键并按<翻页>键翻页到<程序段>界面, 按M3(主轴正转指令)、输入;S1(主轴低速指令)再按输入(IN)键最后按<

运行>键,主轴便运转起来.同理,如果要转换为高速,则输入S2(主轴高速指令)、输入,按<运行>键,则主轴运转在高速档上.如果要停止主轴则输 入M5(主轴停止指令)按<运行>键,主轴并停止运转.当然也可以把方式切换到<手动方式>按主轴<停止>键主轴同样可以停止运转.(值得一提的是:当第一次在<录入方式>下运行主轴后,只要在未切断主电源之前要再次运行主轴,只需按照a)项的方法在<手动方式>下按主轴<正转>键,主轴便可运转起来,如果要在S1、S2之间切换还是在<录入方式>下进行。) c)主轴为变频电机调速:这种配置时数控系统可以实现主轴的开启、停止和在主轴转速范围内转速自由切换,首先把数控系统的方式切换到<录入方式>,再 按<程序>键并按<翻页>、键翻页到<程序段>界面, 按M3(主轴正转指令)、输入;再S500(主轴每分钟500转的指令)再按输入 (IN)键最后按<运行>键,主轴便运转起来. (例如:你的机床主轴范围为125-3000转,你可输入S的转速值在125-3000之间的任意整数值:如S300,S450,S315,S2790,S3000...等等,则主轴运转在你

数控车床对刀经验谈

数控车床对刀经验谈 [ 作者:佚名| 转贴自:转贴| 更新时间:2006-7-14 | 文章录入:许小勇] 车床分有对刀器和没有对刀器,但是对刀原理都一样,先说没有对刀器的吧. 车床本身有个机械原点,你对刀时一般要试切的啊,比如车外径一刀后Z向退出,测量车件的外径是多少,然后在G画面里找到你所用刀号把光标移到X输入X...按测量机床就知道这个刀位上的刀尖位置了,径一样,Z向就简单了,把每把刀都在Z向碰一个地方然后测量Z0就可以了. 这样所有刀都有了记录,确定加工零点在工件移里面(offshift),可以任意一把刀决定工件原点. 这样对刀要记住对刀前要先读刀. 有个比较方便的方法,就是用夹头对刀,我们知道夹头外径,刀具去碰了输入外径就可以,对径时可以拿一量块用手压在夹头上对,同样输入夹头外径就可以了. 如果有对刀器就方便多了,对刀器就相当于一个固定的对刀试切工件,刀具碰了就记录进去位置了. 所以如果是多种类小批量加工最好买带对刀器的.节约时间. 我以前用的MAZAK车床,我换一个新工件从停机到新工件开始批量加工中间时间一般只要10到15分钟就可以了.(包括换刀具软爪试切) ========================================= 数控车床基本坐标关系及几种对刀方法比较 在数控车床的操作与编程过程中,弄清楚基本坐标关系和对刀原理是两个非常重要的环节。这对我们更好地理解机床的加工原理,以及在处理加工过程中修改尺寸偏差有很大的帮助。 一、基本坐标关系 一般来讲,通常使用的有两个坐标系:一个是机械坐标系;另外一个是工件坐标系,也叫做程序坐标系。 在机床的机械坐标系中设有一个固定的参考点(假设为(X,Z))。这个参考点的作用主要是用来给机床本身一个定位。因为每次开机后无论刀架停留在哪个位置,系统都把当前位置设定为(0,0),这样势必造成基准的不统一,所以每次开机的第一步操作为参考点回归(有的称为回零点),也就是通过确定(X,Z) 来确定原点(0,0)。 为了计算和编程方便,我们通常将程序原点设定在工件右端面的回转中心上,尽量使编程基准与设计、装配基准重合。机械坐标系是机床唯一的基准,所以必须要弄清楚程序原点在机械坐标系中的位置。这通常在接下来的对刀过程中完成。 二、对刀方法 1. 试切法对刀 试切法对刀是实际中应用的最多的一种对刀方法。下面以采用MITSUBISHI 50L数控系统的RFCZ12车床为例,来介绍具体操作方法。 工件和刀具装夹完毕,驱动主轴旋转,移动刀架至工件试切一段外圆。然后保持X坐标不变移动Z轴刀具离开工件,测量出该段外圆的直径。将其输入到相应的刀具参数中的刀长

数控机床(FANUC系统)对刀步骤

数控机床对刀步骤 法兰克加工中心机床 一、主轴转速的设定 ○1、将工作方式置于“MDI”模式; ○2、按下“程序键”; ○3、按下屏幕下方的“MDI”键; ○4、输入转速和转向(如“S500M03;”后按“INSRT”); ○5、按下启动键。 二、分中 1、意义:确定工件X、Y向的坐标原点。 2、X、Y平面原点的确定。 ○1、四面分中 ○2、两面分中,碰单边 ○3、单边碰数 3、抄数 ○1、意义:将分中后的机械值输入工件坐标系中,借以建立与机床坐标原点的位置关系。 ○2、方法: → 切换到工件坐标系:OFS / SET → 坐标系→ 选择具体的工件坐标系(如G54、G55、G56、G57、G58、G59等)→ 输入“X0”后按屏幕下方的“测量”键(或直接输入机械坐标值)。 4、分中的类型 ○1、四面分中 ○2、单边碰数 ○3、X轴分中,Y轴碰单边 ○4、Y轴分中,X轴碰单边 ○5、有偏数工件原点的确定,如X30Y20 5、分中的方法 试切分中 如果分中的要求不高,或工件为毛坯料,而且外形均可铣去,为了方便操作,可采用加工时所用的刀具直接进行碰刀,从而确定工作原点,其步骤如下(一四面分中为例): ○1、将所要用到的铣刀装在主轴上,并使主轴中速旋转; ○2、手动移动铣刀沿X方向靠近工件被测边,直到铣刀刚好切削刀工件材料即可; ○3、保持X、Y不变将Z轴沿+Z方向升起,并在相对值处将X轴置零; 归零方法: 按下X后按屏幕下方的“起源”或“归零”; ○4、将X轴移动到工件另一边,同样用刀具刚好切到工件材料即可; ○5、将主轴沿+Z方向升起; ○6、将X轴移到此时X轴相对值的1/2处(口算、心算或计算器); ○7、利用相同的方法测Y轴;

数控车床如何对刀

数控车床如何对刀?答: 车床分有对刀器和没有对刀器,但是对刀原理都一样,先说没有对刀器。 车床本身有个机械原点,你对刀时一般要试切的啊,比如车外径一刀后Z向退出,测量车件的外径是多少,然后在G画面里找到你所用刀号把光标移到X输入X...按测量机床就知道这个刀位上 的刀尖位置了,内径一样,Z向就简单了,把每把刀都在Z向碰一个地方然后测量Z0就可以了.这样所有刀都有了记录,确定加工零点在工件移里面(offshift),可以任意一把刀决定工件原点。 这样对刀要记住对刀前要先读刀. 有个比较方便的方法,就是用夹头对刀,我们知道夹头外径,刀具去碰了输入外径就可以,对内径时可以拿一量块用手压在夹头上对,同样输入夹头外径就可以了. 如果有对刀器就方便多了,对刀器就相当于一个固定的对刀试切工件,刀具碰了就记录进去位置了. 所以如果是多种类小批量加工最好买带对刀器的.节约时间. 数控车床基本坐标关系及几种对刀方法比较 在数控车床的操作与编程过程中,弄清楚基本坐标关系和对刀原理是两个非常重要的环节。这对我们更好地理解机床的加工原理,以及在处理加工过程中修改尺寸偏差有很大的帮助。 一、基本坐标关系 一般来讲,通常使用的有两个坐标系: 一个是机械坐标系;另外一个是工件坐标系,也叫做程序坐标系。 在机床的机械坐标系中设有一个固定的参考点(假设为(X,Z))。这个参考点的作用主要是用来给机床本身一个定位。因为每次开机后无论刀架停留在哪个位置,系统都把当前位置设定为(0,0),这样势必造成基准的不统一,所以每次

开机的第一步操作为参考点回归(有的称为回零点),也就是通过确定(X,Z)来确定原点(0,0)。 为了计算和编程方便,我们通常将程序原点设定在工件右端面的回转中心上,尽量使编程基准与设计、装配基准重合。机械坐标系是机床唯一的基准,所以必须要弄清楚程序原点在机械坐标系中的位置。这通常在接下来的对刀过程中完成。 二、对刀方法 1.试切法对刀 试切法对刀是实际中应用的最多的一种对刀方法。下面以采用MITSUBISHI 50L数控系统的RFCZ12车床为例,来介绍具体操作方法。 工件和刀具装夹完毕,驱动主轴旋转,移动刀架至工件试切一段外圆。然后保持X坐标不变移动Z轴刀具离开工件,测量出该段外圆的直径。将其输入到相应的刀具参数中的刀长中,系统会自动用刀具当前X坐标减去试切出的那段外圆直径,即得到工件坐标系X原点的位置。再移动刀具试切工件一端端面,在相应刀具参数中的刀宽中输入Z0,系统会自动将此时刀具的Z坐标减去刚才输入的数值,即得工件坐标系Z原点的位置。 例如,2#刀刀架在X为 150.0车出的外圆直径为 25.0,那么使用该把刀具切削时的程序原点X值为 150.0- 25.0= 125.0;刀架在Z为 180.0时切的端面为0,那么使用该把刀具切削时的程序原点Z值为 180.0-0=

数控车床对刀步骤

数控车床对刀步骤 一、开机回零(返回参考点)操作 1、打开数控车床电气柜总开关。 2、按下机床面板上的“系统启动键”,接通电源,显示屏由原先的黑屏变为有文字 显示,电源指示灯亮。 3、按“急停键”,使“急停键”抬起。 4、在操作选择中按下“回零键”,这时该键左上方的小红灯亮。 5、在坐标轴选项键中按下“+X键”,X轴返回参考点,同时X回零指示灯亮。 6、依上述方法,按下“+Z键”,Z轴返回参考点,同时Z回零指示灯亮。 二、对刀操作 1、“方式选择”为“MDI”方式,显示屏将显示MDI程序编辑页面。如果没有显示此页面,则按功能键中的“PROG”键,进入该页面。在键盘上按“T0101;M03 S600”; →“INSERT”→“START”,换上1号刀,并使主轴转动。 2、“方式选择”变为“JOG”方式,利用“方向”键并结合“进给倍率”旋 钮移动1号刀,切削端面。切削完端面后,不要移动Z轴,按“+X”键以原进给速度退出。退出后,按下“主轴停止”按钮,使主轴停止转动。 3、按功能键中的“OFSETSET”键以及该页面下“形状”对应的软键盘进入下图所示页面,利用键盘上的光标键使光标移动到“G01”,在键盘上按“Z0”→“测量”软键,完成1号刀Z向的对刀。

4、“方式选择”为“MDI”方式,重新使主轴转动;再变为“JOG”方式,利用方向键移动1号刀,试切外圆。车一段外圆后,不要移动X轴,按“+Z”键以原进给速度退出。退出后,按下“主轴停止”按钮,使主轴停止转动。用外径千分尺测量试切部分的外圆直径。 5、再次进入如上图页面,在“G01”下,在键盘上输入刚才测量的外径植→“测量”,完成1号刀X向对刀。 6、完成1号刀的对刀后,利用“方向”键使刀架离开工件,退回到换刀位置附近。 7、采用同样方式继续完成各种刀具的对刀。 三、结束 至此,对刀过程已经结束,在程序中只需调取刀补号即可运行。如“T0101”后面的“01” 即为调用“G01”里的对刀数据,其他依此类推。

华中世纪星数控车床对刀及刀补值的设置方法

华中世纪星数控车床对刀及刀补值的设置方法 1. 刀具补偿值设置(F4) 在主操作界面下,按F4键进入刀具补偿功能子菜单。命令行与菜单条的显示如图1-9所示。 图1-9 刀具补偿功能主菜单 刀具补偿分为刀具的几何补偿和刀具的半径补偿。T代码指定刀具的几何补偿(偏置补偿与磨损补偿之和),其后的4位数字分别表示选择的刀具号(前两位数字)和刀具偏置补偿号(后两位数字)。补偿号可以和刀具号相同,也可以不同,即一把刀具可以对应多个补偿号(值)。刀具补偿号为00表示补偿量为0,即取消补偿功能。G40、G41、G42指定刀具的半径补偿。 (1)刀偏数据设置(F4→F1) 刀具的几何补偿包括刀具的偏置补偿和刀具的磨损补偿,刀具的偏置补偿有绝对刀具偏置补偿和相对刀具偏置补偿两种形式。我们推荐采用绝对刀具偏置补偿。 在主操作界面下,按F4→F1进入刀具偏置编辑画面如图1-10所示。 图1-10 刀具偏置编辑 车床编程轨迹实际上是刀尖的运动轨迹,但实际中不同的刀具的几何尺寸、安装位置各不相同,其刀尖点相对于刀架中心的位置也就不同。因此需要将各刀具刀尖点的位置值进行测量设定,以便系统在加工时对刀具偏置值进行补偿。我们采用试切法来设置绝对刀具偏置补偿值。

图1-11 绝对刀偏法刀具偏置补偿值 如图1-11所示,刀具偏置值即机床回到机床零点时,刀架工作位上各刀刀尖位置相对工件零点的有向距离。当执行刀具偏置补偿时,各刀以此值设定各自的工件坐标系。 机床到达机床零点时,机床坐标值显示均为零,整个刀架上的点可考虑为一理想点,故当各刀对刀时,机床零点可视为在各刀刀位点上。我们通过输入试切直径、长度值,自动计算工件零点相对与各刀刀位点的距离。其步骤如下: ①用光标键将蓝色亮条移动到要设置刀具偏置值的行。 ②用刀具试切工件的外径,然后沿Z轴方向退刀,在此过程中不要移动X轴。 ③测量试切后的工件外径,如为ф25.26 ,然后将此值输入到刀偏表中“#××01”一行中“试切直径”一栏中并确认,设置好X偏置。 ④用刀具试切工件的右端面,然后沿X轴方向退刀,在此过程中不要移动Z轴。 ⑤计算试切工件端面到该刀具要建立的工件坐标系的零点位置的有向距离,如为“3mm”,然后将“3”输入到刀偏表中“#××01”一行中“试切长度”一栏中并确认,设置好Z偏置。 如果要设置其余的刀具,就重复以上步骤。需要注意,对刀前,机床必须先回机床零点。 (2)刀具磨损量补偿参数设置(F4→F1) 刀具使用一段时间后磨损,也会使产品尺寸产生误差,因此需要对其进行补偿,该补偿值与刀具偏置补偿存放在同一个寄存器的地址号中如图1-10所示。 例如在粗加工时,将“X磨损”输入“0.5”(0.5mm作为精加工的余量),工件粗加工后,实测工件值大于图样尺寸0.48mm,则相应刀具磨损量为“0.5-0.48=0.02”,在图1-10刀偏表中,“X磨损”输入“0.02”,自动加工后即可保证工件尺寸。 若长度出现偏差也可以用刀具磨损量补偿,在图1-10刀偏表中“Z磨损”输入相应值即可。 (3)刀具半径补偿数据设置(F4→F2) 刀尖圆弧半径补偿是通过G41、G42、G40代码及T代码指定的刀尖圆弧半径补偿号来加入或取消半径补偿值。车刀刀尖的方向号定义了刀具刀位点与刀尖圆弧中心的位置关系,其从0~9有十个方向,如图1-12所示。

数控车床对刀方法

数控车床对刀方法 对刀的原理与方法 编程原点、加工原点的概念 编程原点地根据加工图样选定的编制零件程序的原点,即编程坐标系的原点。 数控机床运行程序进行自动加工时,刀具运动的轨迹是程序给定的坐标值控制的,这种坐标值的参照系称为加工坐标系,它的坐标原点称为加工坐标原点。 零件被定位装夹于机床后,相应的编程坐标原点在机床坐标系中的位置应与工件的加工原点重合,编程人员在编制程序时,需根据零件图样选定编程原点,建立编程坐标系,并在程序中用指令指定编程原点在机床中的位置,即工件的加工原点,建立起工件的加工坐标系。 对刀的原理 对于数控机床来说,加工前首先要确定刀具与工件的相对位置,它是通过对刀点来实现的。对刀点是指通过对刀确定刀具与工件相对位置的基准点,对刀点往往就是零件的加工原点,它可以设在被加工零件上,也可以设在夹具与零件定位基准有一定尺寸联系的某一位置上。 对刀点的选择原则:(1)使程序编制简单;(2)容易找正,便于确定零件的加工原点的位置;(3)在加工时检查方便、可靠;(4)有利于提高加工精度。 在使用对刀点确定加工原点时,就需要进行“对刀”。对刀是指“刀位点”与“对刀点”重合的操作,“刀位点”是指刀具的定位基准点,对于车刀来说,其刀位点是刀尖。对刀的目的是确定对刀点(或工件原点)在机床坐标系中的绝对坐标值,测量刀具的刀位偏差值。 当加工同一工件要使用多把不同的刀具时,在换刀位置不变的情况下,不同的刀具其刀位点到工件基准点的相对坐标值是不同的,这就要求不同的刀具在不同的起始位置开始加工时,都能保证程序正常运行。为了解决这个问题,机床数控系统配备了刀具补正的功能,利用刀具补正功能,只要事先把每把刀相对于某一预先选定的基准刀的位置偏差测量出来,输入到数控系统的刀具参数补正栏指定组号里,在加工程序中利用T指令,即可在刀具轨迹中自动补偿刀具位置偏差。刀具位置偏差的测量同样亦需通过对刀来进行。 对刀的方法 在数控加工中,对刀的基本方法有手动对刀、对刀仪对刀、ATC对刀和自动对刀等。 手动对刀的基础是通过试切零件来对刀,采用“试切—测量—调整”的对刀模式。手动对刀要较多地占用机床时间,但由于方法简单,所需辅助设备少,因此普遍应用于经济型数控机床中。采用对刀仪对刀需对刀仪辅助设备,成本较高,但可节省机床的对刀时间,提高对刀的精度,一般用于精度要求较高的数控机床中。ATC对刀由于操纵对刀镜以及对刀过程还是手动操作,故仍有一定的对刀误差。自动对刀与前面的对刀方法相比,减少了对刀误差,提高了对刀精度和对刀效率,但CNC系统必须具备刀具自动检测的辅助功能,系统较复杂,一般用于高档数控机床中。 经济型数控车床的手动对刀方法 GSK928CNC控制系统是广州数控设备厂开发的第二代数控系统,下面以GSK928系统数控车床为例,说明手动对刀的具体操作方法。 简单的对刀过程 手动(MANUAL)方式下,可按以下顺序进行对刀,得出刀具偏置量。 (1)进入主菜单,进入手动方式(MANUAL); (2)选定对刀用的基准点(刀尖容易到达又方便观察的位置); (3)选一把刀作为基准刀,例如1号刀,在可以换刀的位置键入T10命令(选1号刀,无刀偏); (4)移动刀架,将基准刀的刀尖移到对刀基准点,按“命令COMM”键,显示命令菜单,执行NEWXZ命令(设置新系统坐标),将系统的坐标设置为(0,0); (5)按“命令COMM”键,执行T.SIZE命令(用系统坐标设置刀具偏置),可将基准刀对应的刀偏值置为(0,0);

数控车床对刀原理及方法步骤(实用详细)

数控车床对刀原理及对刀方法 对刀是数控加工中的主要操作和重要技能。在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。 仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等。 1 为什么要对刀 一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。 数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。 在图1中,O是程序原点,O'是机床回零后以刀尖位置为参照的机床原点。 编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。

所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。 2 试切对刀原理 对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。 以图2为例,试切对刀步骤如下: ①在手动操作方式下,用所选刀具在加工余量范围内试切工件外圆,记下此时显示屏中的X坐标值,记为Xa。(注意:数控车床显示和编程的X坐标一般为直径值)。 ②将刀具沿+Z方向退回到工件端面余量处一点(假定为α点)切削端面,记录此时显示屏中的Z坐标值,记为Za。 ③测量试切后的工件外圆直径,记为φ。 如果程序原点O设在工件端面(一般必须是已经精加工完毕的端面)与回转中心的交点,则程序原点O在机床坐标系中的坐标为 Xo=Xa-φ(1) Zo=Za 注意:公式中的坐标值均为负值。将Xo、Zo设置进数控系统即完成对刀设置。3 程序原点(工件原点)的设置方式 在FANUC数控系统中,有以下几种设置程序原点的方式:①设置刀具偏移量补偿;②用G50设置刀具起点;③用G54~G59设置程序原点;④用“工件移”设置程序原点。 程序原点设置是对刀不可缺少的组成部分。每种设置方法有不同的编程使用方式、不同的应用条件和不同的工作效率。各种设置方式可以组合使用。

数控车床对刀的原理及方法

一、数控车床对刀的原理: 对刀是数控加工中的主要操作和重要技能.在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率.仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件等。 一般来说,数控加工零件的编程和加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的工件坐标系,工件坐标系一般与零件的工艺基准或设计基准重合,在工件坐标系下进行零件加工程序的编制。 对刀时,应使指刀位点与对刀点重合,所谓刀位点是指刀具的定位基准点,对于车刀来说,其刀位点是刀尖.对刀的目的是确定对刀点,在机床坐标系中的绝对坐标值,测量刀具的刀位偏差值.对刀点找正的准确度直接影响加工精度。在实际加工工件时,使用一把刀具一般不能满足工件的加工要求,通常要使用多把刀具进行加工.在使用多把车刀加工时,在换刀位置不变的情况下,换刀后刀尖点的几何位置将出现差异,这就要求不同的刀具在不同的起始位置开始加工时,都能保证程序正常运行。为了解决这个问题,机床数控系统配备了刀具几何位置补偿的功能,利用刀具几何位置补偿功能,只要事先把每把刀相对于某一预先选定的基准刀的位置偏差测量出来,输入到数控系统的刀具参数补正栏指定组号里,在加工程序中利用T 指令,即可在刀具轨迹中自动补偿刀具位置偏差.刀具位置偏差的测量同样

也需通过对刀操作来实现。 生产厂家在制造数控车床,必须建立位置测量、控制、显示的统一基准点,该基准点就是机床坐标系原点,也就是机床机械回零后所处的位置。 数控机床所配置的伺服电机有绝对编码器和相对编码器两种,绝对编码器的开机不用回零,系统断电后记忆机床位置,机床零点由参 数设定。相对编码器的开机必须回零,机床零点由机床位置传感器确定. 编程员按工件坐标系中的坐标数据编制的刀具运行轨迹程序,必须在机床坐标系中加工,由于机床原点与工件原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀具的运动轨迹,才能加工出符合零件图纸的工件。这个过程就是对刀,所谓对刀其实质就是测量工件原点与机床原点之间的偏移距离,设置工件原点在以刀尖为参照的机床坐标系里的坐标。 二、对刀方法 对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。 1.数控车床试车对刀方法

相关文档
最新文档