V23990-K249-A-14

V23990-K249-A-14
V23990-K249-A-14

Parameter Condition Symbol Values Unit

max.

Input Rectifier Bridge

Gleichrichter

Repetitive peak reverse voltage V RRM1600V Periodische Rückw. Spitzensperrspannung

Forward current per diode DC current T

h =80°C;I

FAV

58A

Dauergrenzstrom Tc=80°C80

Surge forward current t p=10ms T j=25°C I FSM700A Sto?strom Grenzwert

I2t-value t

p

=10ms T j=25°C I2t2450A2s Grenzlastintegral

Power dissipation per Diode T j=150°C T h=80°C P tot62W Verlustleistung pro Diode T c=80°C93

Transistor Inverter

Transistor Wechselrichter

Collector-emitter break down voltage V CE1200V Kollektor-Emitter-Sperrspannung

DC collector current T j=150°C T h=80°C,I C45A Kollektor-Dauergleichstrom T c=80°C59

Repetitive peak collector current t p=1ms T h=80°C I cpuls90A Periodischer Kollektorspitzenstrom

Power dissipation per IGBT T j=150°C T h=80°C P tot82W Verlustleistung pro IGBT T c=80°C125

Gate-emitter peak voltage V GE±20V Gate-Emitter-Spitzenspannung

SC withstand time Tj 125°C V GE=15V t SC10us Kurzschlu?verhalten V CC=900V

Diode Inverter

Diode Wechselrichter

DC forward current T j=150°C T h=80°C,I F40A Dauergleichstrom T c=80°C54

Repetitive peak forward current t p=1ms T h=80°C I FRM79A Periodischer Spitzenstrom

Power dissipation per Diode T j=150°C T h=80°C P tot57W Verlustleistung pro Diode T c=80°C86

Parameter Condition Symbol Values Unit

max.

Transistor BRC

Transistor BRC

Collector-emitter break down voltage V CE1200V Kollektor-Emitter-Sperrspannung

DC collector current T j=150°C T h=80°C I C56A Kollektor-Dauergleichstrom T j=150°C T c=80°C64

Repetitive peak collector current t p=1ms T h=80°C I cpuls111A Periodischer Kollektorspitzenstrom

Power dissipation per IGBT T j=150°C T h=80°C P tot109W Verlustleistung pro IGBT T c=80°C165

Gate-emitter peak voltage V GE±20V Gate-Emitter-Spitzenspannung

SC withstand time Tj 125°C VGE=15V t SC10us Kurzschlu?verhalten VCE=900 V

Diode BRC

Diode BRC

DC forward current T j=150°C T h=80°C I F44A Dauergleichstrom T j=150°C T c=80°C55

Repetitive peak forward current t p=1ms T h=80°C I FRM87A Periodischer Spitzenstrom

Power dissipation per Diode T j=150°C T h=80°C P tot65W Verlustleistung pro Diode T c=80°C99

Thermal properties

Thermische Eigenschaften

150°C max. Chip temperature T

jmax

max. Chiptemperatur

Storage temperature T

-40…+125°C

stg

Lagertemperatur

-40…+125°C Operation temperature T

op

Betriebstemperatur

Insulation properties

Modulisolation

4000Vdc Insulation voltage t=1min V

is

Isolationsspannung

Creepage distance min 12,7mm Kriechstrecke

Clearance min 12,7mm Luftstrecke

T(C°)Other conditions V GE(V)V R(V)

V CE(V)

I C(A)

IF(A)

(Rgon-Rgoff)V GS(V)V DS(V)I d(A)Min Typ Max

Input Rectifier Bridge

Gleichrichter

Forward voltage V F Tj=25°C350,81,021,35V Durchla?pannung Tj=125°C0,94

Threshold voltage (for power loss calc. only)V to Tj=25°C0,88V Schleusenspannung Tj=125°C350,75

Slope resistance (for power loss calc. only)r t Tj=25°C0,004Ohm Ersatzwiderstand Tj=125°C350,006

Reverse current I r Tj=25°C150000,1mA Sperrstrom Tj=140±10°C150002

Thermal resistance chip to heatsink per chip

W?rmewiderstand Chip-Kühlk?rper pro Chip R

thJH Thermal grease

thickness 50um 1,14K/W

Thermal resistance chip to case per chip

W?rmewiderstand Chip-Gehause pro Chip R

thJC Warmeleitpaste

Dicke 50um

? = 0,61 W/mK0,75K/W

Transistor Inverter

Transistor Wechselrichter

Gate emitter threshold voltage V GE(th)Tj=25°C VCE=VGE0,00255,86,5V Gate-Schwellenspannung Tj=125°C

Collector-emitter saturation voltage V CE(sat)Tj=25°C15501,351,662,15V Kollektor-Emitter S?ttigungsspannung Tj=125°C15501,87

Collector-emitter cut-off current incl. Diode I CES Tj=25°C0122400,005mA Kollektor-Emitter Reststrom Tj=125°C

Gate-emitter leakage current I GES Tj=25°C2500300nA Gate-Emitter Reststrom Tj=125°C

Integrated Gate resistor R gint4Ohm Integrirter Gate Widerstand

Turn-on delay time t d(on)Tj=25°C Rgoff=18 Ohm ns Einschaltverz?gerungszeit Tj=125°C Rgon= 18 Ohm±156005066

Rise time t r Tj=25°C Rgoff=18 Ohm ns Anstiegszeit Tj=125°C Rgon= 18 Ohm±156005023

Turn-off delay time t d(off)Tj=25°C Rgoff=18 Ohm ns Abschaltverz?gerungszeit Tj=125°C Rgon= 18 Ohm±1560050492

Fall time t f Tj=25°C Rgoff=18 Ohm ns Fallzeit Tj=125°C Rgon= 18 Ohm±1560050205

Turn-on energy loss per pulse E on Tj=25°C Rgoff=18 Ohm mWs Einschaltverlustenergie pro Puls Tj=125°C Rgon= 18 Ohm±15600505,48

Turn-off energy loss per pulse E off Tj=25°C Rgoff=18 Ohm mWs Abschaltverlustenergie pro Puls Tj=125°C Rgon= 18 Ohm±15600505,47

Input capacitance C ies Tj=25°C f=1MHz0253,7nF Eingangskapazit?t Tj=125°C

Output capacitance C oss Tj=25°C f=1MHz0250,8nF Ausgangskapazit?t Tj=125°C

Reverse transfer capacitance C rss Tj=25°C f=1MHz0250,7nF Rückwirkungskapazit?t Tj=125°C

Gate charge Q Gate Tj=25°C VCE=600V±15360nC Gate Ladung Tj=125°C ICpulse=50A

Thermal resistance chip to heatsink per chip

W?rmewiderstand Chip-Kühlk?rper pro Chip R

thJH Thermal grease

thickness 50um 0,85K/W

Thermal resistance chip to case per chip

W?rmewiderstand Chip-Gehause pro Chip R

thJC Warmeleitpaste

Dicke 50um

? = 0,61 W/mK0,56K/W

Diode Inverter

Diode Wechselrichter

Diode forward voltage V F Tj=25°C501,31,571,9V Durchla?spannung Tj=125°C501,56

Peak reverse recovery current I RM Tj=25°C Rgon= 18 Ohm60050$ Rückstromspitze Tj=125°C diF/dt = 2554 A/us06005095

Reverse recovery time t rr Tj=25°C Rgon= 18 Ohm60050ns Sperreverz?gerungszeit Tj=125°C diF/dt = 2554 A/us060050455

Reverse recovered charge Q rr Tj=25°C Rgon= 18 Ohm60050uC Sperrverz?gerungsladung Tj=125°C diF/dt = 2554 A/us06005012,5

Reverse recovered energy Erec Tj=25°C Rgon= 18 Ohm60050mWs Sperrverz?gerungsenergie Tj=125°C diF/dt = 2554 A/us0600505,17

Thermal resistance chip to heatsink per chip

W?rmewiderstand Chip-Kühlk?rper pro Chip R

thJH Thermal grease

thickness 50um 1,23K/W

Thermal resistance chip to case per chip

W?rmewiderstand Chip-Gehause pro Chip R

thJC Warmeleitpaste

Dicke 50um

? = 0,61 W/mK0,81K/W

T(C°)Other conditions V GE(V)V R(V)

V CE(V)

I C(A)

IF(A)

(Rgon-Rgoff)V GS(V)V DS(V)I d(A)Min Typ Max

Transistor BRC

Transistor BRC

Gate emitter threshold voltage V GE(th)Tj=25°C VCE=VGE0,00255,86,5V Gate-Schwellenspannung Tj=125°C

Collector-emitter saturation voltage V CE(sat)Tj=25°C15501,351,62,15V Kollektor-Emitter S?ttigungsspannung Tj=125°C15501,79

Collector-emitter cut-off I CES Tj=25°C0122400,05mA Kollektor-Emitter Reststrom Tj=125°C

Gate-emitter leakage current I GES Tj=25°C2500300nA Gate-Emitter Reststrom Tj=125°C

Integrated Gate resistor R gint4Ohm Integrirter Gate Widerstand

Turn-on delay time t d(on)Tj=25°C Rgon= 18 Ohm ns Einschaltverz?gerungszeit Tj=125°C Rgoff= 18 Ohm±156005070,5

Rise time t r Tj=25°C Rgon= 18 Ohm ns Anstiegszeit Tj=125°C Rgoff= 18 Ohm±156005024

Turn-off delay time t d(off)Tj=25°C Rgon= 18 Ohm ns Abschaltverz?gerungszeit Tj=125°C Rgoff= 18 Ohm±1560050486

Fall time t f Tj=25°C Rgon= 18 Ohm ns Fallzeit Tj=125°C Rgoff= 18 Ohm±1560050194

Turn-on energy loss per pulse E

on

Tj=25°C Rgon= 18 Ohm mWs Einschaltverlustenergie pro Puls Tj=125°C Rgoff= 18 Ohm±15600505,61

Turn-off energy loss per pulse E

off

Tj=25°C Rgon= 18 Ohm mWs Abschaltverlustenergie pro Puls Tj=125°C Rgoff= 18 Ohm±15600505,28

Input capacitance C

iss

Tj=25°C f=1MHz0253,7nF Eingangskapazit?t Tj=125°C

Output capacitance C oss Tj=25°C f=1MHz0250,8nF Ausgangskapazit?t Tj=125°C

Reverse transfer capacitance C ies Tj=25°C f=1MHz0250,7nF Rückwirkungskapazit?t Tj=125°C

Gate charge Q gate Tj=25°C VCE=600V±15360nC Gate Ladung Tj=125°C Icpulse=50A

Thermal resistance chip to heatsink per chip

W?rmewiderstand Chip-Kühlk?rper pro Chip R

thJH Thermal grease

thickness 50um 0,64K/W

Thermal resistance chip to case per chip

W?rmewiderstand Chip-Gehause pro Chip R

thJC Warmeleitpaste

Dicke 50um

? = 0,61 W/mK0,43K/W

Diode BRC

Diode BRC

Diode forward voltage V

F

Tj=25°C501,31,521,9V Durchla?spannung Tj=125°C501,55

Reverse current I r Tj=25°C1224050uA Sperrstrom Tj=125°C

Reverse recovery time t

rr

Tj=25°C Rgon= 18 Ohm ns Sperreverz?gerungszeit Tj=125°C diF/dt = 2036 A/us060050467,4

Reverse recovered charge Q

rr

Tj=25°C Rgon= 18 Ohm uC Sperrverz?gerungsladung Tj=125°C diF/dt = 2036 A/us06005011,22

Reverse recovery energy E rec Tj=25°C Rgon= 18 Ohm mWs Sperrverz?gerungsenergie Tj=125°C diF/dt = 2036 A/us0600504,56

Thermal resistance chip to heatsink per chip

W?rmewiderstand Chip-Kühlk?rper pro Chip R

thJH Thermal grease

thickness 50um 1,08K/W

Thermal resistance chip to case per chip

W?rmewiderstand Chip-Gehause pro Chip R

thJC Warmeleitpaste

Dicke 50um

? = 0,61 W/mK0,71K/W

PTC-Thermistor

PTC-Widerstand

Nominal resistance R25Tj=25°C tolerance = 3%0,9711,03kOhm Nominaler Widerstand R100Tj=100°C tolerance = 2%1,6371,671,703kOhm Typical temperature coefficient?Tj=25°C0,76%/K Tipischer Temperaturkoeffizient Tj=125°C

Recommended measuring current Tj=25°C13

Empfohlener Messstrom Tj=125°C

Measured values Tj=25°C I m = 1mA0,931,03 Gemessene Werte I m= 3mA2,843,4mA V

I m V PTC

Figure 1.Typical output characteristics

Figure 2.Typical output characteristics

Output inverter IGBT Output inverter IGBT

parameter: tp = 250 us Tj = 25 °C

parameter: tp = 250 us Tj = 125 °C

V GE parameter:from:7V to 17V

V GE parameter:from:7V to 17V

in 1V steps in 1V steps

Figure 3.Typical transfer characteristics

Figure 4.Typical diode forward current as

Output inverter IGBT

a function of forward voltage

Output inverter FRED

I F =f(V F )parameter: tp = 250 us V CE = 10V parameter: tp = 250 us

Figure 5.Typical switching energy losses

Figure 6.Typical switching energy losses

as a function of collector current as a function of gate resistor Output inverter IGBT

Output inverter IGBT

inductive load, Tj = 125 °C

inductive load, Tj = 125 °C

V CE =600V V CE =600V V GE =±15V V GE =±15V Rgon=18?Ic =50A

Rgoff=18?

Figure 7.Typical switching times as a

Figure 8.Typical switching times as a

function of collector current

function of gate resistor Output inverter IGBT

Output inverter IGBT

t = f (Ic)

t = f (R G )

inductive load, Tj = 125 °C

inductive load, Tj = 125 °C

V CE =600V V CE =600V V GE =±15V V GE =±15V Rgon=18?Ic =50A

Rgoff=18?

Figure 9.Typical reverse recovery time as a

Figure 10.Typical reverse recovery current as a

function of IGBT turn on gate resistor function of IGBT turn on gate resistor Output inverter FRED diode

Output inverter FRED diode

t rr = f (Rgon)

I RRM = f (Rgon)

Tj =125°C Tj =125°C V R =600V V R =600V I F =50A I F =50A V GE =±15V V GE =±15V

Figure 11.Typical reverse recovery charge as a

Figure 12.Typical rate of fall of forward

function of IGBT turn on gate resistor and reverse recovery current as a Output inverter FRED diode

function of IGBT turn on gate resistor Q rr = f (Rgon)

Output inverter FRED diode dI0/dt,dIrec/dt = f (Rgon)

Tj =

125°C Tj =125°C V R =600V V R =600V I F =50A I F =50A V GE =±15V V GE =±15V

Figure 13.IGBT transient thermal impedance

Figure 14.FRED transient thermal impedance

as a function of pulse width

as a function of pulse width

Z th JH = f(tp)

Z th JH = f(tp)

Parameter: D = tp / T RthJH=0,85K/W Parameter: D = tp / T RthJH=1,23K/W

IGBT thermal model values FRED thermal model values R (C/W)

Tau (s)R (C/W)

Tau (s)0,062,6E+010,043,0E+010,111,8E+000,111,9E+000,443,2E-010,443,1E-010,188,5E-020,438,7E-020,069,5E-030,151,3E-020,036,6E-040,071,3E-030,051,2E-040,042,0E-040,00

0,0E+00

0,06

1,4E-04

Figure 15.Power dissipation as a

Figure 16.Collector current as a

function of heatsink temperature function of heatsink temperature Output inverter IGBT Output inverter IGBT

P tot = f (Th)

I c = f (Th)

parameter: Tj = 150°C

V GE =15V

Figure 17.Power dissipation as a

Figure 18.Forward current as a

function of heatsink temperature

function of heatsink temperature Output inverter FRED Output inverter FRED

P tot = f (Th)

I F = f (Th)

parameter: Tj = 150°C parameter: Tj = 150°C

Figure 19.Typical output characteristics

Figure 20.Typical output characteristics

Brake IGBT Brake IGBT

Ic= f(V CE )

Ic= f(V CE )

parameter: tp = 250 us Tj = 25 °C

parameter: tp = 250 us

Tj = 125 °C

V GE parameter:from:

7V to 17V

V GE parameter:from:

7V to 17V

in 1V steps

in 1V steps

Figure 21.Typical transfer characteristics

Figure 22.Typical diode forward current as

Brake IGBT

a function of forward voltage

Ic= f(V GE )

Brake FRED

I F =f(V F )

parameter: tp = 250 us V CE = 10V parameter: tp = 250 us

Figure 23.Typical switching energy losses

Figure 24.Typical switching energy losses

as a function of collector current as a function of gate resistor Brake IGBT

Brake IGBT

E = f (Ic)

E = f (R G )

V CE =600V V CE =600V V GE =±15V V GE =±15V Rgon = 18?Ic =50A

Rgoff = 18?

Figure 25.Typical switching times as a

Figure 26.Typical switching times as a

function of collector current

function of gate resistor Brake IGBT

Brake IGBT

t = f (Ic)

t = f (R G )

inductive load, Tj = 125 °C

inductive load, Tj = 125 °C

V CE =600V V CE =600V V GE =±15V V GE =±15V Rgon =18?Ic =50A

Rgoff =18?

Figure 27.IGBT transient thermal impedance

Figure 28.FRED transient thermal impedance

as a function of pulse width

as a function of pulse width

Z th JH = f(tp)

Z th JH = f(tp)

Parameter: D = tp / T RthJH=0,64K/W Parameter: D = tp / T RthJH=1,08K/W

Figure 29.Power dissipation as a

Figure 30.Collector current as a

function of heatsink temperature function of heatsink temperature Brake IGBT

Brake IGBT

P tot = f (Th)

I c = f (Th)

parameter: Tj = 150°C

parameter: Tj = 150°C

V GE =15V

parameter: Tj = 150°C parameter: Tj = 150°C

Input rectifier bridge

Figure 33.Typical diode forward current as

Figure 34.Diode transient thermal impedance

a function of forward voltage

as a function of pulse width

Rectifier diode

I F =f(V F )

Z th JH = f(tp)

parameter: tp = 250 us Parameter: D = tp / T RthJH=1,14K/W

Figure 35.Power dissipation as a

Figure 36.Forward current as a

function of heatsink temperature function of heatsink temperature Rectifier diode

Rectifier diode

P tot = f (Th)

I F = f (Th)

parameter: Tj = 150°C parameter: Tj = 150°C

Thermistor

Figure 37.Typical PTC characteristic

as afunction of temperature

R T = f (T)

相关主题
相关文档
最新文档