等厚干涉——牛顿环与劈尖

等厚干涉——牛顿环与劈尖
等厚干涉——牛顿环与劈尖

大学物理实验预习报告

劈尖干涉牛顿环教案

12.5 劈尖干涉牛顿环 科目:大学物理学下 课型:新授课 课时:1课时 主要内容:等厚干涉原理劈尖干涉牛顿环 教学重点:劈尖干涉相邻条纹的间距;牛顿环的半径公式。 教学难点:根据等厚干涉图样的形成原理,理解不同的等厚干涉的条纹分布。教学要求:理解等厚干涉的原理,理解掌劈尖干涉图样条纹的分布特点,掌握劈尖干涉中相邻条纹间距与薄膜厚度的关系;理解牛顿环干涉图样的分 布特点,掌握牛顿环半径公式;了解等厚干涉的实际应用。 教学方法:讲授法讨论法 教学手段:多媒体 教学过程:(具体如下) 复习提问: 1.两同位相的相干光源,其干涉条纹的明暗条件与光程差的关系? 2.反射现象中半波损失的条件? 3.薄膜干涉中干涉光的来源?条纹的级数由什么决定? 新课导入: 我们已经学习过,光线入射在厚度均匀的薄膜上时,干涉条纹的级数由入射光的入射角决定,相同的入射角产生的干涉条纹的级数相同,因此称之为等倾干涉。 提问:当光线入射在厚度不均匀的薄膜上,产生的干涉条纹级数与哪些因素有关?明暗条纹如何分布?这种干涉现象有什么实际意义? 讲授新课: 一、劈尖干涉(只讨论单色平行光垂直入射情况) 1.装置:夹角很小的两个平面构成一个劈尖,厚度为零的地方称作“棱”。 单色平行光垂直照射在劈尖上,得到间距均匀的干涉条纹。

在劈尖表面看到的干涉条纹 劈尖内是空气薄膜或折射 率为n 的透明介质薄膜 2.光程差:先分析两束光在薄膜中的路程差,再分析半波损失。 结论:a.劈尖上与棱平行的点薄膜厚度相同,其反射光的光程差相同。 b.对空气薄膜: 3.干涉明暗条纹的条件(以空气薄膜为例): 结论:厚度相同的地方,光程差相等,条纹级数k 相同,所以称为等厚干涉。 4.各级明暗条纹的位置(即各级明暗条纹对应的薄膜厚度): 22λ+ =?ne 2 21λ+=?=e n ,???????=+=+=?==+=?暗条纹 明条纹,...2,1,02)12(22,...2,122k k e k k e λλλλ???????==-=暗纹 明纹),...2,1,02,......2,1221(k k k k k e λλ

等厚干涉牛顿环实验报告材料97459

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一.实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二.实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 Prepared on 22 November 2020

等厚干涉——牛顿环等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平

凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何

牛顿环和劈尖

实验名称:等厚干涉—牛顿环和劈尖 姓名学号班级 日期20 年月日时段 一、实验目的 1. 观察等厚干涉现象,了解其特点。 2. 学习用等厚干涉测量物理量的两种方法。 3. 学习使用显微镜测量微小长度。 二、实验仪器及器件 牛顿环装置,平板光学玻璃片,读数显微镜,钠光灯,待测细丝(请自带计算器)。 三、实验原理 1.等厚干涉(简述原理、特点和应用) 2. 牛顿环产生原理

3. 曲率半径测量 (1) 推导曲率半径计算公式 (2) 实际测量公式(P129,6-3-5式)的考虑和导出 4. 劈尖干涉: 如图,当用单色光垂直入射时,空气劈尖上下表面反射的两束光将发生干涉,从而形成干涉条纹,条纹为平行于两玻片交界棱边的等间距直线。 根据光的干涉原理,得细丝的直径(或薄片的厚度)D D 22 L k n l λ λ == 牛顿环装置

四、实验内容 1. 用牛顿环测凸透镜的曲率半径。 实验装置如图所示,其中,M为读数显微镜镜 头,P为显微镜上的小反射镜,L为牛顿环装置。 (1)借助室内灯光,用肉眼直接观察牛顿环, 调节牛顿环装置上的三个螺丝钮,使牛顿环圆心 位于透镜中心。调节时,螺丝旋钮松紧要适合, 即要保持稳定,又勿过紧使透镜变形。 (2)将显微镜镜筒调到读数标尺中央,并使入射光方向与显微镜移动方向垂直。放入牛顿环装置,移动显微镜整体方位和P的角度,使视场尽可能明亮。 (3)调节显微镜目镜,使十字叉丝清晰。显微镜物镜调焦,直到看清楚牛顿环并使叉丝与环纹间无视差(注意:物镜调焦时,镜筒应由下向上调以免碰伤物镜或被测物)。移动牛顿环装置使叉丝对准牛顿环中心。 能在显微镜中看到清晰的牛顿环关键有三点:a.确保目测到的牛顿环在物镜的正下方;b.P反射镜角度合适,使S发出的钠黄光尽可能多地反射入物镜;c.物镜调焦合适。 (4)定性观察待测圆环是否均在显微镜读数范围之内并且清晰。 (5)定量测量:由于环中心有变形,应选择10级以上的条纹进行测量。如取m-n=8,则分别测出第25级到第10级各级的直径,然后用逐差法处理数据,求出曲率半径R。并给出完整的实验结果。数据处理可以用EXCEL处理。 测量时应注意避免螺旋空程引入的误差,这要求在整个测量过程中,显微镜筒只能朝一个方向移动,不许来回移动。特别在测量第25级条纹时,应使叉丝先越过25级条纹(比如第30级条纹)然后返回第25级条纹,并对第25级条纹的暗环中心位置开始读数并依次沿同一方向测完全部数据。 2. 用劈尖测细丝直径 (1)用两块平行板夹细铜丝或头发丝等被测物制成劈尖,劈尖放在载物台上,调焦得到清晰的条纹且无视差。调整劈尖位置,使干涉条纹与棱边平行。转动劈尖使条纹与显微镜移动方向垂直。 (2)测量n=20个条纹的间距l和L,计算出D值。并给出完整的实验结果。

牛顿环等厚干涉标准实验报告

实验报告 学生姓名:学号:指导教师: 实验地点:实验时间: 一、实验室名称: 二、实验项目名称:牛顿环测曲面半径和劈尖干涉 三、实验学时: 四、实验原理: 1、等厚干涉 如图1所示,在C点产生干涉,光线11`和22`的光程差为△=2d+λ/2 式中λ/2是因为光由光疏媒质入射到光密媒质上反射时,有一相位 突变引起的附加光程差。 当光程差△=2d+λ/2=(2k+1)λ 即d=k λ/2时产生暗条纹; 当光程差△=2d+λ/2=2kλ/2, 即d=(k-1/2)λ/2时产生明条纹 图1 因此,在空气薄膜厚度相同处产生同一级的干涉条纹,叫等厚干涉条纹。 2、用牛顿环测透镜的曲率半径 将一个曲率半径较大的平凸透镜的凸面置于一块光学平板玻璃上则

可组成牛顿环装置。如图2所示。 这两束反射光在AOB 表面上的某一点E 相遇,从而产生E 点的干涉。由于AOB 表面是球面,所产生的条纹是明暗相间 的圆环,所以称为牛顿环,如图3所示。 将两块光学平玻璃重叠在一起,在一端插入一薄纸片,则在两玻璃板间形成一空气劈尖,如图4所示。K 级干涉暗条纹对应的薄膜厚度为d=k λ/2 k=0时,d=0, 即在两玻璃板接触处为零级暗条纹;若在薄纸处呈现k=N 级条纹,则薄纸片厚度为 d ’=N λ/2 若劈尖总长为L,再测出相邻两条纹之间的距离为△x,则暗条纹总数为N=L/△x , 即 d ’=L λ/2 △x 。 五、实验目的: 深入理解光的等厚干涉及其应用,学会使用移测显微镜。 六、实验内容: 1、用牛顿环测透镜的曲率半径 2、用劈尖干涉法测薄纸片的厚度 七、实验器材(设备、元器件): 牛顿环装置,移测显微镜,两块光学平玻璃板,薄纸片,钠光灯及电 图2 L d

实验报告:牛顿环与劈尖干涉

实验八牛顿环与劈尖干涉 实验时间:实验人: 实验概述 【实验目的及要求】 1.掌握用牛顿环测定透镜曲率半径的方法; 2.掌握用劈尖干涉测定细丝直径(或薄片厚度)的方法; 3.通过实验加深对等厚干涉原理的理解. 【仪器及用具】 钠灯、移测显微镜、玻璃片(连支架)、牛顿环仪、光学平玻璃板(两块)和细丝(或薄片)等. 【实验原理】 牛顿环仪是由待测平凸透镜L和磨光的平玻璃板P叠合安装在金属框架F中构成的(图1).框架边上有三个螺旋H,用以调节L和P之间的接触,以改变干涉环纹的形状和位置.调节H时,不可旋得过紧,以免接触压力过大引起透镜弹性形变,甚至损坏透镜. 当一曲率半径很大的平凸透镜的凸面与一平玻璃板相接触时,在透镜的凸面与平玻璃板之间形成一空气薄膜.薄膜中心处的厚度为零,愈向边缘愈厚,离接触点等距离的地方,空气膜的厚度相同,如图2所示,若以波长为λ的单色平行光投射到这种装置上,则由空气膜上下表面反射的光波将在空气膜附近互相干涉,两束光的光程差将随空气膜厚度的变化而变化,空气膜厚度相同处反射的两束光具有相同的光程差,形成的干涉条纹为膜的等厚各点的轨迹,这种干涉是一种等厚干涉。

在反射方向观察时,将看到一组以接触点为中心的亮暗相间的圆环形干涉条纹,而且中心是一暗斑[图3(a)];如果在透射方向观察,则看到的干涉环纹与反射光的干涉环纹的光强分布恰成互补,中心是亮斑,原来的亮环处变为暗环,暗环处变为亮环[图3(b) ],这种干涉现象最早为牛顿所发现,故称为牛顿环。 在图2中,R 为透镜的曲率半径,形成的第m 级干涉暗条纹的半径为r m ,第m ’级干涉暗条纹的半径为r m ’。 不难证明: λmR r m = (1) ()2 12λ ?-= 'R m m (2) 以上两式表明,当A 已知时,只要测出第m 级暗环(或亮环)的半径,即可算出透镜的曲率半径R ;相反,当R 已知时,即可算出 .但是,由于两接触面之间难免附着尘埃以及在接触时难免发生弹性形变,因而接触处不可能是一个几何点,而是一个圆斑,所以近圆心处环纹粗且模糊,以致难以确切判定环纹的干涉级数,即于涉环纹的级数和序数不一定一致. 因而利用式(1)或式(2)来测量R 实际上也就成为不可能,为了避免这一困难并减少误差,必须测量距中心较远的、比较清晰的两个环纹韵半径,例如测出第m 1个和第m 2个暗环(或亮环)的半径(这里m 1 、 m 2

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 This manuscript was revised on November 28, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的

一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环

等厚干涉--牛顿环实验报告

等厚干涉——牛顿环 等厚干涉就是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角就是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环就是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于她主张微粒子学说而并未能对她做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度与角度,检验物体表面的光洁度、平整度等。 一.实验目的 (1)用牛顿环观察与分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二.实验仪器 读数显微镜钠光灯牛顿环仪

三.实验原理 牛顿环装置就是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,她们在平凸透镜的凸面相遇后,将发生干涉。从透镜上瞧到的干涉花样就是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度就是相同的,因此她属于等厚干涉。

图2 图3 由图2可见,若设透镜的曲率半径为R,与接触点O 相距为r 处空气层的厚度为d,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应就是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 22λ +=?d (2) 所以暗环的条件就是 2)12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但就是用此测量关系式往往误差很大,原因在于凸面与平面不可能就是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法

等厚干涉牛顿环实验报告

等厚干涉——牛顿环等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在 一块光学玻璃平板(平镜)上构成的,如图。平凸透 镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光

束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 =(1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中K 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2(4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或

牛顿环和劈尖干――实验报告

XX环和劈尖干涉 【实验目的】 1?学习用牛顿环测量透镜的曲率半径和劈尖的厚度。 2?熟练使用读数XX。 【实验仪器】 移测显微镜,钠光灯,牛顿环仪和劈尖装置。 【实验原理】 22dm dn测量透镜曲率半径的公式为: R 4(m n) 【实验内容】 一、用xx环测量透镜的曲率半径 1.调节牛顿环仪,使牛顿环的中心处于牛顿环仪的中心。(为什么?) 2?将牛顿环仪置于显微镜平台上,调节半反射镜使钠黄光充满整个视场。此时显微镜中的视场由暗变亮。(一定能调出条纹吗?) 3?调节显微镜,直至看清十字叉丝和清晰的干涉条纹。(注意: 调节显微镜物镜镜筒时,只能由下向上调节。为什么?) 4?观察条纹的分布特征。察看各级条纹的粗细是否一致,条纹间隔是否一样,并做出解释。观察牛顿环中心是亮斑还是暗斑,若为亮斑,如何解释? 5?测量暗环的直径。转动移测显微镜读数鼓轮,同时在目镜中观察,使十字刻线由牛顿环中央缓慢向一侧移动然后退回第30环,自30环开始单方向移动十字刻线,每移动一环即记下相应的读数直到第25环,然后再从同侧第15环开始记数直

到第10环;穿过中心暗斑,从另一侧第10环开始依次记数到第15 环,然后从第25环记数直至第30环。并将所测数据记入数据表格中。(为什么测量暗环的直径,而不是测量亮环的直径?) 6?观察透射光束形成的xx环。 7.观察xx产生的xx环(选做) 二、利用劈尖测量薄片厚度(表格自拟) 利用xx环测透镜的曲率半径 环的级数 环的位置 环的直径 环的级数 环的位置m3029 1428 1327 10左右dm15n左右环的直径 直径平方差 透镜曲率半径dn22dm dnR 【思考与讨论】 1、用移测显微镜测量牛顿环直径时,若测量的不是干涉环直径,而是干涉环的同一直线上的弦长,对实验是否有影响?为什么? 2、透射光能否形成牛顿环?它和反射光形成的牛顿环有什么区别?

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 Final revision on November 26, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在 一块光学玻璃平板(平镜)上构成的,如图。平凸透 镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两

光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为

牛顿环和劈尖干涉

牛顿环和劈尖干涉 【实验目的】 1. 学习用牛顿环测量透镜的曲率半径和劈尖的厚度。 2. 熟练使用读数显微镜。 【实验仪器】 移测显微镜,钠光灯,牛顿环仪和劈尖装置。 【实验原理】 测量透镜曲率半径的公式为: 22 4() m n d d R m nλ - = - 【实验内容】 一、用牛顿环测量透镜的曲率半径 1.调节牛顿环仪,使牛顿环的中心处于牛顿环仪的中心。(为什么?) 2. 将牛顿环仪置于显微镜平台上,调节半反射镜使钠黄光充满整个视场。此时显微镜中的视场由暗 变亮。(一定能调出条纹吗?) 3. 调节显微镜,直至看清十字叉丝和清晰的干涉条纹。(注意:调节显微镜物镜镜筒时,只能由下向 上调节。为什么?) 4. 观察条纹的分布特征。察看各级条纹的粗细是否一致,条纹间隔是否一样,并做出解释。观察牛 顿环中心是亮斑还是暗斑,若为亮斑,如何解释? 5. 测量暗环的直径。转动移测显微镜读数鼓轮,同时在目镜中观察,使十字刻线由牛顿环中央缓慢 向一侧移动然后退回第30环,自30环开始单方向移动十字刻线,每移动一环即记下相应的读数直到第25环,然后再从同侧第15环开始记数直到第10环;穿过中心暗斑,从另一侧第10环开始依次记数到第15环,然后从第25环记数直至第30环。并将所测数据记入数据表格中。(为什么测量暗环的直径,而不是测量亮环的直径?) 6. 观察透射光束形成的牛顿环。 7. 观察白光产生的牛顿环(选做) 二、利用劈尖测量薄片厚度(表格自拟)

利用牛顿环测透镜的曲率半径 【思考与讨论】 1、用移测显微镜测量牛顿环直径时,若测量的不是干涉环直径,而是干涉环的同一直线上的弦长, 对实验是否有影响?为什么? 2、透射光能否形成牛顿环?它和反射光形成的牛顿环有什么区别?

等厚干涉——劈尖牛顿环实验参考答案

一、选择题 1. 在等厚干涉实验中,设牛顿环的空气薄层厚度为e,则当2e A:为入射光波长的整数倍时产生暗条纹,为入射光半波长的奇数倍时产生明条纹 B:为入射光波长的整数倍时产生暗条纹,为入射光波长的奇数倍时产生明条纹 C:为入射光波长的整数倍时产生明条纹,为入射光半波长的奇数倍时产生暗条纹 D:为入射光波长的整数倍时产生明条纹,为入射光波长的奇数倍时产生暗条纹 请选择:A 2.两束光在空间相遇产生干涉的条件是 A:频率相等B:振动方向相同C:相位差恒定,且满足一定条件D:abc都是 请选择:D 3.牛顿环实验中,读数显微镜的视场中亮度不均匀,其原因是 A:显微镜的物镜有问题B:反光玻璃片放反了C:入射单色光方向不正D:显微镜的目镜有问题 请选择:C 4.牛顿环是一种 A:不等间距的衍射条纹B:等倾干涉条纹C:等间距的干涉条纹D:等厚干涉条纹 请选择:D 5.牛顿环实验中,单向测量的目的是为了消除 A:视差B:读数显微镜测微鼓轮的仪器误差C:测微螺距间隙引起的回程误差D:ABC都不是 请选择:C 6.劈尖干涉实验中,若测得20个劈尖干涉条纹间隔L1,劈尖条纹的总长为L,则其包含的干涉暗条纹总数为 A:20L/L1 B:20L1/L C:L/(20L1) D:L1/(20L) 请选择:A 7.牛顿环实验中有如下步骤:①调节读数显微镜的反光片和纳光灯的位置,使其视场明亮均匀②调节目镜使叉丝像清晰③将牛顿环放于载物台,由下向上调节镜筒,得到清晰的干涉条纹④调节牛顿环的位置和叉丝方向,使牛顿环中某环在纵向叉丝沿主尺方向移动时始终于横向叉丝相切⑤测量。则正确的实验顺序是 A:a b c d e B:b c a d e C:a b d c e D:d a c b e 请选择:A 8.在牛顿环实验中,读数显微镜的调节要求是 A:叉丝清晰B:显微镜内视场均匀明亮C:图象清晰D:abc都是 请选择:D

牛顿环-等厚干涉标准实验报告

实验报告 学生姓名: 学 号: 指导教师: 实验地点: 一、实验室名称: 、实验项目名称:牛顿环测曲面半径和劈尖干涉 三、实验学时: 四、实验原理: 1等厚干涉 如图1所示,在C 点产生干涉,光线11'和22'的光程差为 △ =2d+入 12 式中入/2是因为光由光疏媒质入射到光密媒质上反射时, 有一相位突 当光程差 △ =2d+入/2=(2k+1)入12, 即d=k 入/2时 产生暗条纹; 当光程差 △ =2d+入/2=2k 入/2, 即d=(k — 1/2)入/2时 产生明条纹 因此,在空气薄膜厚度相同处产生同一级的干涉条纹 ,叫等厚干涉条 2、用牛顿环测透镜的曲率半径 将一个曲率半径较大的平凸透镜的凸面置于一块光学平板玻璃上则 实验时间: 变引起的附加光程差

可组成牛顿环装置。如图2所示。 这两束反射光在AOB 表面上的某一点E 相遇,从而产生E 点的干涉。由于AOB 表面是球面,所产生的条纹是明暗相间 的圆环,所以称为牛顿环,如图3所示。 将两块光学平玻璃重叠在一起,在一端插入一薄纸 片,则在两玻璃板 间形成一空气劈尖,如图4所示。K 级干涉暗条纹对应的薄膜厚度为 d=k 入/2 k=0时,d=0, 即在两玻璃板接触处为零级暗条纹;若在 薄纸处呈现k=N 级条纹,则薄纸片厚度为 d ' =N 入12 若劈尖总长为L,再测出相邻两条纹之间的距离为△ x,则暗条纹总数 为N =L/A x , 即 d ' =L 入 12 △ x 。 五、实验目的: 深入理解光的等厚干涉及其应用,学会使用移测显微镜 六、实验内容: 1、 用牛顿环测透镜的曲率半径 2、 用劈尖干涉法测薄纸片的厚度 七、实验器材(设备、元器件): 牛顿环装置,移测显微镜,两块光学平玻璃板,薄纸片,钠光灯及电 八、实验步骤: 1.用牛顿环测透镜的曲率半径 O 牛顿环 图2 ---- L

等厚干涉牛顿环实验报告

等厚干涉——牛顿环示范报告 【实验目的】 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; (3)学会使用读数显微镜测距。 【实验原理】 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点附近就形成一层空气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样, 称为牛顿环,其光路示意图如图。 如果已知入射光波长,并测得第k 级暗环的半径k r ,则可求得透镜的曲率半径R 。但实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。用直径 m D 、n D ,有 λ)(42 2 n m D D R n m --= 此为计算R 用的公式,它与附加厚光程差、圆心位置、绝对级次无 关,克服了由这些因素带来的系统误差,并且 m D 、 n D 可以是弦长。 【实验仪器】 JCD3型读数显微镜,牛顿环,钠光灯,凸透镜(包括三爪式透镜夹和固定滑座)。 【实验内容】 1、调整测量装置 按光学实验常用仪器的读数显微镜使用说明进行调整。调整时注意: (1)调节450玻片,使显微镜视场中亮度最大,这时,基本上满足入射光垂直于透镜的要求(下部反光镜不要让反射光到上面去)。 (2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到清晰的干涉图像。 (3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止,往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。 (4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用擦镜纸擦拭干净。 2、观察牛顿环的干涉图样 (1)调整牛顿环仪的三个调节螺丝,在自然光照射下能观察到牛顿环的干涉图样,并将干涉条纹的中心移到牛顿环仪的中心附近。调节螺丝不能太紧,以免中心暗斑太大,甚至损坏牛顿环仪。 (2)把牛顿环仪置于显微镜的正下方,使单色光源与读数显微镜上45?角的反射透明玻璃片等高,旋转反射透明玻璃 ,直至从目镜中能看到明亮均匀的光照。 (3)调节读数显微镜的目镜,使十字叉丝清晰;自下而上调节物镜直至观察到清晰的干涉图样。移动牛顿环仪,使中心暗斑(或亮斑)位于视域中心,调节目镜系统,使叉丝横

等厚干涉实—牛顿环和劈尖干涉

等厚干涉实验—牛顿环和劈尖干涉 要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠如起来。由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。获得相干光方法有两种。一种叫分波阵面法,另一种叫分振幅法。 1.实验目的 (1)通过对等厚干涉图象观察和测量,加深对光的波动性的认识。 (2)掌握读数显微镜的基本调节和测量操作。 (3)掌握用牛顿环法测量透镜的曲率半径和用劈尖干涉法测量玻璃丝微小直径的实验方法 (4)学习用图解法和逐差法处理数据。 2.实验仪器 读数显微镜,牛顿环,钠光灯 3.实验原理 我们所讨论的等厚干涉就属于分振幅干涉现象。分振幅干涉就是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成若干部分,然后相遇而产生干涉。分振幅干涉分两类称等厚干涉,一类称等倾干涉。 用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射 光,满足相干条件。当入射光入射角不变,薄膜厚度不同发生变化,那么不同厚度处可满足不同的干涉明暗条件,出现干涉明暗条纹,相同厚度处一定满足同样的干涉条件,因此同一干涉条纹下对应同样的薄膜厚度。这种干涉称为等厚干涉,相应干涉条纹称为等厚干涉条纹。等厚干涉现象在光学加工中有着广泛应用,牛顿环和劈尖干涉就属于等厚干涉。下面分别讨论其原理及应用: (1)用牛顿环法测定透镜球面的曲率半径 牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。相互接触的透镜凸面与平玻璃片平面之间的空气间隙,构成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘逐渐增加。如图9-1(a )所示。 R e r (a ) (b) 图9-1 牛顿环装置和干涉图样

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告Last revision on 21 December 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的

一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何

牛顿环等厚干涉标准实验报告

实验报告学生姓名:学号:指导教师: 实验地点:实验时间: 一、实验室名称: 二、实验项目名称:牛顿环测曲面半径和劈尖干涉 三、实验学时: 四、实验原理: 1、等厚干涉 如图1所示,在C点产生干涉,光线11`和22`的光程差为△=2d+λ/2 式中λ/2是因为光由光疏媒质入射到光密媒质上反射时,有一相位突变引起 的附加光程差。 当光程差△=2d+λ/2=(2k+1)λ 即d=k λ/2时产生暗条纹; 当光程差△=2d+λ/2=2kλ/2, 即d=(k-1/2)λ/2时产生明条纹 图1 因此,在空气薄膜厚度相同处产生同一级的干涉条纹,叫等厚干涉条纹。 2、用牛顿环测透镜的曲率半径 将一个曲率半径较大的平凸透镜的凸面置于一块光学平板玻璃上则可组成牛顿环装置。如图2所示。

这两束反射光在AOB 表面上的某一点E 相遇,从而产生E 点的干涉。由于AOB 表面是球面,所产生的条纹是明暗相间 的圆环,所以称为牛顿环,如图3所示。 将两块光学平玻璃重叠在一起,在一端插入一薄纸片,则在两玻璃板间形成一空气劈尖,如图4所示。K 级干涉暗条纹对应的薄膜厚度为d=k λ/2 k=0时,d=0, 即在两玻璃板接触处为零级暗条纹;若在薄纸处呈现k=N 级条纹,则薄纸片厚度为 d ’=N λ/2 若劈尖总长为L,再测出相邻两条纹之间的距离为△x,则暗条纹总数为N=L/△x , 即 d ’=L λ/2 △x 。 五、实验目的: 深入理解光的等厚干涉及其应用,学会使用移测显微镜。 六、实验内容: 1、用牛顿环测透镜的曲率半径 2、用劈尖干涉法测薄纸片的厚度 七、实验器材(设备、元器件): 牛顿环装置,移测显微镜,两块光学平玻璃板,薄纸片,钠光灯及电源。 八、实验步骤: 图2 L d

牛顿环于劈尖干涉的观测

参考答案 答案1: 答案2: 答案3: 答案4: 正确答案为:1 你做的答案为: 3 答案1:凹;亮 答案2:凸;亮 答案3:凹;暗 答案4:凸;暗 正确答案为:3 你做的答案为:3 (牛顿环)牛顿环越远离中心,条纹越_____、级数越_____。 答案1:密、高 答案2:密、低 答案3:疏、高 答案4:疏、低 正确答案为:1 你做的答案为: 1

答案1:为减小系统误差 答案2:为减小偶然误差 答案3:环间间距非均匀 答案4:无法确定级次k 正确答案为:4 你做的答案为:4 (牛顿环)牛顿环实验中,读数显微镜以毫米作单位,可以读到小数点后 答案1:2 答案2: 3 答案3: 4 答案4: 5 正确答案为:2 你做的答案为:2 参考答案 答案1:

答案2: 答案3: 答案4: 正确答案为:4 你做的答案为: 2 答案1:亮;λ 答案2:亮;λ/2 答案3:暗;λ/2 答案4:暗;λ 正确答案为:2 你做的答案为: 3 答案1:nλ/(2S) 答案2:nλ/S 答案3:λ/(2nS) 答案4:λ/(nS) 正确答案为:1 你做的答案为:3 (牛顿环)本实验为何要先在视场中看到牛顿环向左移动,让十字丝的竖线推移到第35环,然后向右移动到与第30环相切时,才开始依次记录第30、29、28、27、26和15、14、13、12、11环的环心左侧数据;再跨过圆心依次记录环心右侧的第11、12、

13、14、15和26、27、28、29、30等环相切的数据?能否让十字丝的竖线推移到第36环,再按上述方法进行测量? 答案1:因有空程;能 答案2:因k不确定;能 答案3:因有空程;不能 答案4:因k不确定;不能 正确答案为:1 你做的答案为: 2 答案1:向内收缩;增大 答案2:向内收缩;减小 答案3:向外冒出;增大 答案4:向外冒出;减小 正确答案为:1 你做的答案为:3 参考答案 答案1:30;是 答案2:不定;是 答案3:30;不 答案4:不定;不 正确答案为:2 你做的答案为:3 (劈尖)如为空气劈尖,则劈棱处为纹;离劈棱越远,其级数k越。答案1:亮;大 答案2:亮;小 答案3:暗;大 答案4:暗;小 正确答案为:3 你做的答案为: 3

等厚干涉牛顿环实验报告

等厚干涉——牛顿环实验报告【实验目的】 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 【实验原理】 通常将同一光源发出的光分成两束光,在空间经过不同的路程后合在一起产生干涉。牛顿环是典型的等厚干涉现象。牛顿环实验装置通常是由光学玻璃制成的一个平面和一个曲率半径较大的球面组成,在两个表面之间形成一劈尖状空气薄层。以凸面为例,当单色光垂直入射时,在透镜表面相遇时就会发生干涉现象,空气膜厚度相同的地方形成相同的干涉条纹,这种干涉称作等厚干涉。在干涉条纹是以接触点为中心的一系列明暗相间的同心圆环,称牛顿环。 相关计算:由于透镜表面B点处的反射光1和玻璃板表面C点的反射光2在B点出发生干涉,在该处产生等厚干涉条纹。按照波动理论,设形成牛顿环处空气薄层厚度为d,两束相干光的光程差为: △=2d + λ/ 2 = kλ 当适合下列条件时有 △=2d + λ/ 2 = kλ---------(1)( K = 1,2,3,... 明环) △=2d + λ/ 2 = (2k+1)λ/2---------(2)( K = 1,2,3,... 暗环) 式中λ为入射光的波长,λ/2 是附加光程差,他是由 于光在光密介质面上反射时产生的半波损失而引起的 公式(2)表明,当K=0 时(零级),d=0,即平面玻 璃和平凸透镜接触处的条纹为暗纹。光程差Δ仅与d 有关, 即厚度相同的地方干涉条纹相同。平凸透镜曲率半径的测 量: 由几何关系,在B点可得:r2=R2-(R2-d2)=2Rd-d2 因为R>>d 所以得

上式表明d 与成正比,说明离中心越远,光程差增加越快,干涉条纹越来越密。 由公式:... (暗环)可知: 若测出第K级暗环的半径,且单色光的波长已知时,就能算出球面的曲率半径R 。但在实验中由于机械压力引起的形变以及球面上可能存在的微小尘埃,使得凸面和平面接触处不可能是一个理想的点,而是一个不很规则的圆斑,因此很难准确测出的值。比较简单的方法是测量距中心较远处的牛顿环直径。以暗环为例,当测得较远的第K级和第K+M级的暗环直径和时,由得 若已知λ,则透镜的曲率半径R可用逐差法求得。也 可由作图法求透镜的曲率半径R , 上式表明与K 为线性关系,作~ K 图,则图的 斜率为4Rλ,若已知λ则可求出凸透镜的曲率半径R 。 【实验仪器】 读数显微镜钠光灯平凸透镜和平面玻璃(或牛顿环装置) 【实验内容】 1、调整测量装置

相关文档
最新文档