课程设计--------单相半控桥式晶闸管整流电路设计(阻感负载)

课程设计--------单相半控桥式晶闸管整流电路设计(阻感负载)
课程设计--------单相半控桥式晶闸管整流电路设计(阻感负载)

中北大学

课程设计说明书

学生姓名:夏志广学号:0809014245

学院:信息与通信工程学院

专业:自动化

题目:单相半控桥式晶闸管整流电路设计

(阻感负载)

指导教师:方炜职称: 讲师

2011年 1 月 10 日

中北大学

课程设计任务书

10/11 学年第一学期

学院:信息与通信工程学院

专业:自动化

学生姓名:夏志广学号:0809014245 课程设计题目:单相半控桥式晶闸管整流电路设计

(阻感负载)

起迄日期:1月10 日~1月14 日

课程设计地点:电气工程系实验中心

指导教师:方炜

系主任:王忠庆

下达任务书日期: 2011年 1 月 9日

课程设计任务书

课程设计任务书

一、工作原理

1、单相半控桥式晶闸管可控整流电路(阻感负载)(无续流二极管)

图1-1 阻感性负载(无续流二极管)的主电路

正半波,在tω=?时触发,VT1假设负载电流因电感足够大而平直,当电源u

2

后VT1、VT2导通,电流通路为A- VT1-L-R- VT2-B,电流由电源提供;当tω=π后,经零变负,但由于电感电势的作用,电流仍将继续,电感通过R-VD1-VT1电源电压u

2

回路放电。在tω=π处,二极管VD2电流给VD1,电流i VD2及i2终止,在tω=π~(π+?)区间电流由电感释放电能提供。

当tω=(π+?)时触发VT2导通,由于VT2的导通才能使VT1承受反压而关断,其后的工作过程与前半周类似。由此可见,VT1触发导通后,需VT2的触发导通才能关断。因此流过晶闸管的电流在一个周期内各占一半,其换流时刻由门极触发脉冲决定;而二极管VD1、VD2的导通与关断仅由电源电压的正负半波决定,在tω=nπ(n为正整数)处换流,所以单相半控桥式整流电路电感负载时各元件导通角均为1800,电源在?区间内停止对负载供电。

半控桥式整流电路中的整流二极管VD1、VD2本身兼有续流二极管的作用,因此电路中不需另加续流二极管。但如果在工作中出现异常,比如VT2的触发脉冲消失,则VT1由于电感续流作用将不能关断,等到下一个正半波到来时,VT1无需触发仍继续导通,结果是:一只晶闸管与两只二极管之间轮流导电,其输出电压失去控制,这种情况称之为“失控”。失控时的的输出电压相当于单相半波不可控整流时的电压波形。在失控情况下工作的晶闸管由于连续导通很容易因过载而损坏。因为半导体本身具有续流作用,半控电路只能将交流电能转变为直流电能,而直流电能不能返回到交流电能中去,即能量只能单方向传递。同理,带续流二极管的全控电路能量也只能单方向传递。

图1-2 主电路典型的实际输出波形

图1-3 主电路典型的理论输出波形

图1-4 触发信号波形

2、单相半控桥式晶闸管可控整流电路(阻感负载)(有续流二极管)

为了防止这种失控现象,仍须在半控桥式电路中加上续流二极管,可以在负载侧并联一个续流二极管D3。加了续流二极管的单相桥式半控电路如图2-1所示。其输出电压波形与不加续流管时相同,原先流经桥臂元件的续流电流现都转移到续流二极管D3上。迫使晶闸管与二极管串联电路中的电流小到维持电流以下使晶闸管关断。续流二极管后的输出电压与不加时相同,但流过晶闸管的和二极管的电流波形不同。有续流二极管VD时,续流过程由VD完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的现象。同时,续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。

图2-1 阻感性负载(有续流二极管)的主电路图2-2 主电路典型的实际输出波形

图2-3 主电路典型的理论输出波形

图2-4 触发信号波形

二、基本电量计算

1. 通过变压器副边绕组的电流有效值I

2

2. 流过晶闸管和整流管的电流平均值和有效值分别为

二、参数计算

1、单相半控桥式晶闸管可控整流电路(阻感负载)(无续流二极管) 1)电源电压:交流100V/50Hz ; 2)输出功率:500W ; 3)移相范围:0°~180°。 输出电压平均值:

U d =0.9U 2

2

cos 1α

+

输出电流平均值:

d I = U d /R

流过晶闸管电流有效值

I VT = d I /2

波形系数:

K f = I VT /d I =2/2

交流侧相电流的有效值:

I 2=

π

α

π-·I d

A

5.257

.157.122Im 22Im Im

2

sin Im 1

2

Im )sin (Im 1

I 0

2==

∴==

==

=

==?

?d f T d f T f d I K I I K I K t td I t d t π

π

ωωπ

ωωπ

π

π

令0=?0

时,U 2=100V ,P 出=500W 。

U d =0.9U 2(1+?cos )/2=90V ,

P 出=U d 2/R,得R=16.2Ω,取R=20Ω。 I d =P 出/U d =5.56A , K f =I VT / I d =2/2=0.707,

晶闸管的额定电流为:I T = K f I d /1.57=2.5A,取2倍电流安全储备,并考虑晶 闸管元件额定电流系列取5A 。

晶闸管元件额定电压2U 2=2100=141.4V ,取2~3倍电压安全储备,并考虑晶闸管额定电压系列取300V 。

所以选择晶闸管和二极管的额定电压为 300V,额定电流为5A 的,电感取无穷大,L=150H ,R=20Ω。

2、单相半控桥式晶闸管可控整流电路(阻感负载)(有续流二极管) 1)电源电压:交流100V/50Hz ; 2)输出功率:500W ; 3)移相范围:0°~180°。 输出电压平均值:

U d =0.9U 2

2

cos 1α

+

输出电流平均值:

d I = U d /R

流过晶闸管电流有效值:

I VT = d I /2

波形系数:

K f = I VT /d I =2/2

交流侧相电流的有效值:

I 2=

π

α

π-·I d 续流管电流有效值:

I VD =

π

α

·I d

A

5.257

.157.122Im 22Im Im

2

sin Im 1

2

Im )sin (Im 1

I 0

2==

∴==

==

=

==?

?

d f T d f T f d I K I I K I K t td I t d t π

π

ωωπωωπ

π

π

令0=?0时,U 2=100V,P 出=500W 。 U d =0.9U 2(1+?cos )/2=90V , I d =P 出/U d =5.56A , K f =I VT / I d =2/2=0.707,

晶闸管的额定电流为:I T = K f I d /1.57=2.5A,取2倍电流安全储备,并考虑晶闸管元件额定电流系列取5A 。

晶闸管元件额定电压2U 2=2100=141.4V ,取2~3倍电压安全储备,并考虑晶闸管额定电压系列取300V 。 令π=?时, I VT =π?

I d =I d =5.56A 时,

此时流过续流二极管的电流最大为5.56A ,取2倍电流安全储备,并考虑晶闸管元件额定电流系列取20A 。

续流二极管两端的最大电压为U d =90V, 取2~3倍电压安全储备,并考虑晶闸管

额定电压系列去200V。所以选择续流二极管额定电压为 200V,额定电流为20A 的晶闸管和二极管,电感取无穷大,L=150H,R=20 。

三、仿真电路及仿真结果

阻感负载(无续流二极管)仿真电路图与仿真结果波形图:

阻感负载(有续流二极管)仿真电路图与仿真结果波形图:

四、课程设计心得

一周的课程设计结束了,在这次的课程设计中不仅检验了我所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。

课程设计是我们专业课程知识综合应用的实践训练,着是我们迈向社会,从事职业工作前一个必不少的过程.”千里之行始于足下”,通过这次课程设计,我深深体会到这句千古名言的真正含义.我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础.通过这次课程设计,本人在多方面都有所提高。通过这次课程设计,综合运用本专业所学课程的理论和生产实际知识进行一次电机拖动设计工作的实际训练从而培养和提高学生独立工作能力,巩固与扩充了电机拖动等设计等课程所学的内容,同时各科相关的课程都有了全面的复习,独立思考的能力也有了提高。

在这次设计过程中,体现出自己单独设计的能力以及综合运用知识的能力,体会了学以致用、突出自己劳动成果的喜悦心情,从中发现自己平时学习的不足和薄弱环节,从而加以弥补。

单相半波整流电路

单相半波整流电路”教学设计 一、教学依据: 高等教育出版社教育部高职高专规划教材《电工电子技术》林平勇、高嵩主编,第十三章第一节 二、教材分析: 在小功率整流电路中,单相半波整流电路凭借其电路结构简单的特点广泛应 用于电工电子技术中。学好本节的内容将为后续课程内容单相全波整流电路、单相桥式整流电路、倍压整流电路打下良好的基础;同时也是教材前面半导体二极管知识的一个重要应用,所以本节内容在顺序安排上起到了承上启下的作用。本节主要介绍了单相半波整流电路的结构、工作原理以及负载电压和电流,在讲授时教师应吃透教材,深入浅出,利用实验现象、挂图形像直观地帮助学生掌握本节知识,并设计问题给学生以启迪。 三、学生分析: 电子电路理论普遍具有抽象性,而我们中职类学生基础较薄弱,所以中技生在学习基础理论的过程就较吃力,针对这一特点,本人直接通过实验的方法,利用直观现象来激发学生的学习兴趣,集中学生的听课注意力。在讲授本节内容时,本人在课堂上亲自演示用示波器测量单相半波整流电路的输入输出波形,学生可直观波形,对比波形来理解整流的作用和目的。另外结合整流电路应用于日常生活的电器(例如手机、MP3的充电器)来激发学生的学习整流电路的兴趣;在讲授整流原理时进行讲练结合,用任务驱动法展开教学。整个教学过程中应充分利用插图并通过教师的示范及学生亲自动手分析等,使学生逐步掌握分析电路的技能.要注意教给学生分析电路的方法,提高演示实验的可见度。在演示实验时最好边讲解,边操作.教师的演示将对学生起示范作用,因此要注意操作的规范性。 四、教学目标: 1知识与技能:帮助学生掌握单相半波整流电路的结构、工作原理及负载电压和电流的计算。 2、情感目标:利用实物展示、挂图和演示实验现象来引导学生理解整流的概念和作用,激发学生的兴趣,促进教育学的配合。 3、价值观:培养学生分析和检修整流电路故障的能力。 五、教学重点和难点: 单相半波整流电路的工作原理分析,输出电压极性和波形分析及负载直流电压电流的计算。 六、教具准备: 1N4007小功率整流二极管一只、手机充电器及其配套锂电池、示波器和事先制作好的单相半波整流电路、挂图2张 七、教学方法: 实物展示法、实验演示法、讲练结合法、启发诱导法 八、教学过程: 1、课堂引入 (一):师生互动环节(教师展示手机充电器对锂电池充电过程)

单相桥式整流电路课程设计报告..

电力电子课程设计报告

目录 一、设计任务说明 (3) 二、设计方案的比较 (4) 三、单元电路的设计和主要元器件说明 (6) 四、主电路的原理分析 (9) 五、各主要元器件的选择: (12) 六、驱动电路设计 (14) 七、保护电路 (16) 八、元器件清单 (21) 九、设计总结 (22) 十、参考文献 (23)

一、设计任务说明 1.设计任务: 1)进行设计方案的比较,并选定设计方案; 2)完成单元电路的设计和主要元器件说明; 3)完成主电路的原理分析,各主要元件的选择; 4)驱动电路的设计,保护电路的设计; 5)利用仿真软件分析电路的工作过程; 2.设计要求: 1)单相桥式相控整流的设计要求为: 负载为感性负载,L=700mH,R=500Ω 2)技术要求: A.电网供电电压为单相220V; B.电网电压波动为5%——10%; C.输出电压为0——100V;

二、设计方案的比较 单相桥式整流电路有两种方式,一种是单相桥式全控整流电路,一种是单相桥式半控整流电路。主要方案有三种: 方案一: 采用单相桥式全控整流电路,电路图如下: 对于这个电路,每一个导电回路中有两个晶闸管,即用两个晶闸管同时导通以控制导电的回路,不需要续流二极管,不会出现失控现象,整流效果好,波形稳定。变压器二次绕组不含直流分量,不会出现变压器直流磁化的问题,变压器利用率高。 方案二: 采用单相桥式半控整流电路,电路图如下: 相较于单相桥式全控整流电路,对每个导电回路进行控制,只需一个晶闸管,而另一个用二极管代替,这样使电路连接简便,且

降低了成本,降低了损耗。但是若无续流二极管,当α突然增大到180°或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使d U成为正弦半波,级半周期d U为正弦波,另外半周期d U为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,即失控现象。因此该电路在实际应用中需要加设续流二极管。 综上所述:单相桥式半控整流电路具有线路简单、调整方便的优点。但输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。而单相桥式全控整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。因此选择方案一的单相桥式全控整流电路。

单相桥式整流电路实验

课题单相桥式整流电路执教者教学时间40×2分钟 教学方法启发讲授、项目示范、练习巩固教学用具黑板/粉笔,投影,二极管整流电路示范装置,交流电源调节器,通用双踪示波器,万用表 教学目的通过对单相桥式整流电路原理的理解,能够正确的使用和安装单向桥式整流电路或桥堆(1)根据二极管的单向导电性正确判断桥中二极管的导通、截止状态,并用波形表示;(2)使用示波器分析工作中电路的波形,正确判断桥及桥中二极管的工作情况是否正常;(3)使用万用表对桥的输入、输出电压进行测量、监控,掌握桥的输入、输出关系;(4)根据要求正确地选择二极管或集成的桥堆; (5)正确安装整流桥并接入电路,注意好的职业习惯的培养; 教学重点单向桥式整流电路原理的理解及电路安装 教学难点(1)桥中各桥臂二极管的工作情况分析;(2)整流桥中二极管参数的选择; (3)二极管在整流电路安装时的操作要点。 教学过程 项目内容备注 导入:8min 1、二极管的单向导电性; 2、单向半波、全波整流电路的优劣特点 使用万用表和示波器 对相关内容进行复习。

教学过程( 续) 新 课: 65 min 单相桥式 整流电路 原理 (35min) 1、用不同颜色的发光二极管代替普通的整流二极管组成桥式整流电路,正确接入电 路,演示二极管整流过程。 2、将双踪示波器分别接入相邻、相对两桥臂,观察其变化过程。(1、2共18min) 3、使用万用表对其输入、输出电压进一步跟踪,调节输入电压的大小,测量输出电 压,发现它们之间的数量关系。(14min) 4、师生对上述过程进行分析,探究上述现象形成的原因。(3min) 运用模块式任务导向 教学原理,展开教学, 以突出重点、分化难 点。 器件的选 择与电路 安装 (30min) 1、根据上述原理分析,获得二极管桥式整流电路中二极管上承受最大反压、流过二 极管整流电流值与整流桥交流侧输入电压的关系,从而理解该电路在选择二极管时 所采用的经验式。 2、示范练习并指导学生根据需要选择二极管,并将其正确接入电路。 注意事项 电路安装时,一定要认准交流侧“阴阳-阴阳”串联,直流侧“阴阴-阳阳”并联; 测试桥式整流电路输入、输出电压时要注意万用表使用安全; 测试信号波形时,因测试探头“公共接地”端在测试中的作用,在测试时为了分析方便,当测试扫描一旦确 定,在进行输出、管压降测试时,不要再次调节该参数。 课堂总结及作 业布置(5min) 总结本教学单元的重点,巧妙设置问题考查学生的掌握程度,同时提出思考,为进入滤波电路学习做好铺垫。课堂答疑(2 min)针对本教学单元内的相关问题,课堂上回答学生的疑问,并对比较集中的、非常规性的问题在全班进行解释。教学反思(附后) 2

单相全控桥式晶闸管整流电路设计(纯电阻负载)

1 单相桥式全控整流电路的功能要求及设计方案介绍 1.1 单相桥式全控整流电路设计方案 1.1.1 设计方案 图1设计方案 1.1.2 整流电路的设计 主电路原理图及其工作波形 图2 主电路原理图及工作波形

主电路原理说明: (1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。因此在0~α区间,4个晶闸管都不导通。 (2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。 (3)在u2负半波的(π~π+α)区间,在π~π+α间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。 (4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

2 触发电路的设计 2.1 晶闸管触发电路 触发电路在变流装置中所起的基本作用是向晶闸管提供门极电压和门极电流,使晶闸管在需要导通的时刻可靠导通。根据控制要求决定晶闸管的导通时刻,对变流装置的输出功率进行控制。触发电路是变流装置中的一个重要组成部分,变流装置是否能正常工作,与触发电路有直接关系,因此,正确合理地选择设计触发电路及其各项技术指标是保证晶闸管变流装置安全,可靠,经济运行的前提。,开始启动A/D转换;在A/D转换期间,START应保持低电平。 2.1.1 晶闸管触发电路的要求 晶闸管触发主要有移相触发、过零触发和脉冲列调制触发等。触发电路对其产生的触发脉冲要求: (1)触发信号可为直流、交流或脉冲电压。 (2)触发信号应有足够的功率(触发电压和触发电流)。 (3)触发脉冲应有一定的宽度,脉冲的前沿尽可能陡,以使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。 (4)触发脉冲必须与晶闸管的阳极电压同步,脉冲移相范围必须满足电路要求。 (5)、为使并联晶闸管能同时导通,触发电路应能产生强触发脉冲。强触发电流幅值为出发电流的3~5倍左右,脉冲前沿的陡度取为1~2 晶闸管触发电路应满足下列要求 (1)触发脉冲的宽度应该保证晶闸管的可靠导通,对感性和反电动势负载的变流器采用宽脉冲或脉冲列触发,对变流器的启动,双星型带平衡电抗器电路的触发脉冲应该宽于30°,三相全控桥式电路应小于60°或采用相隔60°的双窄脉冲。 (2)脉冲触发应有足够的幅度,对户外寒冷场合,脉冲电流的幅度应增大为器件最大触发电流的3—5倍,脉冲前沿的陡度也要增加。一般需达1-2A/us (3)所提供的触发脉冲不应超过晶闸管门极的电压、电流和额定功率,且在门极伏安特性的可靠触发区域之内。 (4)应有良好的抗干扰性能、温度稳定性及主电路的电气隔离。

单相桥式全控整流电路设计_(纯电阻负载)

单相桥式全控整流电路的设计一、 1. 设计方案及原理 1.1 原理方框图 触发电路 驱动电路 整流主电路 负载 1.2 主电路的设计 电阻负载主电路主电路原理图如下: 1.3主电路原理说明 1.3.1电阻负载主电路原理 (1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。因此在0~α区间,4个晶闸管都不导通。假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。 (2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。 (3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管 VT1、VT4承受反向电压也不导通。 (4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿 b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

1.4整流电路参数的计算 电阻负载的参数计算如下: (1) 整流输出电压的平均值可按下式计算 U d=0.45U2(1+cos ) (1-1) 当α=0时,取得最大值,即= 0.9 ,取=100V则U d =90V,α=180o 时,=0。α角的移相范围为180o。 (2) 负载电流平均值为 I d=U d/R=0.45U2(1+cos )/R (1-2) (3)负载电流有效值,即变压器二次侧绕组电流的有效值为 I2=U2/R (1-3) (4)流过晶闸管电流有效值为 IVT= I2/ (1-4) 二、元器件的选择 晶闸管的选取 晶闸管的主要参数如下: ①额定电压U TN 通常取和中较小的,再取靠近标准的电压等级作为晶闸管型的额定电压。在选用管子时,额定电压应为正常工作峰值电压的2~3倍, 以保证电路的工作安全。 晶闸管的额定电压 U TN=(2~3)U TM(2-1) U TM:工作电路中加在管子上的最大瞬时电压

单相全控桥式晶闸管整流电路的设计

电力电子技术课程设计报告题目:单相全控桥式晶闸管整流电路的设计

目录 第1章绪论 (3) 1.1 电力电子技术的发展 (3) 1.2 电力电子技术的应用 (3) 1.3 电力电子技术课程中的整流电路 (4) 第2章系统方案及主电路设计 (5) 2.1 方案的选择 (5) 2.2 系统流程框图 (6) 2.3 主电路的设计 (7) 2.4 整流电路参数计算 (9) 2.5 晶闸管元件的选择 (10) 第3章驱动电路设计 (12) 3.1 触发电路简介 (12) 3.2 触发电路设计要求 (12) 3.3 集成触发电路TCA785 (13) 3.3.1 TCA785芯片介绍 (13) 3.3.2 TCA785锯齿波移相触发电路 (17) 第4章保护电路设计 (18) 4.1 过电压保护 (18) 4.2 过电流保护 (19) 4.3 电流上升率di/dt的抑制 (19) 4.4 电压上升率du/dt的抑制 (20) 第5章系统仿真 (21) 5.1 MATLAB主电路仿真 (21) 5.1.1 系统建模与参数设置 (21) 5.1.2 系统仿真结果及分析 (22) 5.2 proteus 触发电路仿真 (26) 设计体会 (28) 参考文献 (29) 附录A 实物图 (30) 附录B 元器件清单 (31)

第1章绪论 1.1 电力电子技术的发展 晶闸管出现前的时期可称为电力电子技术的史前期或黎明时期。晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组。并且,其应用范围也迅速扩大。电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制式,简称相控方式。晶闸管的关断通常依靠电网电压等外部条件来实现。这就使得晶闸管的应用受到了很大的局限。70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。在80年代后期,以绝缘栅极双极型晶体管(IGBT)为表的复合型器件异军突起。它是MOSFET和BJT的复合,综合了两者的优点。与此相对,MOS控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)复合了MOSFET和GTO。 1.2 电力电子技术的应用 电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。本课程体现了弱电对强电的控制,又具有很强的实践性。能够理论联系实际,在培养自动化专业人才中占有重要地位。它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。 在电力电子技术中,可控整流电路是非常重要的内容,整流电路是将交流电变为直流电的电路,其应用非常广泛。工业中大量应用的各种直流电动机的调速均采用电力电子装置;电气化铁道(电气机车、磁悬浮列车等)、电动汽车、

单相桥式整流电路设计..

1 单相桥式整流电路设计 单相桥式整流电路可分为单相桥式相控整流电路和单相桥式半控整流电路,它们所连接的负载性质不同就会有不同的特点。下面分析两种单相桥式整流电路在带电感性负载的工作情况。 单相半控整流电路的优点是:线路简单、调整方便。弱点是:输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。 单相全控式整流电路其输出平均电压是半波整流电路2倍,在相同的负载下流过晶闸管的平均电流减小一半;且功率因数提高了一半。 单相半波相控整流电路因其性能较差,实际中很少采用,在中小功率场合采用更多的是单相全控桥式整流电路。 根据以上的比较分析因此选择的方案为单相全控桥式整流电路(负载为阻感性负载)。 1.1元器件的选择 1.1.1晶闸管的介绍 晶管又称为晶体闸流管,可控硅整流(Silicon Controlled Rectifier--SCR),开辟了电力电子技术迅速发展和广泛应用的崭新时代; 20世纪80年代以来,开始被性能更好的全控型器件取代。能承受的电压和电流容量最高,工作可靠,以被广泛应用于相控整流、逆变、交流调压、直流变换等领域,成为功率低频(200Hz 以下)装置中的主要器件。晶闸管往往专指晶闸管的一种基本类型--普通晶闸管。广义上讲,晶闸管还包括其许多类型的派生器件 1)晶闸管的结构 晶闸管是大功率器件,工作时产生大量的热,因此必须安装散热器。 晶闸管有螺栓型和平板型两种封装 引出阳极A、阴极K和门极(或称栅极)G三个联接端。 对于螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便

单相半波整流电路仿真实验报告

单相半波整流电路仿真实验报告 一、实验目的和要求 1.掌握晶闸管触发电路的调试步骤与方法; 2.掌握单相半波可控整流电路在电阻负载和阻感负载时的工作; 3.掌握单相半波可控整流电路MATLAB的仿真方法,会设置各个模块的参数。 二、实验模型和参数设置 1. 总模型图: 有效值子系统模型图: 平均值子系统模型图:

2.参数设置 晶闸管:Ron=1e-3,Lon=1e-5,Vf=,Ic=0,Rs=500, Cs=250e-9.电源:Up=100*, f=50Hz. 脉冲发生器:Amplitude=5, period=, Pulse Width=2 情况一:R=1Ω,L=10mH; a=0°or a=60°; 情况二:L=10mH; a=0°or a=60°; 三、波形记录和实验结果分析 (1)R=1Ω,L=10mH; a=0°时的波形图: (2)R=1Ω,L=10mH; a=60°时的波形图:

(3)L=10mH; a=0°时的波形图: (4)L=10mH; a=60°时的波形图:

在波形图中,从上到下依次代表电源电压、脉冲发生器电压、晶闸管的电流,、晶闸管两端电压、负载电流和负载两端电压。 分析对比这四张图可以知道,由于负载中有电感,因此晶闸管截止的时刻并不在电压源为负值的时刻,而是在流过晶闸管的电流为零的时刻;同时,在对比中可以发现在电感相同的情况下,电阻负载的存在会使关断时间提前。 1.计算负载电流、负载电压的平均值: 以R=1Ω,L=10mH时 o α = 负载电压的平均值为如下: o α 60 = 负载电压的平均值为如下:

单相半波晶闸管整流电路

电力电子技术课程设计说明书单相半波晶闸管整流电路 院部:电气与信息工程学院 学生姓名:李忠 指导教师:王翠职称副教授 专业:自动化 班级:自本1001班 完成时间:2013年5月20日

摘要 电力电子学,又称功率电子学(Power Electronics)。它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。 随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。 由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好课程设计,因而我们进行了此次课程设计。因为整流电路非常重要,所以我此次课程设计做的是单相半波整流电路。 关键字电子学;整流器;开关器件

ABSTRACT Power electronics, and power electronics (Power Electronics). It is mainly on the various power electronic devices, and is composed , and is composed of the power electronic devices of every kind of circuit or device, to complete the transfer and control of electric power. It is not only in power electronics (high voltage, high current) to a branch or electrical engineering, and electrical engineering in a weak (low voltage, low current) to a branch or electronic field, or is a new scientific power combining. Power electronics is across the "electronic", "power" and "control" three areas of an emerging engineering discipline. With the development of science and technology, people on the circuit is also more and more high, due to the need of DC power supply with adjustable size in the actual production, and phase controlled rectifier circuit is simple in structure, convenient control, stable performance, it can be easily obtained in large and medium-sized, small capacity of various DC power, is currently the main method of DC electric energy, has been widely applied. Because the power electronic technology is the technology of power electronic technology and control technology into the traditional, composed of a variety of power conversion circuits to achieve energy and transform and control using semiconductor power switch device, consisting of an integrated discipline. The learning method and electronic technology and control technology has many similarities, so to learn this course we must do a good job in curriculum design, we carried out the curriculum design. Because the rectifier circuit is very important, so I designed a single-phase half-wave rectifier circuit this curriculum. Keywords electronics; rectifier; switching device

单相双半波晶闸管整流电路主电路设计..

电力电子课程设计 班级: 学号: 姓名: 指导老师:

目录 摘要 (1) 1单相双半波晶闸管整流电路主电路设计 (2) 1.1晶闸管的介绍 (2) 1.1.1晶闸管的结构 (2) 1.1.2晶闸管的工作原理 (2) 1.1.3晶闸管的伏安特性 (4) 1.2总电路的设计 (5) 1.2.1 总电路的原理框图 (5) 1.2.2 主电路原理图 (6) 1.3 相控触发电路设计 (7) 1.3.1 相控触发电路工作原理 (7) 1.3.2相控触发芯片的选择 (8) 1.4保护电路设计 (9) 2电路参数及元件选择 (10) 2.1主电路电路参数计算 (10) 2.2电路元件的选择 (11) 2.2.1整流元件的选择 (11) 2.2.2保护元件的选择 (11) 3 MATLAB仿真 (12) 3.1 MATLAB软件介绍 (12) 3.2系统建模及电路仿真 (12) 3.3系统仿真结果及分析 (15) 4设计总结 (16) 参考文献 (17)

摘要 电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。本课程体现了弱电对强电的控制,又具有很强的实践性。它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。 晶闸管出现前的时期可称为电力电子技术的史前期或黎明时期。晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组。并且,其应用范围也迅速扩大。电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制式,简称相控方式。晶闸管的关断通常依靠电网电压等外部条件来实现。 整流电路按组成的器件不同,可分为不可控、半控与全控三种,利用晶闸管半导体器件构成的主要有半控和全控整流电路;按电路接线方式可分为桥式和零式整流电路;按交流输入相数又可分为单相、多相(主要是三相)整流电路。正是因为整流电路有着如此广泛的应用,因此整流电路的研究无论在是从经济角度,还是从科学研究角度上来讲都是很有价值的。本设计正是结合了Matlab仿真软件对单相双半波晶闸管整流电路在阻感负载下进行分析。 关键词:晶闸管,整流电路,Matlab,仿真,阻感负载,相控方式 1

单相半波整流电路的设计

单相半波整流电路的设计 摘要 本文主要进行了单相半波整流电路的设计。单相半波整流电流电路的特点是简单,但输出脉动大,变压器二次电流中含有直流分量,造成变压器铁芯直流磁化。为使变压器铁心不饱和,需增大铁心面积,增大了设备的容量。实际上很少应用此种电路。分析该电路的主要目的在于利用其简单易学的特点,建立起整流电路的基本概念。晶闸管不同于整流二极管,它的导通是可控的。可控整流电路的作用就是把交流电变换为电压值可以调节的直流电。在充分理解单相半波整流电路工作原理的基础上,本文设计出了单相半波整流电路带电阻负载、电感负载、阻感负载时的电路原理图,并对其中的相关参数进行了计算,仿真波形对比发现结果正确。 关键词:晶闸管,整流,触发

目录 摘要 .................................................................... 1课题背景............................................... 错误!未指定书签。 1.1选题背景 (1) 1.2参数选择 (1) 2单相半波整流电路的设计................................. 错误!未指定书签。 2.1单相半波整流电路(电阻负载) ..................... 错误!未指定书签。 2.1.1工作原理和电路特点(电阻负载).............. 错误!未指定书签。 2.1.2电路原理图(电阻负载)...................... 错误!未指定书签。 2.1.3参数计算(电阻负载)........................ 错误!未指定书签。 2.1.4仿真波形(电阻负载)........................ 错误!未指定书签。 2.1.5结论(电阻负载)............................ 错误!未指定书签。 2.2单相半波整流电路(电感负载) ..................... 错误!未指定书签。 2.2.1工作原理(电感负载)........................ 错误!未指定书签。 2.2.3仿真波形(电感负载)........................ 错误!未指定书签。 2.3单相半波整流电路(阻感负载) ..................... 错误!未指定书签。 2.3.1工作原理(阻感负载)........................ 错误!未指定书签。 2.3.2电路原理图(阻感负载)...................... 错误!未指定书签。 2.3.3参数计算(阻感负载)........................ 错误!未指定书签。 2.3.4仿真波形(阻感负载)........................ 错误!未指定书签。致谢 .................................................... 错误!未指定书签。参考文献 ................................................ 错误!未指定书签。

单相半波可控整流电路实验

单相半波可控整流电路实验

————————————————————————————————作者:————————————————————————————————日期:

重庆三峡学院 实验报告 课程名称电力电子技术 实验名称单相半波可控整流电路实验 实验类型验证学时 2 系别电信学院专业电气工程及自动化 年级班别2015级2班开出学期2016-2017下期 学生姓名袁志军学号201507144228 实验教师谢辉成绩 2017 年 4 月 30 日

填写说明 1、基本内容 (1)实验序号、名称(实验一:xxx);(2)实验目的;(3)实验原理;(4)主要仪器设备器件、药品、材料;(5)实验内容; (6)实验方法及步骤(7)数据处理或分析讨论 2、要求: (1)用钢笔书写(绘图用铅笔) (2)凡需用坐标纸作图的应使用坐标纸进行规范作图 实验三单相半波可控整流电路实验 一、实验目的 (1)掌握单结晶体管触发电路的调试步骤和方法。 (2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。 (3)了解续流二极管的作用。 二、实验所需挂件及附件 型号备注 序 号 1 DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个 模块。 2 DJK02 晶闸管主电路该挂件包含“晶闸管”,以及“电感”等几个模块。 3 DJK03-1 晶闸管触发 该挂件包含“单结晶体管触发电路”模块。 电路 4 DJK06 给定及实验器 该挂件包含“二极管”等几个模块。 件 5 D42 三相可调电阻 6 双踪示波器自备 7 万用表自备 三、实验线路及原理 将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH 三档可供选择,本实验中选用700mH。直流电压表及直流电流表从DJK02挂件上得到。 四、实验方法 (1)单结晶体管触发电路的调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170°范围内移动?

单相桥式全控整流电路纯电阻课程设计

1 引言 电力电子技术是利用电力电子器件实现工业规模电能变换的技术,有时也称为功率电子技术。一般情况下,它是将一种形式的工业电能转换成另一种形式的工业电能。是建立在电子学、电工原理和自动控制三大学科上的新兴学科。随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。 要得到直流电,除了直流发电机外,最普遍应用的是利用各种半导体元件产生直流电。这个方法中,整流是最基础的一步。整流,即利用具有单向导电特性的器件,把方向和大小交变的电流变换为直流电。整流的基础是整流电路。整流电路(Rectifier)是电力电子电路中出现最早的一种,它的作用是将交流电能变为直流电能供给直流用电设备。典型的单相可控整流电路包括单相半波可控整流电路、单相整流电路、单相全波可控整流电路及单相桥式半控整流电路等。单相可控整流电路的交流侧接单相电源。 这次课程设计我设计的是单相桥式全控整流电路电阻性负载,与单相半波可控整流电路相比,桥式全控的电源利用率更高一些,应用范围更广泛一些。 2 单相桥式全控整流电路 2.1 单相桥式全控整流电路带电阻负载的工作情况分析 单相桥式全控整流电路带电阻负载电路如图2-1: 图2.1 单相桥式全控整流电路原理图

在单相桥式全控整流电路,闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂。在u2正半周(即a 点电位高于b 点电位),若4个晶闸管均不导通,id=0,ud=0,VT1、VT4串联承受电压u2。在触发角a 处给VT1和VT4加触发脉冲,VT1和VT4即导通,电流从电源a 端经VT1、R 、VT4流回电源b 端。当u2过零时,流经晶闸管的电流也降到零,VT1和VT4关断。在u2负半周,仍在触发角a 处触发VT2和VT3,VT2和VT3导通,电流从电源b 端流出,经VT3、R 、VT2流回电源a 端。到u2过零时,电流又降为零,VT2和VT3关断。 在u2负半周,仍在触发延迟角a 处触发VT2和VT3(VT2和VT3的a=0处为ωt=Π),VT2和VT3导通,电流从电源b 端流出,经VT3,R,VT2流回电源a 端。到u2过零时,电流又降为零,VT2和VT3关断。晶闸管承受的最大正向电压和反向电压分别为22U2和2U2。由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。 整流电压平均值为: ?+=+==παααπωωπ2 cos 19.02cos 122)(d sin 21 222U U t t U U d 向负载输出的直流平均电流为: 2 cos 19.02cos 12222ααπ+=+==R U R U R U I d d 晶闸管VT 1、VT 4 和 VT 2、VT 3 轮流导电,流过晶闸管的电流平均值只有输出直流电流平均值的一半,即 2 cos 145.0212α+==R U I I d dT b c) d u V 图2.2单相桥式全控整流电路波形

单相半控桥式晶闸管整流电路的设计

单相半控桥式晶闸管整流 电路的设计 Prepared on 22 November 2020

课程设计题目单相半控桥式晶闸管整流电路的设计 (带续流二极管)(阻感负载)学院自动化 专业自动化 班级100...班 姓名 指导教师许湘莲 2012年12月29日

一课程设计的性质和目的 性质:是电气信息专业的必修实践性环节。 目的: 1、培养学生综合运用知识解决问题的能力与实际动手能力; 2、加深理解《电力电子技术》课程的基本理论; 3、初步掌握电力电子电路的设计方法。 二课程设计的内容: 单相半控桥式晶闸管整流电路的设计(带续流二极管)(阻感负载)? 设计条件: 1、电源电压:交流100V/50Hz 2、输出功率:500W 3、移相范围0o~180o 三课程设计基本要求 1、两人一个题目,按学号组合; 2、根据课程设计题目,收集相关资料、设计主电路、控制电路; 3、用MATLAB/Simulink对设计的电路进行仿真; 4、撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形,绘出触发信号(驱动信号)波形,说明仿真过程中遇到的问题和解决问题的方法,附参考资料; 5、通过答辩。

摘要 电力电子技术课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。本次课程设计要完成单相桥式半控整流电路的设计,对电阻负载供电,并使输出电压在0到180伏之间连续可调,由于是半控电路,因此会用到晶闸管与电力二极管。此外,还要用MATLAB对设计的电路进行建模并仿真,得到电压与电流波形,对结果进行分析。 关键词:半控整流晶闸管

单相半波整流电路教案 - 1

单相半波整流电路教案 教材分析 在小功率整流电路中,单相半波整流电路凭借其电路结构简单的特点广泛应用于电工电子技术中。学好本节的内容将为后续课程内容单相全波整流电路、单相桥式整流电路、 教学重点和难点 单相半波整流电路的工作原理分析,输出电压极性和波形分析及负载直流电压电流的计算。 (一):师生互动环节(教师展示手机充电器对锂电池充电过程) 师:同学们我们现在使用的手机锂电池的低压直流电能是从哪里得来的呢? 生:是手机充电器供给的(学生异口同声的回答) 师:是的。充电器直接引入的是市电220V,50H Z的交流电能,而手机锂电池需要存储的是低压直流电能,那么请同学们思考下充电器是如何给锂电池充电的呢? 生:先降压后变换(少数学生能回答) 换成脉动的低压直流电能--------单相半波整流电路(板书) (一):单相半波整流电路的结构与工作原理(板书)(约43分钟) 教师提示:“单相”一词是指输入整流电路的交流电是单相交流电。而“半波”一词同学们可在下面讲授的半波整流原理中自己总结,到时老师请同学们回答。(任务驱动法教学可集中学生的听课注意力) 1:电路结构组成(板书) 2:工作原理(板书) 教师引导:输入整流电路的交流电压来自于电源变压器的二次绕组输出端,在分析整流原理时应将交流电压分成正、负半周两种情况来考虑。另外为了分析方便,变压器T应假设为无损耗的理想元件,整流二极管V应为理想二极管,负载为纯电阻性负载。 教师提问:①:上面分析了半波整流电路的工作原理,由此可以回答什么是半波整流。 (请学生回答) ②:若在上面图中把整流二极管V极性对调后整理电路的原理又怎样分析

单相半控桥式整流电路的设计说明

工业应用技术学院 课程设计任务书 题目单相半控桥式晶闸管整流电路的设计 专业、班级学号 主要容、基本要求、主要参考资料等: 一、主要容 (1)电源电压:交流220V/50Hz (2)输出电压围:20V-50V (3)最大输出电流:10A (4)电源效率不低于70% 二、基本要求 1、主要技术指标 (1)具有过流保护功能,动作电流为12A; (2)具有稳压功能。 2、设计要求 (1)合理选择晶闸管型号; (2)完成电路理论设计、绘制电路图、电路图典型波形并进行模拟仿真。 二、主要参考资料 [1] 王兆安,黄俊,电力电子技术(第4版)[M],北京:机械工业,2000. [2] 王兆安,明勋,电力电子设备设计和应用手册(第2版)[M],北京:机械工业,2005. [4] 康华光,大钦,电子技术基础-模拟部分(第5版)[M],北京:高等教育,2005. [4] 治明,电力电子器件基础[M],北京:机械工业,2005. [5] 吴丙申,模拟电路基础[M],北京:北京理工大学,2007.

[6] 马建国,孟宪元,电力设计自动化技术基础[M],北京:清华大学,2004. 完成期限: 指导教师签名: 课程负责人签名: 年月日

1.设计的基本要求 1.1 设计的主要参数及要求: 设计要求:1、电源电压:交流220V/50Hz 2、输出电压围:20V-50V 3、最大输出电流:10A 4、具有过流保护功能,动作电流:12A 5、具有稳压功能 6、电源效率不低于70% 1.2 设计的主要功能 单相桥式半控整流电路的工作特点是晶闸管触发导通,而整流二极管在阳极电压高于阴极电压时自然导通。单相桥式整流电路在感性负载电流连续时,当相控角α<90°时,可实现将交流电功率变为直流电功率的相控整流;在α>90°时,可实现将直流电返送至交流电网的有源逆变。在有源逆变状态工作时,相控角不应过大,以确保不发生换相(换流)失败事故。 2.总体系统的设计 2.1 主电路方案论证 方案1:单相半控桥式整流电路(含续流二极管) 单相桥式半控整流电路虽然具有电路简单、调整方便、使用元件少等优点,而且不会导致失控显现,续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。 方案2:单相半控桥式整流二极管(不含续流二极管) 不含续流二极管的电路具有自续流能力,但一旦出现异常,会导致:一只晶闸管与两只二极管之间轮流导电,其输出电压失去控制,这种情况称之为“失控”。失控时的的输出电压相当于单相半波不可控整流时的电压波形。在失控情况下工作的晶闸管由于连续导通很容易因过载而损坏。因为半导体本身具有续流作用,半控电路只能将交流电能转变为直流电能,而直流电能不能返回到交流电能中去,即能量只能单方向传递。 经过比较本设计选择方案一含续流二极管的单相半控桥式整流电路能更好的达到设计要求。 2.2 主电路结构及其工作原理

相关文档
最新文档