基于SIMULINK的主动悬架控制器建模与仿真 2014

基于SIMULINK的主动悬架控制器建模与仿真 2014
基于SIMULINK的主动悬架控制器建模与仿真 2014

基于SIMULINK的主动悬架控制器建模与仿真

摘要:悬架对于车辆的平顺性、操稳性和安全性等都有着重要的影响。悬架对车身的垂向振动加速度的影响是悬架设计研究的重点。本文在分析主动悬架的各种控制方法后,采用二自由度1/4单轮车辆模型和线性二次型Gauss(LQG)控制方法建立计算机模型在Matlab/Simulink中进行集成优化仿真。从仿真结果分析主动悬架显著地降低了车身的垂向振动加速度,对改善汽车行驶平顺性和提高汽车行驶安全性具有较优的效果。

关键词:主动悬架;单轮模型;LQG控制;Simulink

Modeling and Simulation of active suspension controller based on

SIMULINK

Liu Dexiong

( College of engineering and technology,Southwestern University, Chongqing 404100 )

Abstract:Suspension for vehicle ride comfort, handling stability and security have important influence. Suspension on the body of the effect of vertical vibration acceleration is the research focus of suspension design. In this paper, in various analysis of active suspension control methods, with two degrees of freedom and 1 / 4 single wheel vehicle model and linear two Gauss (LQG) control method to establish a computer model of integrated optimization simulation in Matlab/Simulink. From the analysis of simulation results of active suspension significantly reduces the body's vertical vibration acceleration, to improve vehicle ride comfort and improve vehicle safety and has better effectiveness.

Key words:Active suspension; single wheel model; LQG control; Simulink

0引言

悬架系统是车辆的重要部件,对于车辆的平顺性、操稳性和安全性等都有着重要的影响,而主动悬架是悬架发展的必然方向。控制律的设计对于主动悬架性能的发挥起着重要的作用[1]。

多种控制方法已应用于主动悬架控制中,如最优控制、预见控制、自适应控制、神经网络自适应控制、模糊控制等。传统主动悬架的设计,先是通过优化理论来设计悬架的机械结构参数,然后采用一种控制策略来设计控制器。这种设计方法把一个机械系统的设计一分为二,虽然在前后两步设计过程中都应用了优化设计思想,但在实际中这种主动悬架却往往不能达到预期的效果。

在机械结构和控制结构之间存在着错综复杂的相互关系,使得结构与控制系统之间存在着某种耦合关系。因此在设计时,必须考虑这二者之间的关系,以求得全局最优参数。

结构与控制的集成优化研究,国外起于20 世纪80 年代末、90 年代初。日本学者H.Asada 曾提出关于单连杆、双连杆机器手的结构和控制参数的集成优化方法[2];美国学者Anton C.Pil采用了递归实验方法对机械系统结构和控制参数进行集成优化[3]。二自由度l/4单轮车辆模型由于结构简单,且能够反映汽车的主要性能,从而得到最广泛的应用[4]。

汽车在行驶时受到路面不平度的激励而引起振动,而路面激励具有多样性和不确定性,这样汽车的悬架系统就有了随机扰动输人,使得悬架系统具有一定的不确定性。另外系统传感器的量测噪声也增加了系统的不确定性。基于这些不确定性,本文采用基于线性二次型Gauss(LQG)控制方法来进行集成优化研究[5]。

1 建立单轮仿真系统建模

根据牛顿运动定律,建立系统的运动方程,即:

(4)

(5) 这里,采用一个滤波白噪声作为路面输入模型,即:

(6)

式中,x g为路面垂向位移(m);Go为路面不平系数(m3/cycle);u为车辆前进速度(m/s);w为数字期望为零的高斯噪声;f o为下截止频率(Hz)。

结合式4、式5和式6,将系统运动方程和路面输入方程写矩阵形式,既得出系统的空间状态方程:

(7)

)

(

m

w

b

s

a

b

b

x

x

K

U

x-

-

=

)

(

)

(

m

w g

w

t

w

b

s

a

w

x

x

K

x

x

K

U

x-

-

-

+

-

=

)

(

2

)

(

2

)

(t

w u

G

t

x

f

t

x

o

g

o

g

π

π+

-

=

FW

BU

AX

X+

+

=

10(0)()(1=+++-+-Q N P B R N PB P A PA T T T 式中,T

)x x x x x (X g w b w b =,为系统状态矢量;

))((t w W =,为高斯白噪声输入矩阵;))(U (U a t =,

为控制输入矩阵;

A=???

??????

?????????????

-o f π200

0001000

001m K m K -K -m K 0

00m K m K

-00w t w s

t w

s

b

s b s

;

?

????????

???????????-=0

0011

w

b m m B ;???????

?????????=u G F o π

20000 2 LQG 控制器设计

车辆悬架设计中的重要性能指标包括:代表轮胎接地性的轮胎动载荷;代表乘坐舒适性的车身垂向振动加速度;影响车身姿态且与结构设计和布置有关的悬架动行程。因此,LQC 控制器设计中的性能指标J 即为轮胎动位移、悬架动行程和车身垂向振动加速度的

加权平方和在时域T 内的积分值,其表达式为[6]

式中,q 1、q 2和q 3分别为轮胎位移、悬架动行程和车身垂向振动加速度的加权系数。加权系数的选择决定了设计者对悬架性能的倾向,如对车身垂向振动加速度项选择较大的权值,那么就意味着悬架系统以提高乘坐舒适性为主要目标;若对轮胎动位移项选择较大的权值,则考虑更多的是提高车辆操作稳定性。为方便起见,这里取车身垂向振动加速度的加权系数q 3=1。

将性能指标J 的表达式(8)改写为矩阵形式,即:

式中,

;0000000000

00000000

Q 11

12

2

212222

2

2222???

??????

?

?????

????

?--++----+=q q q m K q q m K q m K q m K q b

s b s b s b s 21

b m R =;???

????

?????????-=00012s s b K K m N ;

当车辆参数值和加权系数值确定后,最优控制反

馈增益可由黎卡提方程求出,其形式如下: 最优控制反馈增益矩阵T

T

N P B +=K ,由车辆参数和加权系数决定。根据任意时刻的反馈状态变量

X(t),就可得出t 时刻作动器的最优控制力U a ,即:

(11)

3 SIMULINK 仿真

Simulink 仿真系统的参数分:车辆模型参数;路面输入参数;性能指标加权系数。

车辆模型参数:簧载质量(m b )320(kg); 非簧载质量(m w )40 (kg);悬架刚度(K s )20000 N/m );轮胎刚度(K t )200000(N/m );悬架工作空间(SWS c )±100(mm );

仿真路面输入参数:路面不平度(G 0)5×10-6

(m 3

/cycle ;车速(u )20(m/s ); 下截止频率(f 0)0.1(Hz );

性能指标加权系数:轮胎动位移(q 1)80000;悬架动行程(q 2)5; 车身加速度(q 3)1。

下面介绍调用的函数和参数值。

)9( dt )NU X 2RU U QX X (T 1lim J T 0

T T T

?++=∞→T )8( dt )(x q (t)]x -(t)[x q (t)]x -(t)[x q T 1lim J T 0

2b 32w b 2g w 12?

??

?

?

???

???????++=∞→t T )

()(U a t KX t -=

仿真计算中以式(6)所示的滤波白噪声作为路面输入模型。白噪声的生成可直接调用MATLAB 函数WGN (M,N,P )(信号处理工具箱Communication toolbox 中模块),其中M 为生成矩阵的行数,N 为列数,P 为白噪声的功率(单位为dB )。根据车辆的参数M=1001,N=1,P=20。这意味着仿真计算中取一条白噪声,共1001个采样点,噪声强度为20dB 。设定采样时间为0.005s 、车速为20m/s 时,相当于仿真路面为1000m ,仿真时间为50s 。

根据所建立的系统状态方程式(7)及最优性能指标函数式(9),利用已知的矩阵A 、B 、Q 、R 、N ,调用MATLAB 中的线性二次最优控制器设计函数[K,S,E]=LQR(A,B,Q,R,N),即可完 成最优主动悬架控制器的设计。输出的结果中,K 为最优控制反馈增益矩阵,S 为黎卡提方程的解,E 为系统闭环特征根。

K =(711.88 -1241.4 -19284 -2038.5 20864) 同时,还得到了黎卡提方程的解:

在Simulink 环境下建立的最优主动悬架车辆仿真模型框图如图1所示。LQG 主动悬架系统的时域仿真结果如图2所示,包括路面位移输入x g (t)、轮胎动位移DTD (t )、悬架动行程SWS (t )及车身加速度BA (t )。

图1 Simulink 环境下的系统仿真框图

Fig.1 The simulation system block diagram Simulink environment

在相同仿真条件下,可将所设计的主动悬架系统与一个被动系统进行对比分析。在被动悬架中,取悬架刚度Ks=22000N/m ,阻尼系数Cs=1000N.s/m 。除此以外,其他输入参数值均与主动悬架系统完全相同。

计算得出的两个不同系统的性能指标均方根值见1所

示。

图2 LQG 主动悬架系统的时域仿真结果

Fig.2 Time domain simulation results of LQG active suspension

system

表1主动悬架与被动悬架性能指标均方根值比较 Table 1 Active suspension and passive suspension performance

indexes of RMS value

性能指标 单位

主动悬架

均方根值

被动悬架

均方根值 车身加速度BA m/s 2 1.4227 1.7442 悬架动行程SWS mm 33.1 17.0 轮胎动位移DTD

mm

5.7

5.9 4 结论

使用LQG 控制器控制主动悬架系统的仿真结果表

明,其悬架动行程被很好地控制在设计要求的范围内(±100mm ),意味着许用的悬架工作空间得到了更充分的利用。在轮胎动位移基本相同的情况下,所设计的最优主动悬架显著地降低了车身的垂向振动加速度,与被动悬架系统相比,其均方根值减少了18.4%,对改善汽车行驶平顺性和提高汽车行驶安全性具有较优的效果。

[参 考 文 献]

[1] 周云山;钟勇. 汽车电子控制技术, 2004.

[2] Asada H,Park J H,Rai s.A Control-Configured Flexible

;

7.26934.27001033.52364.7309

.74.27001.27106754.85262.76607.8 5.10336754.89744.40298.04745.27.2364-7.52620.02984886.00289.0309.78.6607-2.47450289.04559.2S ????????????????------

=

Arm: Integrated Structrue/control Design.

Proc.of.the 1991 IEEE, International Conference on Roboticsand Automation,Sacra-mento,California,1999 [3]Pil Anton C,Asada H.Integrated Structure/Control

Design of Mechatronic Systems Using a Recursive Experimental Optimization Method. IEEE/ASME Transaction on Mechatronics,1996,1(3).

[4]冀杰,李以农,郑玲. 汽车主动悬架几种控制策略的比较

研究. 机械科学与技术,2006(06).

[5]王启瑞,朱婉玲,陈无畏,施文武. 基于遗传算法和LQG 控

制的汽车半主动悬架结构和控制参数的集成优化研究.

汽车工程,2002,24(3).

[6]Dave Crolla,喻凡. 车辆动力学及其控制,2004.

法学虚拟仿真实训平台软件

法源法律实务综合模拟软件 一、产品名称及规格型号 法源法律实务综合模拟软件V1.0 二、产品说明 (一)系统介绍 法源法律实务综合模拟软件是完全模拟诉讼实务中的程序和标准的法律案件审理程序的整个过程的一套训练系统。系统覆盖现今所有法律机构办案流程,通过模拟了解法院、检察院、公安机关、仲裁、行政机构如何进行案件审理,以及在整个诉讼、侦查等过程中,如何去实现自己的诉讼权利等等。系统内置的业务涉及法院、检察院、公安侦查、仲裁、行政复议(处罚)、调解的四十余种诉讼与非讼业务流程。 (二)系统价值 1、通过软件的案件和流程设置,学生通过模拟了解法院、检察院、公安机关、仲裁、行政机构如何进行案件审理,以及在整个诉讼、侦查等过程中,如何去实现自己的诉讼权利等等。 2、软件内置的业务涉及法院、检察院、公安侦查、仲裁、行政复议(处罚)、调解等。 3、软件内置的教学案例为真实的案例,并且在教师端可以进行自由添加删除修改。所谓的真实案例是该案件要求附带整套证据扫描件。 4、教师端可以进行实时庭审的监控以及对实验的所有学生进行实验进度的监控和评分。 5、管理员端可以进行班级、账号的添加,可以对软件的数据进行添加修改(如添加视频)。 6、学生端可以完成老师安排的实验也可以自行添加实验进行练习(实验的业务详见参数),可以进行单人多角色模式和多人互动模式进行操作,庭审中即可用语言视频操作也可以用文字录入模式进行操作。 7、业务流程以流程图式和 flash两种方式嵌入,即让学生和教师快速清楚了解诉讼侦查等业务的整个概况,又增加了趣味性。

8、考核功能:具有主观与自动评分相结合来(实验完成的时间、完成程度、教师预先设定的实验要求)考核学生的整个实验。 9、诉讼流程:系统用流程图跟踪颜色变动方式来显示,可以清楚直观的显示学生的实验情况,以及教师对其的监控。 10、实验数据:实验数据可以在教师端口导出所有学生的所有已完成实验的案件文书,可保存WORD打印。 11、软件数据: (1)真实案件 50 例; (2)文书模版:内置 1400 份各类型的法律文书模板; (3)司法案例,内置上千例司法案例、两高公报等; (4)合同模板:内置上千份合同模板库。 (5)法律法规:内置40余万的法律法规、司法解释等 12、软件为B/S架构网络版,客户端没有站点限制。 三、系统优势 A功能: 1、操作模式: 单人模式:单帐号扮演案件中的所有角色,让学生独立完成实验,方便其熟悉诉讼中的每个环节。 多人模式:多帐号互动扮演案件中的角色,让学生之间互动操作来配合完成实验,可根据分析案情、证据、焦点等全面提高法律技能。 2、实验流程: (1)法院: 民事诉讼 A民事一审程序、B民事一审反诉程序、C民事二审程序、D民事非诉特别程序:督促程序、E民事非诉特别程序:公示催告程序F民事非诉特别程序:企业破产程序、G民事特别程序:选民资格案件程序H民事特别程序:宣告公民失踪和宣告公民死亡案件程序、I民事特别程序:认定公民无行为能力或者限制行为能力案件程序、J民事特别程序:认定财产无主案件程序K民事特别程序:宣告婚

开关电源《基于MatlabSimulink的BOOST电路仿真》

基于Matlab/Simulink 的BOOST电路仿真 姓名: 学号: 班级: 时间:2010年12月7日

1引言 BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。 图1BOO ST 电路的结构 2电路的工作状态 BOO ST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断) (c) 开关状态3 (电感电流为零) 图2BOO ST 电路的工作状态

3matlab仿真分析 matlab 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。本文应用基于matlab软件对BOO ST 电路仿真, 仿真图如图3 所示,其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真图2 中开关S的通断过程。 图3BOO ST 电路的PSp ice 模型 3.1电路工作原理 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。负载侧输出电压的平均值为: (3-1) 式(3-1)中T为开关周期, 为导通时间,为关断时间。

实验四 SIMULINK仿真模型的建立及仿真(完整资料).doc

【最新整理,下载后即可编辑】 实验四SIMULINK仿真模型的建立及仿真(一) 一、实验目的: 1、熟悉SIMULINK模型文件的操作。 2、熟悉SIMULINK建模的有关库及示波器的使用。 3、熟悉Simulink仿真模型的建立。 4、掌握用不同的输入、不同的算法、不同的仿真时间的系统仿真。 二、实验内容: 1、设计SIMULINK仿真模型。 2、建立SIMULINK结构图仿真模型。 3、了解各模块参数的设定。 4、了解示波器的使用方法。 5、了解参数、算法、仿真时间的设定方法。 例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK模型,并进行仿真运行。 步骤: 1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK模块浏览器。

图一:SIMULINK模块浏览器 2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。 图二:已经复制进库模块的新建模型窗 3、从模块库复制所需模块到新建模型窗,分别在模块子库中

找到所需模块,然后拖进空白模型窗中,如图二。 4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。 5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。如图三所示: 图三:已构建完成的新模型窗 6、根据理论数学模型设置模块参数: ①设置增益模块参数,双击模型窗重的增益模块,引出如图四所示的参数设置窗,把增益栏中默认数字改为2,单击[OK]键,完成设置;

虚拟仿真实验教学中心平台建设方案

湖北警官学院虚拟仿真实验教学建设方案 一、方案背景 虚拟仿真实验教学是高等教育信息化建设和实验教学示范中心建设的重要内容,是学科专业与信息技术深度融合的产物。为贯彻落实《教育部关于全面提高高等教育质量的若干意见》(教高〔2012〕4号)精神,根据《教育信息化十年发展规划(2011-2020年)》,教育部决定于2013年启动开展国家级虚拟仿真实验教学中心建设工作。其中虚拟仿真实验教学的管理和共享平台是中心建设的重要内容之一。 目前,大多数高校都有针对课程使用实验教学软件,但由于每个专业或课程的情况不同,购买的软件所采用的工作环境、体系结构、编程语言、开发方法等也各不相同。由于学校管理工作的复杂性,各校乃至校内各专业的实验教学建设大都自成体系,各自为政,形成了“信息孤岛”。主要面临如下问题:? 管理混乱,各种实验教学软件缺乏统一的集中管理。 ? 使用不规范,缺乏统一的操作模式和管理方式; ? 可扩展性差,无法支持课程和相应实验的扩展; ? 各系统的数据无法共享,容易形成“信息孤岛”; ? 缺乏足够的开放性; ? 软件部署复杂,不同的软件不能运行在同一台服务器上; 二、方案目标 该方案的目标就是高效管理实验教学资源,实现校内外、本地区及更广范围内的实验教学资源共享,满足多地区、多学校和多学科专业的虚拟仿真实验教学的需求。平台要实现学校购置的所有实验软件统一接入和学生在平台下进行统一实验的目的,通过系统间的无缝连接,使之达到一个整体的实验效果,学校通过该平台的部署,不仅可以促进系统的耦合度,解决信息孤岛的问题,还可以使学校能够迅速实施第三方的实验教学软件。 平台提供了全方位的虚拟实验教学辅助功能,包括:门户网站、实验前的理论学习、实验的开课管理、典型实验库的维护、实验教学安排、实验过程的智能指导、实验结果的自动批改、实验成绩统计查询、在线答疑、实验教学效

基于MATLAB的M文件仿真

M文件: k=1; Int_F=inline('t','t'); for x=[1,3,5] f_x(k)=x^3+x+log(x)*sin(x)+quad8(Int_F,0,x); k=k+1; end f_x >> Calcfx Warning: QUAD8 is obsolete. We use QUADL instead. > In quad8 at 35 In Calcfx at 4 f_x = 2.5000 34.6550 140.9567 M文件: function[mean,stdev]=stat(x) n=length(x); mean=sum(x)/n; stdev=sqrt(sum(x-mean).^2/n); >> x=[1,3,2]; >> [k,l]=stat(x) k = 2 l = 微积分方程组的MA TLAB函数: 文件funcforex123.m function xdot=funcforex123(t,x,flag,r,l,c) xdot=zeros(2,1); xdot(1)=-r/l*x(1)-1/l*x(2)+1/l*f(t); xdot(2)=1/c*x(1); function in=f(t) in=(t>0)*1; 文件Ex123.m l=1; c=0.1; for r=[1.5 3 5]

[t,x]=ode45('funcforex123',[-1,10],[0;0],[],r,l,c); figure(1);plot(t,x(:,1));hold on;xlabel('time sec'); text(0.9,0.17,'\lefttarrow i_L(t)');grid; figure(2);plot(t,x(:,2));hold on;xlabel('time sec'); text(0.5,0.3,'\leftarrow u_C(t)');grid; End >> ex123 Warning: Unable to interpret TeX string "\lefttarrow i_L(t)". > In ex123 at 5 Warning: Unable to interpret TeX string "\lefttarrow i_L(t)". > In ex123 at 7 Warning: Unable to interpret TeX string "\lefttarrow i_L(t)". > In ex123 at 7

Simulink建模方法

Simulink 建模方法 在一些实际应用中,如果系统的结构过于复杂,不适合用前面介绍的方法建模。在这种情况下,功能完善的Simulink 程序可以用来建立新的数学模型。Simulink 是由Math Works 软件公司1990年为MATLAB 提供的新的控制系统模型图形输入仿真工具。它具有两个显著的功能:Simul(仿真)与Link(连接),亦即可以利用鼠标在模型窗口上“画”出所需的控制系统模型。然后利用SIMULINK 提供的功能来对系统进行仿真或线性化分析。与MATLAB 中逐行输入命令相比,这样输入更容易,分析更直观。下面简单介绍SIMULINK 建立系统模型的基本步骤: (1) SIMULINK 的启动:在MATLAB 命令窗口的工具栏中单击按钮或者在命令提示符>>下键入simulink 命令,回车后即可启动Simulink 程序。启动后软件自动打开Simullink 模型库窗口,如图 7所示。这一模型库中含有许多子模型库,如Sources(输入源模块库)、Sinks(输出显示模块库)、Nonlinear(非线性环节)等。若想建立一个控制系统结构框图,则应该选择File| New 菜单中的Model 选项,或选择工具栏上new Model 按钮,打开一个空白的模型编辑窗口如图 8所示。 (2) 画出系统的各个模块:打开相应的子模块库,选择所需要的元素,用鼠标左键点中后拖 到模型编辑窗口的合适位置。 (3) 给出各个模块参数:由于选中的各个模块只包含默认的模型参数,如默认的传递函数模 型为1/(s+1)的简单格式,必须通过修改得到实际的模块参数。要修改模块的参数,可以用鼠标双击该模块图标,则会出现一个相应对话框,提示用户修改模块参数。 (4) 画出连接线:当所有的模块都画出来之后,可以再画出模块间所需要的连线,构成完整 的系统。模块间连线的画法很简单,只需要用鼠标点按起始模块的输出端(三角符号),再拖动鼠标,到终止模块的输入端释放鼠标键,系统会自动地在两个模块间画出带箭头的连线。若需要从连线中引出节点,可在鼠标点击起始节点时按住Ctrl 键,再将鼠标拖动到目的模块。 (5) 指定输入和输出端子:在Simulink 下允许有两类输入输出信号,第一类是仿真信号, 可从source(输入源模块库)图标中取出相应的输入信号端子,从Sink(输出显示模块库)图标中取出相应输出端子即可。第二类是要提取系统线性模型,则需打开Connection(连接模块库)图标,从中选取相应的输入输出端子。 例9 典型二阶系统的结构图如图9所示。用SIMULINK 对系统进行仿真分析。 图 7 simulink 模型库 图8 模型编辑窗口

运用MatlabSimulink对主动悬架动力学仿真与分析

运用Matlab/Simulink对主动悬架动力学仿真与分析 摘要:基于主动悬架车辆1/4动力学模型,采用LQG最优调节器理论确定了主动悬架的最优控制方法,利用matlab软件建立了主动悬架汽车动力学仿真模型,并用某一车型数据进行了动力学分析和仿真,仿真输出量可作为评价主动悬架的控制方法和与平顺性有关的车辆结构参数的依据。 关键词:主动悬架仿真 Matlab Dynamics Simulation Of Vehicle Active-suspension By Using MATLAB Abstract: Linear-Quadratic-Gaussian(LQG) optional regulator theory is applied to optional control of active-suspension based on quarter vehicle dynamics model of active-suspension. Using MATLAB software,dynamics on model of vehicle of active-suspension is established to make analysis and simulation according to some actual data .Simulation output can be used to evaluate the control method of active-suspension and structure parameters of vehicle in relation to ride performance. Key words: active-suspension simulation MATLAB

Simulink建模与仿真

《通信系统仿真》实验报告 姓名杨利刚班级A0811 实验室203 组号28 学号28 实验日期 实验名称实验三Simulink建模与仿真实验成绩教师签字 一、实验目的 1、了解simulink的相关知识 2、掌握Matlab/simulink提供的基本模块库和常用的模块 3、掌握simulink建模仿真的基本方法 二、实验原理 Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模。它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率,并且提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。 Simulink基本库是系统建模中最常用的模块库,原则上一切模型都是可以由基本库中的模块来构建,为了方便专业用户使用,Simulink还提供了大量的专业模块库,如为通信系统和信号处理而提供的CDMA参考库、通信模块库和DSP模块库等,但是,建议初学者不宜过多使用这些专业库,而应当从所建摸的系统原理入手,利用基本模块来构建系统,以深入理解系统运行情况。 Simulink的常用库模块有12个: (1)连续时间线性系统库;(2)非连续系统库;(3)离散系统库;(4)查表操作模块;(5)数学函数库;(6)模型检查和建模辅助工具;(7)端口和子系统;(8)信号路由库;(9)信号属性转换库;(10)信号源库;(11)信宿和仿真显示仪器库;(12)用户自定义函数库。 Simulink的建模主要是子系统的建模,子系统建模完成后,再对其进行封装,即完成了一个基本模型的建立。 三、实验内容 1、现有对RLC充放电电路进行仿真的模型。请参照仿真模型,进行Simulink的建模仿真,相关参数按照例题中的参数设置。

行驶动力学建模、仿真及主动悬架控制器设计

目录 1. 计算机仿真系统模型的建立 .......................................................... - 1 - 2. LOG控制器设计 .............................................................................. - 2 - 3. 计算实例........................................................................................... - 3 - 4. MATLAB仿真过程.......................................................................... - 4 - 5. 半车模型建模及仿真 ...................................................................... - 8 - 5.1随机线性最优控制 ................................................................... - 9 - 5.2预瞄控制 ................................................................................. - 11 - 5.3结果比较 ................................................................................. - 12 -

基于Simulink的简单电力系统仿真

实验六 基于Simulink 的简单电力系统仿真 实验目的 1) 熟悉Simulink 的工作环境; 2) 掌握Simulink 电力系统工具箱的使用; 3) 掌握在Simulink 的工作环境中建立简单电力系统的仿真模型 实验内容 输电线路电路参数建模时采用电力系统分析中常用的π型等值电路,搭建如图1所示的一个简单交流单相电力系统,在仿真进行中,负载通过断路器切除并再次投入。π型等值电路具体元件参数如下:Ω=2.5R ,H L 138.0=, F C C μ967.021==。 图1 简单电力系统仿真示意图 1) 在Simulink 中建立简单交流单相电力系统模型,并进行仿真,观测负载电流和输电线路末端电压; 2) 结合理论知识分析上述观测信号变化的原因; 3) 比较不同功率因数,如cos φ=1、cos φ=0.8(感性)、cos φ=0.8(容性)负载条件下的仿真结果 实验原理与方法 1、系统的仿真电路图 实验步骤 根据所得建立模型,给定参数,得到仿真结果 cos φ=1 cos φ=0.8(感性) cos φ=0.8(容性)

实验结果与分析 cosφ=1 cosφ=0.8(感性) cosφ=0.8(容性) 仿真结果分析 (1)在纯阻性负载电路中,电压相位与电流相位相同;与感性负载相比,断路器重新闭合后电流没有额外的直流分量。 (2)在感性负载中,电压相位超前电流相位;断路器重新闭合时,交变的电流瞬间增加了一个直流分量,随后逐渐减小。 (3)在容性负载中,电压相位滞后于电流相位;断路器重新闭合时,电流瞬间突变至极大;与感性负载和纯阻性负载相比,断路器断开时的末端电压由于有电容放电作用,电压波形畸变很小。 (4)当断路器断开时,线路断路,电流突变为0,但电压行波仍在进行,因此在末端能够测量到连续的电压波形,但断路器断开对电压波形造成了影响,产生了畸变。这是由于能量是通过电磁场传递的,线路断开时电压继续向前传递。 总括:L和C对输出波形振荡的频率和幅度影响程度不同,当变化相同幅度时,电容对振荡频率和幅度的影响要比电感的大。 感想:Matlab中Simulik通过拖拉建模方式对电路进行仿真,具有快捷、方便、灵活的特点。Simulink的仿真电路简洁、参数调整方便。仿真结果直观。 通过本次实验,我认识到了建模与仿真的一般性方法,收获甚多,也更进一步了解了Matlab,Matlab不仅仅在平时的编程方面功能强大,在仿真方面也熠熠生辉。

虚拟仿真实验平台在土木工程的应用

虚拟仿真实验平台在土木工程的应用 摘要:开展虚拟仿真教学是国家教育信息化的具体体现,是未来高校实践教学发展的必由之路。首先,本文总结土木工程专业课程相关教学实验的特点,阐述进行虚拟仿真实验平台建设的必要性。其次,分析虚拟仿真实验平台在土木工程教学中的优势及作用,并提出虚拟仿真实验平台用于土木专业教学的具体举措。最后,阐述虚拟仿真教学存在的共性问题及解决策略,为今后高校土工工程专业课程开展虚拟仿真实验平台建设提供参考。 关键词:虚拟仿真;教育信息化;土木工程;实践教学 土木工程具有十分鲜明的行业背景和特点,随着社会的发展和技术进步,工程结构越来越大型化、复杂化,超高层建筑、特大型桥梁、巨型大坝、复杂的地铁系统不断涌现,满足了人们的生活需求,同时也演变为社会实力的象征。在土木工程专业的人才培养中,实验教学对学生实践能力、工程素质和创新精神的培养占有非常重要地位,由于开展实习、实践、实验等教学活动所需场地、时间和经费等诸多因素的制约,传统的实验形式单一、内容较少、知识分散,不能很好地适应工程建设快速发展对人才培养提出的新要求,迫切需要开展虚拟仿真实验,以弥补实体实验教学的不足。同时,《国家中长期教育改革和发展规划纲要(2010-2020年)》指出,"信息技术对教育发展具有革命性影响,必须予以髙度重视";。为此教育部加强了对实验教学信息化工作的宏观指导,先后出台《教育信息化十年发展规划(2011-2020年)》《2017年教育信息化工作要点》《关于2017-2020年开展示范性虚拟仿真实验教学项目建设的通知》和《教育部关于开展国家虚拟仿真实验教学项目建设工作的通知》等相关文件,旨在深入推进信息技术与高等教育实验教学的深度融合,拓展实验教学内容广度和深度,延伸实验教学时间和空间,提升实验教学质量和水平,其迫切性和重要性毋庸置疑。 一、土木工程专业实验的特点 土木工程是基于实践经验发展而来的学科,其核心课程如《混凝土结构设计原理》《桥梁工程》《钢结构设计基本原理》《隧道工程》《基础工程》《工程结构抗震》等,所涉及的教学实验普遍存在以下特点。 1.实验构件体量大、周期长 实体的房屋建筑、桥梁、隧道等工程,一般体量都很大,如高层结构中的剪力墙、大跨度桥梁的墩柱等,对这些大体量的结构或构件,在实验室完成其实体实验几乎是不可能的,同时,土木工程专业实验还存在成本髙、实验周期长等特点,如钢筋混凝土梁、柱构件实体实验模型,从试件设计,钢筋下料、模板制作、混凝土浇筑、养护直至加载试验不仅耗费大量资源,实验周期也很长,制约了学生的全程直接参与。

虚拟仿真实验技术材料文件

虚拟仿真实验解决方案 上海华一风景观艺术工程有限公司 2017年8月

目录 第一章需求分析 (2) 一、项目背景 (2) 二、实验教学现状 (3) 三、用户需求 (3) 第二章建设原则 (5) 一、建设目标 (5) 二、建设原则 (6) 第三章系统总体解决方案 (7) 一、总体架构 (7) 二、学科简介 (8) 第四章产品优势 (14) 第五章产品服务 (16) 一、服务方式 (16) 二、服务内容 (16) 三、故障响应服务流程 (17) 四、故障定义 (18) 五、故障响应时间 (18) 六、故障处理流程 (19) 七、应急预案 (19)

第一章需求分析 一、项目背景 《国家中长期教育改革和发展规划纲要(2010-2020年)》明确指出:把教育信息化纳入国家信息化发展整体战略,超前部署教育信息网络。到2020年,基本建成覆盖城乡各级各类学校的教育信息化体系,促进教育内容、教学手段和方法现代化。加强优质教育资源开发与应用,建立数字图书馆和虚拟实验室。鼓励企业和社会机构根据教育教学改革方向和师生教学需求,开发一批专业化教学应用工具软件,并通过教育资源平台提供资源服务,推广普及应用。 在“十三五规划”方针政策指引下,各地陆续出台政策,强调数理化实验教学的重要性。 2016年,北京公布了中高考的新方案,强调义务教育阶段所有科目都设为100分,表示它们在义务教育与学生成长中同等重要,不再人为去区分主次,使学校、老师、家长、社会对每一门学科都很重重视,其中物生化实验部分占分比例为30%,高考不再文理分科。 继北京重磅发布此消息后,河南教育厅发布《关于2016年普通高中招生工作的意见》,其中明确要求理化生实验操作考试满分为30分;安徽省初中毕业升学理化实验操作考试分数为15分,考试成绩计入考生中考录取总分;山西省理化实验操作10分。

汽车系统半主动悬架的仿真设计

汽车系统半主动减振器的仿真设计 摘要:本文阐述了卡车半主动悬架的设计与使用。半主动悬架设计的主要目的是为了减小路面影响。通过仿真和参数优化设计了半主动减振器的反馈控制规则。通过仿真试验预测的效果在实车上得到了验证。一辆是卡车试验台,一辆是半拖车拖拉机。仿真实验和实际测量值表明半主动阻尼是实现高路面适应性车辆的一个重要思路。 关键词:半主动悬架半主动阻尼卡车悬架路面破坏路面保护车辆 介绍: 电子控制的汽车悬架,尤其是主动与半主动阻尼器的研究已经开展了很长时间了。主动悬架的主要目的就是提高车辆行驶的舒适性。然而,却忽略了汽车悬架的其他工作情况指标,比如,轮胎-路面动载荷、轮胎-桥和轮胎-土壤等其他工况下的动载荷。 路面网络的维护工作对路面主管机构是一项费用很高的工作。而且,受损路面会对车辆和路面自身造成损伤。每个欧洲国家花数十亿欧元修理维护公路系统,维修费用占全部公路费用的40%~80%,约占国民生产总值的0.4%。 尽管我们尚未对路面损伤的机制有清楚的了解。但有一点我们可以证实,即路面损伤很大程度上由重型车辆交通所致,当然还有一些其他的影响因素,如路面结构、气候、环境影响等。人们研究所有这些因素对路面的影响已经多年了。车辆对路面的破坏是由轮胎与路面的作用力所致[8]。计算结果表明,一辆满载卡车对路面的破坏程度是一辆客车的10000倍。目前,国家标准只对轮胎-路面的静力作了限制。然而,最近的DIVINE和SADTS项目研究表明,轮胎-路面的动载荷部分对路面和桥梁的破坏更大。 伴随着价格低廉、功能强大的电子元件和作动器技术,人们对设计要求的提高促使了可控悬架的广泛研究。很多情况下,半主动作动器取代了全主动。半主动悬架不可能取得像全主动悬架一样的性能提高,但是,它具有实用和价格优势。 1.1 半主动阻尼: 半主动悬架因为其与主动悬架相比有很多的优点而倍受推崇,尤其是它相对于现有系统应用方便,而且能耗低。半主动系统中的一个代表就是半主动阻尼器(SAD),它可以根据一些输入信号(通常是电信号)来调节阻尼比。 半主动悬架不需要昂贵、笨重的元件,比如液压泵、储能器、液压管路和作动器等,而仅仅只需要一个可调的半主动阻尼器。这些半主动系统不能像全主动作动器一样提供相同的力规则;然而,其效果则非常接近于全主动悬架,并且能节省很大的作动能量。在许多应用中,当前的被动阻尼器很可能被半主动取代,这些可以通过可控孔口和电流变流液或磁流变流液实现。 变阻尼孔半主动阻尼器就是通过在原有被动液压阀上增加一个可变阀孔的螺旋阀,其阻尼比的变化液依赖于螺旋阀的输入电流。 研究的阻尼比连续可变的半主动阻尼器Mannesmanm Sachs CDCN 50/55。所需输入电流的变化范围为0.6A~2A。0.6A反映了最小阻尼曲线,而2A对应了最大阻尼曲线。半主动阻尼器结构拥有先进的失效安全功能:当输入电流为0时,比如外部线路断了,阻尼值自动设置为中间值。所谓的失效-安全保障特性参见图1。 由图1,很明显,半主动阻尼器有一个很有限的动作区域,最大阻尼曲线和最小阻尼曲线限定在第一和第三象限。控制单元将所需的输入力转化为可以实现的作用力,这个例在特性区域范围内并和电流值相对应。比如,实际速度所需的力大于系统可以提供的最大力,则输出力就取系统可以提供的最大力;若需要的输入力比比系统的最小输出力小,则输出最小的输出力。如果所需的力和实际速度符号相反,即需要产生能量(可以证明这种情况对半主动阻尼器是不可能的),输出力就由最小耗散能确定。

虚拟仿真虚拟现实实验室解决方案

数虎图像提供虚拟仿真实验室硬件设备搭建和内容制作整体解决方案 虚拟现实实验室是虚拟现实技术应用研究就的重要载体。 随着虚拟实验技术的成熟,人们开始认识到虚拟实验室在教育领域的应用价值,它除了可以辅助高校的科研工作,在实验教学方面也具有如利用率高,易维护等诸多优点.近年来,国内的许多高校都根据自身科研和教学的需求建立了一些虚拟实验室。数虎图像拥有多名虚拟现实软硬件工程师,在虚拟现实实验室建设方面有着无与伦比的优越性! 下面请跟随数虎图像一起,让我们从头开始认识虚拟现实实验室。 【虚拟现实实验室系统组成】: 建立一个完整的虚拟现实系统是成功进行虚拟现实应用的关键,而要建立一个完整的虚拟现实系统,首先要做的工作是选择确实可行的虚拟现实系统解决方案。 数虎图像根据虚拟现实技术的内在含义和技术特征,并结合多年的虚拟现实实验室建设经验,最新推出的虚拟现实实验室系统提供以下组成: 虚拟现实开发平台: 一个完整的虚拟现实系统都需要有一套功能完备的虚拟现实应用开发平台,一般包括两个部分,一是硬件开发平台,即高性能图像生成及处理系统,通常为高性能的图形计算机或虚拟现实工作站;另一部分为软件开发平台,即面向应用对象的虚拟现实应用软件开发平台。开发平台部分是整个虚拟现实系统的核心部分,负责整个VR场景的开发、运算、生成,是整个虚拟现实系

统最基本的物理平台,同时连接和协调整个系统的其它各个子系统的工作和运转,与他们共同组成一个完整的虚拟现实系统。因此,虚拟现实系统开发平台部分在任何一个虚拟现实系统中都不可缺少,而且至关重要。 虚拟现实显示系统: ·高性能图像生成及处理系统 ·具有沉浸感的虚拟三维显示系统 在虚拟现实应用系统中,通常有多种显示系统或设备,比如:大屏幕监视器、头盔显示器、立体显示器和虚拟三维投影显示系统,而虚拟三维投影显示系统则是目前应用最为广泛的系统,因为虚拟现实技术要求应用系统具备沉浸性,而在这些所有的显示系统或设备中,虚拟三维投影显示系统是最能满足这项功能要求的系统,因此,该种系统也最受广大专业仿真用户的欢迎。虚拟三维投影显示系统是目前国际上普遍采用的虚拟现实和视景仿真实现手段和方式,也是一种最典型、最实用、最高级别的投入型虚拟现实显示系统。这些高度逼真三维显示系统的高度临场感和高度参与性最终使参与者真正实现与虚拟空间的信息交流与现实构想。 虚拟现实交互系统 多自由度实时交互是虚拟现实技术最本质的特征和要求之一,也是虚拟现实技术的精髓,离开实时交互,虚拟现实应用将失去其存在的价值和意义,这也是虚拟现实技术与三维动画和多媒体应用的最根本的区别。在虚拟现实交互应用中通常会借助于一些面向特定应用的特殊虚拟外设,它们主要是6自

几个简单的simulink仿真模型

一频分复用和超外差接收机仿真 目的 1熟悉Simulink模型仿真设计方法 2掌握频分复用技术在实际通信系统中的应用 3理解超外差收音机的接收原理 内容 设计一个超外差收接收机系统,其中发送方的基带信号分别为1000Hz的正弦波和500Hz的方波,两路信号分别采用1000kHz和1200kHz的载波进行幅度调制,并在同一信道中进行传输。要求采用超外差方式对这两路信号进行接收,并能够通过调整接收方的本振频率对解调信号进行选择。 原理 超外差接收技术广泛用于无线通信系统中,基本的超外差收音机的原理框图如图所示: 图1-1超外差收音机基本原理框图 从图中可以看出,超外差接收机的工作过程一共分为混频、中频放大和解调三个步骤,现分别叙述如下: 混频:由天线接收到的射频信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,并可根据调整控制电压随时调整振荡频率,使得器振荡频率始终比接收信号频率高一个中频频率,这样,接受信号与本机振荡在混频器中进行相乘运算后,其差频信号的频率成分就是中频频率。其频谱搬移过程如下图所示:

图1-2 超外差接收机混频器输入输出频谱 中频放大:从混频模块输出的信号中包含了高频和中频两个频率成分,这样一来只要采用中频带通滤波器选出进行中频信号进行放大,得到中频放大信号。 解调:将中频放大后的信号送入包络检波器,进行包络检波,并解调出原始信号。 步骤 1、设计两个信号源模块,其模块图如下所示,两个信号源模块的载波分别为1000kHz,和1200kHz,被调基带信号分别为1000Hz的正弦波和500Hz的三角波,并将其封装成两个子系统,如下图所示: 图1-2 信源子系统模型图 2、为了模拟接收机距离两发射机距离不同引起的传输衰减,分别以Gain1和Gain2模块分别对传输信号进行衰减,衰减参数分别为0.1和0.2。最后在信道中加入均值为0,方差为0.01的随机白噪声,送入接收机。 3、接收机将收到的信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,其中压控振荡器由输入电压进行控制,设置Slider Gain模块,使输入参数在500至1605可调,从而实现本振的频率可控。压控振荡器的本振频率设为465kHz,灵敏度设为1000Hz/V。

基于Simulink的汽车主动悬架仿真分析

10.16638/https://www.360docs.net/doc/bc10124405.html,ki.1671-7988.2018.21.014 基于Simulink的汽车主动悬架仿真分析 夏伟 (武汉交通职业学院,湖北武汉430065) 摘要:文章简要介绍了用Simulink建立主动悬架的仿真模型的方法。采用单轮车辆模型动力学方程,建立被动悬架的仿真模型。通过设计主动悬架的LQG控制器,建立主动悬架仿真模型。并将两种模型的车身加速度、悬架动行程、轮胎位移进行比较分析。结果表明LQG控制器的主动悬架能有效改善悬架性能。 关键词:Simulink;主动悬架;仿真 中图分类号:U467 文献标识码:B 文章编号:1671-7988(2018)21-38-04 Simulation Analysis of Vehicle Active Suspension Based on Simulink Xia Wei ( Wuhan Technical College of Communications, Hubei Wuhan 430065 ) Abstract: This paper describes the simulation model using Simulink Active Suspension method. Establish a passive suspension simulation model by using the single wheel vehicle model dynamics equations. By LQG controller design active suspension, active suspension simulation model established. Compared and analyzed the body acceleration, suspension dynamic travel, tire displacement of the two models. The results showed that the active suspension with LQG controller can effectively improve the suspension performance. Keywords: Simulink; Active Suspension; Simulation CLC NO.: U467 Document Code: B Article ID: 1671-7988(2018)21-38-04 引言 悬架是车架(或承载式车身)与车桥(或车轮)之间一切传力连接装置的总称。它的功用是把路面作用于车轮上的垂直反力(支承力)、纵向反力(驱动力和制动力)和侧向反力以及这些反力所造成的力矩传递到车架(或承载式车身)上,以保证汽车的正常行驶。虽然汽车的悬架结构各有不同,但是一般来说,汽车的悬架都由弹性元件、减振器和导向机构等三部分组成,分别起缓冲、减振、和导向的作用。三者的共同任务是传力。对于传统的被动悬架,车身高度、悬架刚度和减振器的阻尼大小是固定不变的。这样一来就无法适应多变的路况,也无法满足人们期望的性能要求。 主动悬架是一种能供给和控制动力源(油压、空气压)的装置。根据各种传感器检测到的汽车载荷、路面状况、行驶速度、起动、制动、转向等状况的变化,自动调整悬架的刚度、阻尼力以及车身高度等。当汽车急转弯、急加速或紧急制动时,车内人员能够感受到悬架比较坚硬,减轻“点头”和侧倾现象,而在正常行驶时悬架则表现得较为柔软,从而更好的吸收路面带来的冲击。此外,主动悬架能够根据不同情况自动调节车身高度,当载荷变化时能保持汽车高度一定,高速行驶时降低车身高度以降低空气阻力,正常行驶时提升车身高度,改善汽车的通过性。因此,随着汽车电子技术的的发展与广泛应用,越来越多的汽车都装备了电子悬架控制系统。 1 被动悬架仿真建模 1.1 单轮主动悬架二自由度建模 本次仿真采取的是1/4车辆模型。构建双质量二自由度 作者简介:夏伟,就职于武汉交通职业学院。 38

基于simulink的仿真

河北北方学院 毕业论文 题目:数字调制系统的SIMULINK实现研究 三种基本调制制度的功率谱密度研究院系:信息工程系 专业:信息工程 年级:07级 河北北方学院教务处制 三种基本调制制度的功率谱密度研究 摘要 随着通信系统的规模和复杂度不断增加,传统的设计方法已经不能适应发展的需要,通信系统的模拟仿真技术越来越受到重视。而通信系统的计算机模拟仿真技

术是一种全新的系统设计方法,它可以让用户在很短的时间内建立整个通信系统模型,并对其进行模拟仿真。本文首先介绍了SIMULINK应用及通信技术的发展状况。然后对SIMULINK的工作原理及使用方法进行阐述,接着介绍基本的数字调制系统并分析三种调制制度2ASK、2FSK和2PSK的基本原理。再对三种调制制度的功率谱密度进行分析,最后利用SIMULINK建立系统模型对三种调制制度的功率谱密度进行模拟仿真并分析结果。 关键词:调制制度 SIMULINK 功率谱密度系统模型 Abstract As communications systems continue to increase in size and complexity, traditional design methods have been unable to meet the needs of development, communication system simulation technology more and more attention. Er Communication System Computer simulation technology is a new design method, which allows users in a very short period of time to establish the communication system model, and its

虚拟仿真虚拟现实实验室解决方案

虚拟仿真虚拟现实实验室解决方案

数虎图像提供虚拟仿真实验室硬件设备搭建和内容制作整体解 决方案 虚拟现实实验室是虚拟现实技术应用研究就的重要载体。 随着虚拟实验技术的成熟,人们开始认识到虚拟实验室在教育领域的应用价值,它除了能够辅助高校的科研工作,在实验教学方面也具有如利用率高,易维护等诸多优点.近年来,国内的许多高校都根据自身科研和教学的需求建立了一些虚拟实验室。数虎图像拥有多名虚拟现实软硬件工程师,在虚拟现实实验室建设方面有着无与伦比的优越性! 下面请跟随数虎图像一起,让我们从头开始认识虚拟现实实验室。 【虚拟现实实验室系统组成】: 建立一个完整的虚拟现实系统是成功进行虚拟现实应用的关键,而要建立一个完整的虚拟现实系统,首先要做的工作是选择确实可行的虚拟现实系统解决方案。 数虎图像根据虚拟现实技术的内在含义和技术特征,并结合多年的虚拟现实实验室建设经验,最新推出的虚拟现实实验室系统提供以下组成:

虚拟现实开发平台: 一个完整的虚拟现实系统都需要有一套功能完备的虚拟现实应用开发平台,一般包括两个部分,一是硬件开发平台,即高性能图像生成及处理系统,一般为高性能的图形计算机或虚拟现实工作站;另一部分为软件开发平台,即面向应用对象的虚拟现实应用软件开发平台。开发平台部分是整个虚拟现实系统的核心部分,负责整个VR场景的开发、运算、生成,是整个虚拟现实系统最基本的物理平台,同时连接和协调整个系统的其它各个子系统的工作和运转,与她们共同组成一个完整的虚拟现实系统。因此,虚拟现实系统开发平台部分在任何一个虚拟现实系统中都不可缺少,而且至关重要。 虚拟现实显示系统: ·高性能图像生成及处理系统 ·具有沉浸感的虚拟三维显示系统 在虚拟现实应用系统中,一般有多种显示系统或设备,比如:大屏幕监视器、头盔显示器、立体显示器和虚拟三维投影显示

相关文档
最新文档