铁标准曲线

铁标准曲线

邻二氮菲吸收光谱法测定水中铁

标准曲线的绘制方法一: v(ml) 4 8 12 16 20

b (ug ) 40 80 120 160 200 吸光度(A) 0.164 0.321 0.479 0.64

0.798

测定范围:0.30—1.40mg/L 计算 铁(mg/L )=m/v

式中 m ——标准曲线上查出总铁或Fe 2+的量(ug ); v ——水样体积(mL )。

标准曲线的绘制方法二: v(ml) 4 8 12

16 20 b (mg/L ) 0.8 1.6 2.4 3.2 4

吸光度(A) 0.164 0.321

0.479 0.64 0.798

测定范围:0.30—1.40mg/L 计算 铁(mg/L )=C 标,Fe *50/v

式中 C 标,Fe ——标准曲线上查出总铁或Fe 2+的量(mg/L ); v ——水样体积(mL );

50——水样稀释最终体积(mL )。

化学分析用各种溶液的浓度表示方法和标签内容格式

化学分析用各种溶液的浓度表示方法和标签内容格式 溶液浓度是指在一定质量或一定体积的溶液中所含溶质的量.正确表示各种溶液浓度及正确书写标签内容是搞好检测工作的基本规范要求之一.国际标准化组织ISO,国际理论化学与应用化学联合会IUPAC和我国国家标准GB都作出相关规定.现结合日常工作实践,就化学分析用各种溶液的浓度表示方法和标签内容格式作一介绍,以满足实验室认可对化学分析用各种溶液的浓度表示方法和标签内容书写格式的要求. 1 标准滴定溶液 standard volumetric solution 1.1 定义 已知准确浓度的用于滴定分析用的溶液. 1.2 浓度表示方法 1.2.1 物质的量浓度 a. 定义:单位体积中所含溶质B的物质的量. b. 物质的量浓度符号:cB. c. 物质的量浓度单位:计量单位为"mol/m3"及其倍数,实验室中常用的单位是"mol/L"或 1mol/dm3. d. 说明:物质的量的SI基本单位是摩尔 (单位符号为"mol"),其定义如下:摩尔是一系统的物质的量,该系统中所包含的基本单元数与0.012kg碳-12数目相等。在使用摩尔时,基本单元应予指明,可以是原子,分子,离子,电子及其他粒子,或是这些粒子的特定组合.因此,在使用物质的量浓度时也必须指明基本单元. e. 实例 c(NaOH)=0.1015mol/L氢氧化钠溶液,小括号内的NaOH是指溶液中溶质的基本单元,c(NaOH)是表示基本单元为NaOH的物质的量浓度.等号右边的0.1015mol/L表示物质的量浓度数数值为0.1015摩尔每升,即每升含氢氧化钠1×氢氧化钠分子量×0.1015克. c(1/2H2SO4)=0.2042mol/L硫酸溶液,表示基本单元为1/2H2SO4的物质的量浓度为0.2042摩尔每升.即每升含硫酸1/2×硫酸分子量×0.2042克. c(1/5KMnO4)=0.1000mol/L高锰酸钾溶液,表示基本单元为1/5KMnO4的物质的量浓度为 0.1000摩尔每升.即每升含高锰酸钾1/5×高锰酸钾分子量×0.1000克. c(1/6K2Cr2O7)=1.0042mol/L重铬酸钾溶液,表示基本单元为1/6 K2Cr2O7的物质的量浓度为1.0042摩尔每升.即每升含重铬酸钾1/6×重铬酸钾分子量×1.0042克. c(1/2Ca2+)=1.0035mol/L钙阳离子溶液,表示基本单元为1/2 Ca2+的物质的量浓度为1.0035摩尔每升.即每升含钙阳离子1/2×钙原子量×1.0035克. 1.2.2 质量浓度 a. 质量浓度定义:作为溶质的物质的质量除以混合物(即溶液)体积. b. 质量浓度符号:ρB B代表作为溶质的物质. c. 质量浓度单位:计量单位为"kg/m3","kg/L"(1kg/L=103kg/ m3=1kg/d 实验室常用"g/L","mg/L","mg/mL","μg/mL"等. d. 质量浓度表示法实例: ρB表示法: ρ(Na2CO3)=0.5021mg/mL碳酸钠标准滴定溶液,表示碳酸钠标准滴定溶液的质量浓度为 0.5021毫克每毫升.

标准溶液的配制

硫酸铁铵标准溶液 配制:称取24g 硫酸铁铵(NH 4Fe(SO 4)2·12H 2O),置于500ml 烧杯中,加入100ml 水、 10ml 硫酸(3.10),加热溶解,取下,滴加0.1%高锰酸钾溶液至呈现微红色,加热煮沸分解过量的高锰酸钾。冷却,移入1L 容量瓶中,用水稀释至刻度,混匀。 标定:称取0.1000~0.1500g 二氧化钛(3.2)3份。以下按照5.3.1~5.3.4条进行。并 随同做空白试验。按式(2)计算试样中硫酸铁铵标准溶液对二氧化钛的滴定度: m T=V-V …………………………(2) 式中:T ––––硫酸铁铵标准溶液对二氧化钛的滴定度,g/ml; m 0––––称取二氧化钛的量,g; V ––––3份二氧化钛溶液所消耗硫酸铁铵标准溶液体积的平均值,ml; V 0––––空白试验所消耗硫酸铁铵标准溶液体积,ml; 1. 重铬酸钾标准溶液(0.0358mol/L): 称取1.7552g 预先在150~170℃烘2~3h 的重铬酸钾基准试剂,溶于适量水中,移入1000 ml 容量瓶中,用水稀释至刻度,混匀。(此溶液每ml 相当于2.0mg 铁)。 2. 锰标准溶液 称取1.0000g 纯锰(99.99%),用50ml 硫酸(1+3)溶解,移入1000ml 容量瓶中,用水稀释至刻度,混匀。此溶液1ml 含1mg 锰或1.291g 一氧化锰。 3. 亚砷酸钠–亚硝酸钠标准溶液 : 配制:称取2.5g 优级纯三氧化二砷(剧毒)溶于20ml 氢氧化钠溶液中(16%),用水稀释至500ml ,以酚酞溶液(1%)作指示剂,用硫酸溶液(1+1)中和至红色消失,再滴加10%碳酸钠至红色出现,加入1.75g 亚硝酸钠,并使其全部溶解,混匀。(浑浊应过滤)。用水稀释至4000ml ,充分混匀,贮存于棕色瓶中。此溶液约0.025N

标准溶液配制方法

中华人民共和国国家标准 UDC543.06:54—41 GB601—88 化学试剂 滴定分析(容量分析)用标准溶液的制备 Chemicalreagent Preparationsofstandardvolumetriesolutions 1主题内容与适用范围 本标准规定了滴定分析(容量分析)用标准溶液的配制和标定方法。 本标准适用于制备准确浓度之溶液,应用于滴定法测定化学试剂的主体含量及杂质含量,也可供其他的化学产品标准选用。 2引用标准 GB603化学试剂试验方法中所用制剂及制品的制备 GB6682实验室用水规格 GB9725化学试剂电位滴定法通则 3一般规定 3.1本标准中所用的水,在没有注明其他要求时,应符合GB6682中三级水的标 准。 3.2本标准中所用试剂的纯度应在分析纯以上。 3.3工作中所用的分析天平的砝码、滴定管、容量瓶及移液管均需定期校正。3.4本标准中标定时所用的基准试剂为容量分析工作基准试剂;制备标准溶液是 所用的试剂为分析纯以上试剂。 3.5本标准中所制备的标准溶液的浓度均指20c时的浓度。在标定和使用时,如 温度有差异,应只能附录A(补充件)补正。 3.6“标定”或“比较”标准溶液浓度时,平行试验不得少于8次,两人各作4 平行,每人4平行测定结果的极差与平均值之比不得大于0.1%。两人测定结果的差值与平均值之比不得大于0.1%,最终取两人测定结果的平均值。浓度值取四位有效数字。 3.7本标准中凡规定用“标定”和“比较”两种方法测定浓度时,不得略去其中 的任何一种,且两种方法测得的浓度值之差值与平均值之比不得大于0.2%,最终以标定结果为准。 3.8制备的标准溶液与规定浓度之差不得超出规定浓度的+—5%。。 3.9配制浓度等于或低于0.02mol/L标准溶液时乙二胺四乙酸二钠标准滴定溶液 除外,应于临用前将浓度高的标准溶液用煮沸并冷却的水稀释,必要时重新标定。 3.10碘量法反应时,溶液的温度不能过高,一般在15~20c之间进行滴定。 3.11滴定分析(容量分析)用标准溶液在常温(15~25)下,保存时间一般不 得超过两个月。

荧光定量PCR之绝对定量分析——标准曲线的绘制

荧光定量PCR之绝对定量分析——标准曲线的绘制 1. 绝对定量定义 绝对定量是用已知浓度的标准品绘制标准曲线来推算未知样品的量。 将标准品稀释至不同浓度,作为模板进行PCR反应。以标准品拷贝数的对数值为横坐标,以测得的CT值为纵坐标,绘制标准曲线,对未知样品进行定量时,根据未知样品的CT值,即可在标准曲线中得到样品的拷贝数。 * Log(起始浓度)与循环数呈线性关系,通过已知起始拷贝数的标准品可作出标准曲线,即得到该扩增反应存在的线性关系 * 由样品CT值,就可以计算出样品中所含的模板量 2. 绝对定量标准品 标准品的一些标准 * 必须用与扩增目的基因相同的引物进行扩增,并且扩增效率相同 * 标准品必须是经过准确定量的(我们通常用的是ASP-3700紫外光/可见光微量分光光度计) * 标准品必须是标准化的(例如,同一化的细胞数) * 在每组实验时,必须用相同的阈值设定来确定CT值

标准品可以是含有目的基因的线性化的质粒DNA,也可以是比扩增片段长的纯化后的PCR产物,当然也可以是基因组DNA,甚至cDNA,但前提是所有的作为标准品的核酸都必须保证稳定。 3. 标准品的制备 一般一条标准曲线取四到五个点,浓度范围要能覆盖样品的浓度区间,以保证定量的准确性。一般一个点重复三至五次,对于常期稳定使用的标准品可以适当减少重复的次数。倍比梯度稀释方法: 1v原液(标准品i)+9v稀释缓冲液,得标准品ii 1v标准品ii+9v稀释缓冲液,得标准品iii 1v标准品iii+9v稀释缓冲液,得标准品iv 1v标准品iv+9v稀释缓冲液,得标准品v 依次倍比稀释 拷贝数的计算:详见核酸拷贝数的计算 4. 实例 标准品的制作:将标准品依次进行10倍稀释,ASP-3700 测得其拷贝数1.55×108copy /ul 标准曲线的绘制(1cycle=1min)

实验1 高吸光度示差分析法

实验二高吸光度示差分析法 一、目的: 通过标准曲线的绘制及试样溶液的测定,了解高吸光度示差分析法的基本原理,方法优点。掌握721型分光光度计的使用方法。 二、原理: 普通吸光光度法是基于测量试样溶液与试剂空白溶液(或溶剂)相比较的吸光度,从相同条件下所作的标准曲线来计算被测组份的含量,这种方法的准确度一般不会优于1~2%,因此,它不适合于高含量组份的测定。 为了提高吸光光度法测定的准确度,使其适合于高含量组分的测定,可采用高吸光度示差分析法。示差法与普通吸光光度法的不同之处,在于用一个待测组份的标准溶液代替试剂空白溶液作为参比溶液,测量待测量溶液的吸光度。它的测定步骤如下: (1)在仪器没有光线通过时(接受器上无光照射时)调节透光率为0,这与比色法或普通分光光度法相同。 (2)将一个比待测溶液(浓度为C+△C)稍稀的参比溶液(浓度为C)放在仪器光路中,调节透光率为100%。 (3)将待测量溶液(或标准溶液)推入光路中,读取表现吸光度A f。 表观吸光度A f实际上是由△C引起的吸收大小,可表达为: A f=ab△c 上式说明,待测溶液(或标准溶液)与参比溶液的吸光度之差与这两次溶液的浓度差成正比。 无论普通吸光度或高吸光度示差法,只要符合比尔定律,而且测量误差仅仅是由于透光率(或吸光度)读数的不确定所引起的,则可以方便地计算出分析的

误差。 仪器刻度上透光率读数改变数(dT )所引起的浓度误差dc 为绝对误差,它与透光率有关,其关系式容易由比耳定律推得: A f =ab △c=k △c lgT=-A f =-k △c 0.43lnT=-k △c KT dc 43 .0 ·dT 式中k 为标准曲线(A ~C )的斜率。实验中三条曲线的三个k 很接近。根据k 值及上述关系可以计算出实验中各点的绝对误差(假设透光率读数误差为l%,即dT=0.01)。 对于化学工作者来说,更有意义的是浓度的相对误差(c dc ),或者相对百分误差(c dc ×100)。浓度相对百分误差与参比溶液的浓度关系密切。随着有色参比溶液浓度的增加(或A 的增加),相对百分误差也随之减小。当所用参比溶液的A=1.736时,最低的相对百分误差也可减小至0.25%。由此可见了,差示法中高吸光度法可达到容量分析和重量分析的准确度。 三、仪器与试剂 721型分光光度计(附2只1厘米比色皿) 0~10ml 微量滴定管1支(刻度准确至0.005ml ) 25ml 容量瓶×16 0.2500M Cr (NO 3)3 四、实验步骤

化学试剂 滴定分析(容量分析)用标准溶液的制备GB601-88.

化学试剂滴定分析(容量分析)用标准溶液的制备GB601-88 化学试剂滴定分析(容量分析)用标准溶液的制备GB601-88 1、主题内容与适用范围 本标准规定了滴定分析(容量分析)用标准溶液的配制和标定方法。 本标准适用于制备准确浓度之溶液,应用于滴定法测定化学试剂的纯度及杂质含量,也可供其他的化工产品标准选用。 2、引用标准 GB603 化学试剂试验方法中所用制剂及制品的制备 GB6682 实验室用水规格 GB9725 化学试剂电位滴定法通则 3、一般规定 3.1 本标准中所用的水,在没有注明其他要求时,应符合GB6682中三级水的规格。 3.2 本标准中所用试剂的纯度应在分析纯以上。 3.3 工作中所用分析天平的砝码、滴定管、容量瓶及移液管均需定期校正。 3.4 本标准中标定时所用的基准试剂为容量分析工作基准试剂;制备标准溶液时所用的试剂为分析纯以上试剂。 3.5 本标准中所制备的标准溶液的浓度均指20℃时的浓度。在标定和使用时,如温度有差异,应按附录A (补充件)补正。 3.6 “标定”或“比较”标准溶液浓度时,平行试验不得少于8次,两个各作四平行,每人四平行测定结果的极差与平均值之比不得大于0.1%。两人测定结果平均值之差不得大于0.1%,结果取平均值。浓度值取4位有效数字。 3.7 本标准中凡规定用“标定”和“比较”两种方法测定浓度时,不得略去其中任何一种,且两种方法测得的浓度值之差不得大于0.2%,以标定结果为准。 3.8 制备的标准溶液浓度与规定浓度相对误差不得大于5%。 3.9 配制浓度等于或低于0.02mol/L标准溶液时,应于临用前将浓度高的标准溶液用煮沸并冷却的水稀释,必要时重新标定。 3.10 碘量法反应时,溶液的温度不能过高,一般在15-20℃之间进行滴定。

标准曲线绘制

标准曲线绘制 calfstone 任何科学实践必须有科学理论的支撑。在这个意义上讲,经验有时候是一种误导。在寻求某个困扰自己的问题答案的时候,我提倡用理论支撑的观点来表达自己和说服自己。任何的盲从和权威都是不可取的。标准曲线的做法问题也是如此。 1、标准曲线的本质。标准曲线是标准物质的物理/化学属性跟仪器响应之间的函数关系。建立标准曲线的目的是推导待测物质的理化属性。如果有不需要标准曲线的方法,比如绝对校正,我想大家都会高兴。 2、标准曲线的适用性。这是做标准曲线的重要前提,这个问题实际很简单,就是这样一个问题:我的样品的仪器响应能否用我们所建立的标准曲线来推导其理化属性?答案建立在仪器响应的特异性和标准系列和样品的匹配性上面。一方面我们总是力求仪器的响应对于标准和样品是一视同仁;同时我们也要求我的样本跟标准基体匹配。所以最好的标准是基体匹配标准,最好的标准曲线是工作曲线。这样,我们也很好理解为什么大多数分析要求标准曲线和样品同批测定(除非经过实验,标准曲线的变化不大),同样的道理也可以理解为什么我们在做大批量检测的时候要插入QC检验样本,以考察仪器的稳定性。即使在任何信息未知的情况下,我们还是要做我们的分析测试的(要不,我们都失业了),因为大家都是用同样的方法做,要错大家一起错;同时也因为我们相信伴随科学的进步,我们所测试的结果的准确性就越接近真理。 3、简单的标准曲线----单点校正。对于分析成本高的测试,单点校正是不得以的选择。现在应用最多的是色谱分析,很多国家标准或国际标准都采用单点校正,实际是建立在色谱分析的高选择性上面:我们的空白一般都很小,我们的线性一般都很好。在有这么多验前概率的支撑下,色谱分析中大量的单点校正不失为一个合理的选择。但单点校正要丢失很多的信息量,这个信息量就是不确定度。 4、标准曲线的点的分布。从不确定度理论推算样本的不确定度时,有二个重要的结论:一、标准曲线的重心点处,所查出来的样品不确定度最小。二、标准的点数越多,样品的不确定度越小。基于这两个结论的标准曲线的做法应该是:在样品浓度的附近尽量的多布标准点。点做多做少,点分布如何,影响的是标准曲线所查出来的样品的理化属性的不确定度。好的测量应该是不确定度小的测量,这在判断样品的结果是否超标或符合限值的时候至关重要。 bingfan56 国标方法的话一般是五个点(不包括零浓度); 一般以检出限的5~10倍为第一个点,以后根据1倍(或接近一倍)递增,最高浓度是最低浓度的10~20倍为宜。当然,要根据仪器的灵敏度来调整。 一般方法要求线性大于0.99,其实〉0.99是判断是否为线性相关的一个标准,实际应用中线性〉0.999才是比较理想的。线性在0.99到0.999之间的监测结果只用接近最高浓度一半(中间浓度)的位置才比较准确,如果线性大于0.999的话,在整个线性范围内都会有一个比较满意的结果。 如果检测的线性不好,可以减少标准的覆盖范围,将标准的浓度调整到待测样品浓度附近,这样结果也是非常准确的。例如,样品的浓度约20ppb,但在0~50ppb范围建立标准曲线,但线性非常不理想,这时可以将标准范围调整到15~25ppb之间,作五个标准。 loacao 1.范围:如前面的朋友们所说不能跨度太大,因为标准曲线的高浓度延长线通常是曲线,那样定量会不准。最小点当然可以从LOQ开始。

极化曲线的测定

实验九极化曲线的测定 【目的要求】 1. 掌握稳态恒电位法测定金属极化曲线的基本原理和测试方法. 2. 了解极化曲线的意义和应用. 3. 掌握恒电位仪的使用方法. 【实验原理】 1. 极化现象与极化曲线 为了探索电极过程机理及影响电极过程的各种因素,必须对电极过程进行研究,其中极化曲线的测定是重要方法之一.我们知道在研究可逆电池的电动势和电池反应时,电极上几乎没有电流通过,每个电极反应都是在接近于平衡状态下进行的,因此电极反应是可逆的.但当有电流明显地通过电池时,电极的平衡状态被破坏,电极电势偏离平衡值,电极反应处于不可逆状态,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大.由于电流通过电极而导致电极电势偏离平衡值的现象称为电极的极化,描述电流密度与电极电势之间关系的曲线称作极化曲线,如图2-19-1所示. 图2-19-1 极化曲线 A-B:活性溶解区;B:临界钝化点B-C:过渡钝化区;C-D:稳定钝化区D-E:超(过)钝化区 金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示: M→Mn++ne 此过程只有在电极电势正于其热力学电势时才能发生.阳极的溶解速度随电位变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象.图2-19-1 中曲线表明,从A点开始,随着电位向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜.B点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流.电势到达C点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE段称为过钝化区. 2. 极化曲线的测定 (1) 恒电位法 恒电位法就是将研究电极依次恒定在不同的数值上,然后测量对应于各电位下的电流.极化曲线的测量应尽可能接近体系稳态.稳态体系指被研究体系的极化电流,电极电势,电极表面状态等基本上不随时间而改变.在实际测量中,常用的控制电位测量方法有以下两种: 静态法:将电极电势恒定在某一数值,测定相应的稳定电流值,如此逐点地测量一系列各个电极电势下的稳定电流值,以获得完整的极化曲线.对某些体系,达到稳态可能需要很长时间,为节省时间,提高测量重现性,往往人们自行规定每次电势恒定的时间. 动态法:控制电极电势以较慢的速度连续地改变(扫描),并测量对应电位下的瞬时电流值,以瞬时电流与对应的电极电势作图,获得整个的极化曲线.一般来说,电极表面建立稳态的速度愈慢,则电位扫描速度也应愈慢.因此对不同的电极体系,扫描速度也不相同.为测得稳态极化曲线,人们通常依次减小扫描速度测定若干条极化曲线,当测至极化曲线不再明显变化时,可确定此扫描速度下测得的极化曲线即为稳态极化曲线.同样,为节省时间,对于那些只是为了比较不同因素对电极过程影响的极化曲线,则选取适当的扫描速度绘

实验三 氢氧化钠浓度标准溶液的配制和标定(发给学生)

实验三氢氧化钠标准溶液的配制和标定 一、实验目的: 1、学习碱式滴定管的使用; 2、掌握滴定操作并学会正确判断终点; 3、学会配制和标定碱标准溶液的方法。 二、实验原理: 思考: 1.为什么氢氧化钠不能直接配成标准溶液? 2.如何配制氢氧化钠标准溶液? 3.有哪些标准物质可以标定氢氧化钠溶液的浓度? 1)邻苯二甲酸氢钾,反应式如下:KHC8H4O4+NaOH=KNaC8H4O4+H2O 2)草酸,反应式为:H2C2O4+2NaOH=Na2C2O4+2H2O 指示剂:酚酞(pH值为突跃范围为7.7~10) 3) 已知准确浓度的HCl,计量点时溶液呈中性,突跃范围:4~10,MO、MR 三、实验步骤 1、0.1 mol?L-1 NaOH溶液的配制: 用台秤迅速称取约1.25g NaOH(为什么?) 于100mL小烧杯中,加约30mL无CO2的去离子水溶解,然后转移至试剂瓶中,用去离子水稀释至300mL,摇匀后,用橡皮塞塞紧。贴好标签,备用。 讨论:怎样称量氢氧化钠固体? (1)NaOH应放在表面皿或小烧杯中进行,不能在称量纸上称。 (2)NaOH在烧杯内溶解,充分搅拌,溶解完全后,转移至试剂瓶内,稀释至 所要体积。塞上橡皮塞,充分摇匀。 思考:如何配制不含CO32-的NaOH溶液? 方法(1).用小烧杯于台秤上称取较理论计算量稍多的NaOH,用不含CO2蒸馏水 迅速冲洗两次,溶解并定溶。 (2).制备饱和NaOH(50%, Na2CO3基本不溶)待Na2CO3下沉后,取上层清液用不 含CO2的蒸馏水稀释. (3).于NaOH溶液中,加少量Ba(OH)2或BaCI2,取上层清液用不含CO2的蒸馏水稀

标准曲线的绘制样本

标准曲线绘制 在分析化学实验中, 常见标准曲线法进行定量分析,一般情况下的标准工 作曲线是一条直线。 标准曲线的横坐标(X)表示能够精确测量的变量(如标准溶液的浓度),称为 普通变量,纵坐标(Y)表示仪器的响应值(也称测量值,如吸光度、电极电位 等), 称为随机变量。当X取值为X1, X2,……Xn时,仪器测得的丫值分别为丫1, 丫2,……Yn。将这些测量点Xi, Yi描绘在坐标系中,用直尺绘出一条表示X 与丫之间的直线线性关系,这就是常见的标准曲线法。用作绘制标准曲线的标准物质,它的含量范围应包括试祥中被测物质的含量,标长准曲线不能任意延。用作绘制标准曲线的绘图纸的横坐标和纵坐标的标度以及实验点的大小均不能太 大或太小,应能近似地反映测量的精度。 由于误差不能完全避免,实验点完全落在工作曲线的的情况是极少的,特别是在误差较大时,实验点比较分散,它们一般并不在同一条直线上,这样凭直觉很难判断怎样才能使所连接的直线对于所有实验点来说误差是最小的,当前较好的方法是对实验点(数据)进行回归分析。 研究随机现象中变量之间相关关系的数理统计方法称为回归分析,当自变 量只有一个或X与丫在坐标图上的变化轨迹近似一直线时,称为一元线性回归。 甦2.6.1 —元线性回归方程的求法 确定回归直线的原则是使它与所有测量数据的误差的平方和达到极小值 设回归直线方法为 9 (2 - 15)

式中a表示截距,b表示斜率 9 (2 - 15)

假设Xi和Yi (i=1,2,3, ……,n)是变量X和Y的一组测量数据。对于每一个Xi值,在直线(卩“+^ )上都有一个确定的旳“从X】值。但哲值与X 轴上Xi处的实际测定值Yi是不相等的, 与Yi之差为: 筈厂& +返AY’F-碍(2—佝 上式表示与直线()的偏离程度,即直线的误差程度。如果全部n个测定引起的总偏差用£(节厂印'表示,则偏差平方和s为 (2 - 17) 在所有直线中,偏差平方和s最小的一条直线就是回归直线,即这条直线 的斜率b和截距a应使s值达到最小,这种要使所有数据的偏差平方和达到最小 的求回归直线法称为最小二乘法。 根据数学分析的极值原理,要使s达到最小,对式(2 —17)中的a、b分别 求偏微分后得到 (2 —18) (2 —19) 是所有变量Xi和Yi的平均值。由于计算离均差较麻烦,可将式(2 — 18)变换为 n是测量的次数,也就是坐标图中实验点的数目。 (2 —20)

标准溶液的配制方法及基准物质

标准溶液的配制方法及基准物质 标准溶液是指已知准确浓度的溶液,它是滴定分析中进行定量计算的依据之一。不论采用何种滴定方法,都离不开标准溶液。因此,正确地配制标准溶液,确定其准确浓度,妥善地贮存标准溶液,都关系到滴定分析结果的准确性。配制标准溶液的方法一般有以下两种: 直接配制法 用分析天平准确地称取一定量的物质,溶于适量水后定量转入容量瓶中,稀释至标线,定容并摇匀。根据溶质的质量和容量瓶的体积计算该溶液的准确浓度。 能用于直接配制标准溶液的物质,称为基准物质或基准试剂,它也是用来确定某一溶液准确浓度的标准物质。作为基准物质必须符合下列要求: (1)试剂必须具有足够高的纯度,一般要求其纯度在%以上,所含的杂质应不影响滴定反应的准确度。 (2)物质的实际组成与它的化学式完全相符,若含有结晶水(如硼砂Na 2B 4 O 7 ?10H2O),其结晶水的数目也应与化学式完全相符。 (3)试剂应该稳定。例如,不易吸收空气中的水分和二氧化碳,不易被空气氧化,加热干燥时不易分解等。 (4)试剂最好有较大的摩尔质量,这样可以减少称量误差。常用的基准物质 有纯金属和某些纯化合物,如Cu, Zn, Al, Fe和K 2Cr 2 O 7 ,Na 2 CO 3 , MgO , K BrO 3 等,它们的含量一般在%以上,甚至可达% 。 应注意,有些高纯试剂和光谱纯试剂虽然纯度很高,但只能说明其中杂质含量很低。由于可能含有组成不定的水分和气体杂质,使其组成与化学式不一定准确相符,致使主要成分的含量可能达不到%,这时就不能用作基准物质。一些常用的基准物质及其应用范围列于表中。

表常用基准物质的干燥条件和应用

如何用EXCEL绘制标准曲线

Excel是Microsoft offices系统的重要组成,它是界于WORD字处理软件与ACCESS数据库软件之间的电子表格工具,功能十分强大,特别适合于日常工作使用。使用得好,完全比目前所有的检验科办公系统优秀。 现就先介绍一下如何使用Excel绘制标准曲线。 首先,将数据整理好输入Excel,并选取完成的数据区,并点击图表向导,如下图所示。 点击图表向导后会运行图表向导如下图,先在图表类型中选“XY散点图”,并选了图表类型的“散点图”(第一个没有连线的)。 点击“下一步”,出现如下图界面。如是输入是如本例横向列表的就不用更改,如果是纵向列表就改选“列”。 如果发现图不理想,就要仔细察看是否数据区选择有问题,如果有误,可以点击“系列”来更改,如下图。 如果是X值错了就点击它文本框右边的小图标,结果如下图: 出现上图后,如图在表上选取正确的数据区域。然后点击“下一步”出现图表选项界面,如下图,上应调整选项,以满足自己想要的效果。 点击“下一步”,现在一张带标准值的完整散点图就已经完成,如下图。 完成了散点图,现在需要根据数据进行回归分析,计算回归方程,绘制出标准曲线。其实这很简单,先点击图上的标准值点,然后按右键,点击“添加趋势线”。如下图。 由于本例是线性关系,在类型中选“线性”如下图 点击“确定”,标准曲线就回归并画好了。 标准曲线是画好了,可是我们怎么知道回归后的方程是什么样呢?这了简单,点击趋势线(也就是我们说的标准曲线)然后按右键,选趋势线格式,如下图: 在显示公式和显示R平方值(直线相关系数)前点一下,勾上。再点确定。好了,现在公式和相关系数都出来了。如图:呵R的平方达0.996,线性相当好。 可是有时候有的项目是成指数增加的,散点图如下图, 从上图看并不值关,除了最大的一个点外其余的几乎都成了直线。这不难理解,对于10000000而言,10与10000都差不了多少。因此我们平时常使用半对数坐标纸画图。对于Excel也可以,先点中Y坐标轴,再按右键,选“坐标轴格式”如下图

极化曲线的测定

极化曲线的测定 一、实验目的 掌握恒电位测定极化曲线的方法,测定碳钢(圆型钢筋)在碱性溶液中的恒电位阳极极化曲线及其极化电位。 二、实验原理 实际的电化学过程并不是在热力学可逆条件下进行的。在电流通过电极时,电极电位会偏离其平衡值,这种现象称为极化。在外电流的作用下,阴极电位会偏离其平衡位置向负的方向移动,称为阴极极化;而阳极电位会偏离其平衡位置向正的方向移动,称为阳极极化。在电化学研究中,常常测定极化曲线,即电极电位与电流密度的关系。铁在硫酸溶液中典型的阳极极化曲线如图23.1所示,该曲线分为四个区域: 电 流 密 度 i 阳极电位φ + 图23.1 阳极极化曲线 1.从点a 到点b 的电位范围称金属活化区。此区域内的ab 线段是金属的正常阳极溶解,以铁电极为例,此时铁以二价形式进入溶液,即Fe → Fe 2+ + 2e-。a 点即为金属的自然腐蚀电位。 2.从b 点到c 点称为钝化过渡区。bc 线是由活化态到钝化态的转变过程,b 点所对应的电位称为致钝电位,其对应的电流密度ib 称为致钝电流密度,此时Fe 2+离子与溶液中的-24 SO 离子形成4FeSO 沉淀层, 阻碍了阳极反应进行,导致电流密度开始下降。由于+H 不容易到达4FeSO 沉淀层的内部,因此铁表面的pH 逐步增大。 3.从c 点到d 点的电位范围称为钝化区。由于金属表面状态发生变化,阳极溶解过程的过

电位升高,金属的溶解速率急剧下降。在此区域内的电流密度很小,基本上不随电位的变化而改变。此时的电流密度称为维持钝化电流密度i m 。对铁电极而言,此时32O Fe 在铁表面生成,形成致密的氧化膜,极大地阻碍了铁的溶解,出现钝化现象。 4.de 段的电位范围称为过钝化区。在此区阳极电流密度又重新随电位增大而增大,金属的溶解速度又开始增大,这种在一定电位下使钝化了的金属又重新溶解的现象叫做过钝化。电流密度增大的原因可能是产生了高价离子(如,铁以高价转入溶液),或者达到了氧的析出电位,析出氧气。 测定极化曲线实际上是测定有电流流过电极时电极电位与电流的关系,极化曲线的测定可以用恒电流和恒电位两种方法。恒电流法是控制通过电极的电流(或电流密度),测定各电流密度时的电极电位,从而得到极化曲线。恒电位法是将研究电极的电位恒定地维持在所需的数值,然后测定相应的电流密度,从而得到极化曲线。由于在同一电流密度下可能对应多个不同的电极电位,因此用恒电流法不能完整的描述出电流密度与电位间的全部复杂关系。 本实验采用控制电极电位的恒电位法测定碳钢在碱性溶液中的阳极极化曲线。碳钢常用作建筑钢筋,是大量使用的建筑材料。混凝土凝结过程中会析出氢氧化钙等碱性物质,并在钢筋表面形成保护膜,阻止钢筋的腐蚀。同时,渗入混凝土内部的雨水等外来物质会带入2CO 、 Cl 等,改变钢筋表面的pH 值和腐蚀电位。本实验模拟钢筋在混凝土中所处的碱性环境,通过恒电位法测定其极化曲线,了解影响钢筋腐蚀的各种因素。 三、仪器与试剂 HDY-I 型恒电位仪(南京桑力电子设备厂),三电极池及支架,碳钢电极,铂电极,饱和甘汞电极,34HCO NH 饱和溶液,浓3NH 水,1%(体积比)硫酸溶液,丙酮,金相砂纸。烧杯(100ml )2只,量筒(50或100ml )1只。 恒电位仪前面板如图23.2所示,以功能作用划分为14个区: 图23.2 前面板示意图

各种规范标准溶液标定

实验一 0.2mol/L NaOH 标准溶液标定 一. 实验目的 1. 学习碱标准溶液浓度的标定方法。 2. 进一步练习滴定操作和减量法称量。 3. 初步掌握酸碱指示剂的选择方法。 二. 实验原理 酸碱标准溶液是采用间接法配制的,其准确浓度必须依靠基准物进行标定。标定碱溶液用的基准物很多,下面为最为常用的邻苯二甲酸氢钾方法: 邻苯二甲酸氢钾,是一种二元弱酸的共轭碱,它的酸性较弱,在标定 NaOH 溶液到达等当点时反应产物是邻苯二甲酸钾钠,在水溶液中显微碱性,化学计量点pH=9.1,pH 突跃范围在8.1~10.1, 因此可用酚酞为指示剂,反应如下: 结果计算: M=204.2g/mol 三. 仪器与试剂 仪器:电光分析天平(0.1mg ),滴定管 (碱式,50mL)。 试剂:NaOH 标准溶液 (0.2mol / L),邻苯二甲酸氢钾(基准试剂),酚酞指示剂(0.2%)。 1 .1000)( -?=L mol V M m C NaOH NaOH 邻苯二甲酸氢钾COOH COOK +NaOH COOK COONa +H 2O

四. 实验步骤 1. 按仪器洗涤的标准方法,将所要使用的锥形瓶、碱式滴定管、移液管、量筒洗干净,并检查碱式滴定管是否漏水,移液管是否完整。 2. 用减量法准确称取邻苯二甲酸氢钾1.0g(准确至0.0001g),置于250 mL 洗净的锥形瓶中。 3. 加入50 mL 蒸馏水溶解,必要时可用小火温热溶解。冷却后,加酚酞指示剂1~2 滴。 4. 用NaOH溶液洗涤碱式滴定管三次,每次使用约5-8mL,洗涤时,将NaOH溶液从滴嘴放出,洗涤结束后,加入NaOH溶液到0刻度线上方,观察是否有气泡,若有,按正确排气泡方式,赶出气泡,调节液面到0刻度。 5. 将滴定管放在裴氏夹的右边,一边摇荡,一边滴定用NaOH 溶液滴定,滴定速度不易太快,最快只能成串滴出。直至溶液呈浅红色,且摇动后在半分钟内不褪色,即为终点。 根据邻苯二甲酸氢钾的质量m 和所用NaOH 标准溶液的体积V NaOH,计算NaOH标准溶液的浓度c。 放置空气中时间长了,溶液呈现的淡红色会慢慢褪去,这是由于溶液吸收了CO2,溶液的碱性减弱,使酚酞红色褪去。 五. 实验结果 列表记录实验数据及计算结果 记录与报告示例如下: 实验数据记录表

极化曲线在电化学腐蚀中的应用

极化曲线在电化学腐蚀中的应用 娄浩 (班级:材料化学13-1 学号:120133202059) 关键词:电化学腐蚀;极化;极化曲线;极化腐蚀图 据工业发达国家统计,每年由于腐蚀造成的损失约占国民生产总值的l~4%,世界钢铁年产量约有十分之一因腐蚀而报废,因此研究金属腐蚀对于国民经济发展和能源的合理利用具有重大意义。其中电化学腐蚀是金属腐蚀的一种最普遍的形式。论文分析了电化学腐蚀的机理以及极化曲线的理论基础。利用测量极化曲线的方法,研究金属腐蚀过程,已经得到广泛的应用。 1.金属腐蚀的电化学原理 金属腐蚀学是研究金属材料在其周围环境作用下发生破坏以及如何减缓或防止这种破坏的一门科学[1]。通常把金属腐蚀定义为:金属与周围环境(介质)之间发生化学或电化学而引起的破坏或变质。所以,可将腐蚀分为化学腐蚀和电化学腐蚀[2]。 化学腐蚀是指金属表面与非电解质直接发生纯化学作用而引起的破坏。其反应的特点是金属表面的原子与非电解质中的氧化剂直接发生氧化还原反应,形成腐蚀产物[3]。腐蚀过程中电子的传递是在金属与氧化剂之间直接进行的,因而没有电流产生。 电化学腐蚀是指金属表面与电子导电的介质(电解质)发生电化学反应而引起的破坏。任何以电化学机理进行的腐蚀反应至少包含有一个阳极反应和一个阴极反应,并以流过金属内部的电子流和介质中的离子流形成回路[4]。阳极反应是氧化过程,即金属离子从金属转移到介质中并放出电子;阴极反应为还原过程,即介质中的氧化剂组分吸收来自阳极的电子的过程。例如,碳钢[5]在酸中腐蚀,在阳极区Fe被氧化成Fe2+所放出的电子自阳极Fe流至钢表面的阴极区(如Fe3C)上,与H+作用而还原成氢气,即 阳极反应:Fe-2e→Fe2+ 阴极反应:2H+ + 2e→H2 总反应:Fe + 2H+→Fe2+ + H2 与化学腐蚀不同,电化学腐蚀的特点在于,它的腐蚀历程可分为两个相对独立并可

紫外可见分光光度计的曲线绘制(特选参考)

一、测定溶液中物质的含量 可见或紫外分光光度法都可用于测定溶液中物质的含量。测定标准溶液(浓度已知的溶液)和未知液(浓度待测定的溶液)的吸光度,进行比较,由于所用吸收池的厚度是一样的。也可以先测出不同浓度的标准液的吸光度,绘制标准曲线,在选定的浓度范围内标准曲线应该是一条直线,然后测定出未知液的吸光度,即可从标准曲线上查到其相对应的浓度。 含量测定时所用波长通常要选择被测物质的最大吸收波长,这样做有两个好处: ⑴灵敏度大,物质在含量上的稍许变化将引起较大的吸光度差异; ⑵可以避免其它物质的干扰。 二、用紫外光谱鉴定化合物 使用分光光度计可以绘制吸收光谱曲线。方法是用各种波长不同的单色光分别通过某一浓度的溶液,测定此溶液对每一种单色光的吸光度,然后以波长为横座标,以吸光度为纵座标绘制吸光度──波长曲线,此曲线即吸收光谱曲线。各种物质有它自己一定的吸收光谱曲线,因此用吸收光谱曲线图可以进行物质种类的鉴定。当一种未知物质的吸收光谱曲线和某一已知物质的吸收光谱曲线开关一样时,则很可能它们是同一物质。一定物质在不同浓度时,其吸收光谱曲线中,峰值的大小不同,但形状相似,即吸收高峰和低峰的波长是一定不变的。紫外线吸收是由不饱和的结构造成的,含有双键的化合物表现出吸收峰。紫外吸收光谱比较简单,同一种物质的紫外吸收光谱应完全一致,但具有相同吸收光谱的化合物其结构不一定相同。除了特殊情况外,单独依靠紫外吸收光谱决定一个未知物结构,必须与其它方法配合。紫外吸收光谱分析主要用于已知物质的定量分析和纯度分析。 选几个体积梯度,然后稀释成相同的体积,得到了不同浓度C的几个标准溶液样组,用紫外分光光度计分别测得相应的吸光度A1、A2、A3……,然后要以浓度为横坐标,吸光度A为纵坐标,绘制曲线。当然有时候根据实际需要,也会有小小的变动。 配制标准溶液,用紫外可见分光光度计测量,得到浓度与吸光度的曲线,并且利用线性拟合得到回归方程,直接利用Origin的线性拟合功能得到的方程往往截距不等于零,即方程的形式为y=A+Bx。那是否需要强制令A=0,再来进行拟合呢?如果y=A+Bx这样的形式可以,那么A需要多小才是可以接受的? 答:如果用样品空白溶液做参比,一般可以设置强制过零点;如果用蒸馏水做参比,一般不能强制过零点。 做曲线时一是要带双空白并减去空白A0, 二是应加0回归。减去A0是希望消除试验方法固定偏倚对校准曲线的影响,当用校准曲线来估计未知样的浓度时,要考虑到试样的测量吸光度也会受到固定偏倚的影响,如果校准曲线和试样测定过程中出现的偏倚一样,偏倚是无需校正的,可有时两者的操作往往不是同时同批进行的,如由于时间或批次不同,固定偏倚有所变化,那么两者的吸光度就要做不同的校正。即在每批分析时带空白,并对相应的信号进行校正。试验证明加零回归的校准曲线与不加零回归校准曲线比较,两者的r和b值均无差异,但加零回归校准曲线截距a的绝对值明显变小,因此在作校准曲线的回归计算时必须加零回归,使回归线接近原点。

黄酮规范标准曲线绘制的实验报告

-/ 黄酮标准曲线绘制的实验报告 1.总黄酮的测定 1.1 实验仪器 电子天平AR2140; 紫外可见分光光度计UV2754; 型数控超声波清洗器KQ3200DB; 超级恒温槽; Rotavapor R200 旋转蒸发仪 ; FD21C250 冷冻干燥机2 1.2 试剂及药品 芦丁标准品 硝酸铝国产分析纯(配成5 %) 亚硝酸钠国产分析纯(配成10 %) 氢氧化钠国产分析纯配成(配成1mol/L) 95%乙醇,无水乙醇国产分析纯(配成60%乙醇 50%乙醇) DPPH·(2,2-diphenyl-1-picrylhydrazyl,二苯代苦味肼基自由基) Vc(Ascrobic acid,维生素 C,抗坏血酸) 没食子酸对照品:基准纯。 大青叶子采摘于海南大学东坡湖畔 1.3实验步骤: 1.3.1准备工作及波长的确定 样品60℃烘干粉碎机粉碎,过20目筛,装入试剂瓶中备用。根据查阅文献总黄酮在波长为510nm处吸收值最大。 1.3.2参照品芦丁标准溶液的制备 精密称取120 ℃干燥至恒重的芦丁标准样品37.5mg置于100mL烧杯中,用60%乙醇溶解后定容至25mL 容量瓶中,摇匀,即可得1.5mg/mL的芦丁标准溶液。 1.3.3标准品的测量及绘制标准曲线 精密吸取芦丁标准溶液0.0、1.0、2.0、3.0、4.0、5.0、6.0mL ,分别置于、0.3mg/ml、0.15mg/ml、0.0mg/ml容量瓶中,并定容至刻度线。得到10mL -/ 、0.6mg/ml、0.75mg/ml、0.45mg/ml0.9mg/ml的标准品溶液,分别取1ml到试管中各加5 %亚硝酸钠溶液0.3mL 摇匀,放置6min ,加10%硝酸铝溶液0.3mL 摇匀,放置6min ,加1mol /L氢氧化钠溶液4mL ,再用60%乙醇溶液稀释至刻度,放置15min 后,分别在510nm 处测定其吸光度(Tai,Cai&Dai,2011)。(以试剂空白做参比) 以吸光度A 为纵坐标,浓度c为横坐标,绘制标准曲线。用最小二乘法进行2。R 与A 的线性回归方程以及相关系数线性拟合,得c序号浓度(ug/ml)吸光度

铁的极化曲线物化实验报告

铁的极化曲线 实验结果的记录与处理: 1、Fe在0.1mol/L的硫酸溶液中铁的极化钝化曲线 联立两直线方程得:log Icorr= ?4.25A , Icorr=5.58×10?5A ;Ecorr= ?0.56V。 因为实验所用电极直径为2mm,面积为Πmm2, 故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10?5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10?2A, 钝化电流密度=1.14×10?2/(Π×0.0012)=3.63×103(A/ m2) 钝化电位范围:1.318?1.602V 2、Fe在1.0mol/L的硫酸溶液中铁的极化钝化曲线

联立两直线方程得:log Icorr= ?4.25A , Icorr=5.58×10?5A ;Ecorr= ?0.56V。 因为实验所用电极直径为2mm,面积为Πmm2, 故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10?5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10?2A, 钝化电流密度=1.14×10?2/(Π×0.0012)=3.63×103(A/ m2) 钝化电位范围:1.318?1.602V 3、Fe在1.0mol/L的HCl溶液中铁的极化钝化曲线

联立两直线方程得:log Icorr= ?4.25A , Icorr=5.58×10?5A ;Ecorr= ?0.56V。 因为实验所用电极直径为2mm,面积为Πmm2, 故自腐蚀电流密度=自腐蚀电流/电极面积=5.58×10?5 /(Π×0.0012)=17.8(A/ m2)由图知,钝化电流Ip=1.14×10?2A, 钝化电流密度=1.14×10?2/(Π×0.0012)=3.63×103(A/ m2) 钝化电位范围:1.318?1.602V 4、Fe在含1%的乌洛托品的1.0mol/L的HCl溶液中铁的极化钝化曲线

标准溶液的配制方法及基准物质

你标准溶液的配制方法及基准物质 2.2.1标准溶液的配制方法及基准物质 标准溶液是指已知准确浓度的溶液,它是滴定分析中进行定量计算的依据之一。不论采用何种滴定方法,都离不开标准溶液。因此,正确地配制标准溶液,确定其准确浓度,妥善地贮存标准溶液,都关系到滴定分析结果的准确性。配制标准溶液的方法一般有以下两种: 2.2.1.1直接配制法 用分析天平准确地称取一定量的物质,溶于适量水后定量转入容量瓶中,稀释至标线,定容并摇匀。根据溶质的质量和容量瓶的体积计算该溶液的准确浓度。 能用于直接配制标准溶液的物质,称为基准物质或基准试剂,它也是用来确定某一溶液准确浓度的标准物质。作为基准物质必须符合下列要求: (1)试剂必须具有足够高的纯度,一般要求其纯度在99.9%以上,所含的杂质应不影响滴定反应的准确度。

(2)物质的实际组成与它的化学式完全相符,若含有结晶水(如硼砂Na2B4O7?10H2O),其结晶水的数目也应与化学式完全相符。 (3)试剂应该稳定。例如,不易吸收空气中的水分和二氧化碳,不易被空气氧化,加热干燥时不易分解等。 (4)试剂最好有较大的摩尔质量,这样可以减少称量误差。常用的基准物质有纯金属和某些纯化合物,如Cu, Zn, Al, Fe 和K2Cr2O7,Na2CO3 , MgO , KBrO3等,它们的含量一般在99.9%以上,甚至可达99.99% 。 应注意,有些高纯试剂和光谱纯试剂虽然纯度很高,但只能说明其中杂质含量很低。由于可能含有组成不定的水分和气体杂质,使其组成与化学式不一定准确相符,致使主要成分的含量可能达不到99.9%,这时就不能用作基准物质。一些常用的基准物质及其应用范围列于表2.1中。 表2.1 常用基准物质的干燥条件和应用

相关文档
最新文档