概率论与统计(第三版)复旦大学版第五章课后习题答案

概率论与统计(第三版)复旦大学版第五章课后习题答案
概率论与统计(第三版)复旦大学版第五章课后习题答案

习题五

1.一颗骰子连续掷4次,点数总和记为X .估计P {10

1

i

i X X

==

222222

211

111

17()123

456,66

666

6211111191

()123456,6666

66

6

i i E X E X =?+?+?+?+?+?==?+?+

?+?+?+?=

从而 2

2

2

91735

()()[()].6212

i i

i D X E X E X ??=-=-= ???

又X 1,X 2,X 3,X 4独立同分布.

从而44

11

7

()(

)()414,2i i

i i E X E X E X =====?=∑∑ 44

1

1

3535()(

)()4.123

i i i i D X D X D X =====?

=∑∑ 所以 2

35/3

{1018}{|14|4}10.271,4

P X P X <<=-<≥-

≈ 2. 假设一条生产线生产的产品合格率是0.8.要使一批产品的合格率达到在76%与84%之间

的概率不小于90%,问这批产品至少要生产多少件?

【解】令1,,

0,i i X ???

若第个产品是合格品其他情形.

而至少要生产n 件,则i =1,2,…,n ,且

X 1,X 2,…,X n 独立同分布,p =P {X i =1}=0.8. 现要求n ,使得

1

{0.760.84}0.9.n

i

i X

P n

=≤

≤≥∑

10.80.760.80.840.8{}0.90.80.20.80.20.80.2

n

i i X n n n n n

P n n n =---≤≤≥??????∑

由中心极限定理得

0.840.80.760.80.9,0.160.16n n n n n n --????Φ-Φ≥ ? ????

?

整理得0.95,10n ??Φ≥

? ???

查表 1.64,10n

≥ n ≥268.96, 故取n =269.

3. 某车间有同型号机床200台,每部机床开动的概率为0.7,假定各机床开动与否互不影响,

开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.

【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m

要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7),

()140,()42,E X D X ==

1400.95{0}().42m P X m P X m -??

=≤≤=≤=Φ

???

查表知

140

1.64,42

m -= ,m =151. 所以供电能151×15=2265(单位).

4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量,

且都在区间(0,10)上服从均匀分布.记V =

∑=20

1

k k

V

,求P {V >105}的近似值.

【解】易知:E (V k )=5,D (V k )=

100

12

,k =1,2,…,20 由中心极限定理知,随机变量

20

1

205

205~(0,1).100100

20201212

k

k V

V Z N =-?-?=

=??∑近似的

于是205105205{105}1010020201212V P V P ????-?-???

>=>????

??????

1000.3871(0.387)0.348,102012V P ????-??

=>≈-Φ=?

????????

即有 P {V >105}≈0.348

5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100

根,问其中至少有30根短于3m 的概率是多少?

【解】设100根中有X 根短于3m ,则X ~B (100,0.2)

从而

301000.2{30}1{30}11000.20.8P X P X -???

≥=-<≈-Φ ?????

1(2.5)10.99380.0062.=-Φ=-=

6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.

(1) 若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少? (2) 若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少?

【解】1,,1,2,,100.0,.

i i X i ?==?

? 第人治愈其他

令100

1

.i

i X X ==

(1) X ~B (100,0.8),

100

1751000.8{75}1{75}11000.80.2i i P X P X =-???

>=-≤≈-Φ ?????

∑ 1( 1.25)(1.25)0.8944.=-Φ-=Φ=

(2) X ~B (100,0.7),

100

1751000.7{75}1{75}11000.70.3i i P X P X =-???>=-≤≈-Φ ?????

∑ 5

1(

)1(1.09)0.1379.21

=-Φ=-Φ= 7. 用拉普拉斯中心极限定理近似计算从一批废品率为0.05的产品中,任取1000件,其中有

20件废品的概率.

【解】令1000件中废品数X ,则

p =0.05,n =1000,X ~B (1000,0.05),

E (X )=50,D (X )=47.5.

12050130{20} 6.895 6.89547.547.5P X ??-????

==

=- ? ???

?? 6

130 4.510.6.895 6.895?-??=

=? ???

8. 设有30个电子器件.它们的使用寿命T 1,…,T 30服从参数λ=0.1[单位:1-h ]的指数分布,

其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率. 【解】1

1()10,0.1i E T λ

=

=

= 21

()100,i D T λ

== ()1030300,E T =?= ()3000.

D T = 故

3503005{350}111(0.913)0.1814.300030P T -????

>≈-Φ=-Φ=-Φ= ? ?????

9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率

保证够用(假定一年有306个工作日,每个工作日为8小时). 【解】设至少需n 件才够用.则E (T i )=10,D (T i )=100,

E (T )=10n ,D (T )=100n .

从而1

{3068}0.95,n

i i P T =≥?=∑即3068100.05.10n n ?-??

≈Φ

??

?

102448244.8

0.95,

1.64,27

2.10n n n n n

--??

=Φ=≈ ???

所以需272a 元.

10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1

名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布. (1) 求参加会议的家长数X 超过450的概率?

(2) 求有1名家长来参加会议的学生数不多于340的概率. 【解】(1) 以X i (i =1,2,…,400)记第i 个学生来参加会议的家长数.则X i 的分布律为 X i 0 1 2 P

0.05 0.8

0.15

易知E (X i =1.1),D (X i )=0.19,i =1,2,…,400. 而400

i

i

X X

=

∑,由中心极限定理得

400400 1.1

400 1.1~(0,1).4000.19

419

i

i

X

X N -?-?=??∑近似地

于是450400 1.1{450}1{450}1419P X P X -???

>=-≤≈-Φ ????

1(1.147)0.1357.=-Φ=

(2) 以Y 记有一名家长来参加会议的学生数.则Y ~B (400,0.8) 由拉普拉斯中心极限定理得

3404000.8{340(2.5)0.9938.4000.80.2P Y -???

≤≈Φ=Φ= ?????

11. 设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率?

【解】用X 表10000个婴儿中男孩的个数,则X ~B (10000,0.515) 要求女孩个数不少于

男孩个数的概率,即求

P {X ≤5000}. 由中心极限定理有

5000100000.515{5000}(3)1(3)0.00135.100000.5150.485P X -???

≤≈Φ=Φ-=-Φ= ?????

12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9.以95%概率估计,

在一次行动中:

(1)至少有多少个人能够进入? (2)至多有多少人能够进入?

【解】用X i 表第i 个人能够按时进入掩蔽体(i =1,2,…,1000).

令 S n =X 1+X 2+…+X 1000.

(1) 设至少有m 人能够进入掩蔽体,要求P {m ≤S n ≤1000}≥0.95,事件

90010000.9

{}.10000.90.1

90n

n S m m S --???≤=≤ ????? 由中心极限定理知:

10000.9{}1{}10.95.10000.90.1n n m P m S P S m -???

≤=-<≈-Φ≥ ?????

从而 9000.05,90m -??

Φ≤

??

? 故

900

1.65,90

m -=- 所以 m =900-15.65=884.35≈884人 (2) 设至多有M 人能进入掩蔽体,要求P {0≤S n ≤M }≥0.95.

900{}0.95.90n M P S M -??

≤≈Φ= ??

?

查表知

900

90

M -=1.65,M =900+15.65=915.65≈916人. 13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死

亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费.求: (1) 保险公司没有利润的概率为多大;

(2) 保险公司一年的利润不少于60000元的概率为多大?

【解】设X 为在一年中参加保险者的死亡人数,则X ~B (10000,0.006).

(1) 公司没有利润当且仅当“1000X =10000×12”即“X =120”. 于是所求概率为

1120100000.006{120}100000.0060.994100000.0060.994P X ?-???

=≈

???????

2

1(60/59.64)2

30.181116011e 59.6459.64259.64

0.0517e 0

?π--??

== ???=?≈

(2) 因为“公司利润≥60000”当且仅当“0≤X ≤60” 于是所求概率为

60100000.0060100000.006{060}100000.0060.994100000.0060.994P X -?-?????

≤≤≈Φ-Φ ? ?????????

60(0)0.5.59.64??

=Φ-Φ-

≈ ???

14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5试根据契

比雪夫不等式给出P {|X -Y |≥6}的估计. (2001研考) 【解】令Z =X -Y ,有

()0,()()()()2()() 3.XP E Z D Z D X Y D X D Y D X D Y ρ==-=+-=

所以

2

()31

{|()|6}{||6}.63612

D X Y P Z

E Z P X Y --≥=-≥≤

== 15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查

的100个索赔户中,因被盗向保险公司索赔的户数. (1) 写出X 的概率分布;

(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值.

(1988研考)

【解】(1) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗

户出现的概率是0.2,因此,X ~B (100,0.2),故X 的概率分布是

100100{}C 0.20.8,

1,2,,100.k

k k P X k k -===

(2) 被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心

极限定理,得

301000.2141000.2{1430}1000.20.81000.20.8P X -?-?????

≤≤≈Φ-Φ ? ?????????

(2.5)( 1.5)0.994[9.33]0.927.=Φ-Φ-=--=

16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差

为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.

【解】设X i (i =1,2,…,n )是装运i 箱的重量(单位:千克),n 为所求的箱数,由条件知,

可把X 1,X 2,…,X n 视为独立同分布的随机变量,而n 箱的总重量T n =X 1+X 2+…+X n 是独立同分布随机变量之和,由条件知: ()50,i E X = ()5,

i D X = ()50

,n E T n = ()5.

n D T n = 依中心极限定理,当n 较大时,50~(0,1)5n T n N n

-近似地

,故箱数n 取决于条件

50500050{5000}55n n T n n P T P n

n --??

≤=≤????

1000100.977(2).n n -??

≈Φ>=Φ

???

因此可从

1000102n

n

->解出n <98.0199, 即最多可装98箱.

概率论第五章习题解答(科学出版社)

概率论第五章习题解答(科学出版社) 1、据以往的经验,某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和1920h 的概率。 解 设这16只元件的寿命为i X ,1,2, ,16i =,则16 1 i i X X ==∑, 因为()100i E X μθ===,22()10000i D X σθ=== 于是随机变量 16 16 1600 1600 400 i i X n X X Z μ -?--= = = ∑∑近似的服从(0,1)N 160019201600{1920}{ }400400X P X P -->=>1600 {0.8}400X P -=> 1600 1{0.8}400 X P -=-<1(0.8)=-Φ=10.78810.2119=-=. 2\(1)一保险公司有10000个汽车保险投保人,每个投保人索赔金额的数学期望为280美元,标准差为800美元,求索赔总金额不超过2700000美元的概率; (2)一公司有50张签约保险单,每张保险单的索赔金额为i X ,1,2, ,50i =(以千美元 计)服从韦布尔分布,均值()5i E X =,方差()6i D X =求50张保险单索赔的合计总金额大于300的概率。 解 (1)设每个投保人索赔金额为i X ,1,2,,10000i =,则索赔总金额为10000 1 i i X X == ∑ 又 ()280i E X =,2()800i D X =,所以, 索赔总金额不超过2700000美元的概率 {2700000}1`{270000}P X P X >=-≤ 10000 1 28010000 27000002800000 1{ }800100 80000 i i X P =-?-=-≤ ?∑ 10000 1 2800000 101{ }80000 8 i i X P =-=-≤- ∑ 10000 1 2800000 1{ 1.25}80000 i i X P =-=-≤-∑近似的服从(0,1)N

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论和数理统计 复旦大学 课后题答案4

4习题四 1.设随机变量X 的分布律为 求E (X ),E (X ),E (2X +3). 【解】(1) 11111 ()(1)012;82842 E X =-? +?+?+?= (2) 22 22211115()(1)012;82844 E X =-?+?+?+?= (3) 1 (23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 故 ()0.58300.34010.07020.0073E X =? +?+?+?+?+? 0.501,= 5 2 ()[( )]i i i D X x E X P == -∑ 222(00.501)0.583(10.501)0.340(50.501)00.432. =-?+-?++-?= 3.设随机变量且已知E (X )=0.1,E (X )=0.9,求P 1,P 2,P 3. 【解】因1231P P P ++=……①, 又12331()(1)010.1E X P P P P P =-++=-= ……②, 2222 12313()(1)010.9E X P P P P P =-++=+= ……③ 由①②③联立解得1230.4,0.1,0.5.P P P === 4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少? 【解】记A ={从袋中任取1球为白球},则

(){|}{}N k P A P A X k P X k ===∑ 全概率公式 1{}{} 1().N N k k k P X k kP X k N N n E X N N ===== ===∑∑ 5.设随机变量X 的概率密度为 f (x )=?? ? ??≤≤-<≤.,0,21,2, 10,其他x x x x 求E (X ),D (X ). 【解】1 2 2 1 ()()d d (2)d E X xf x x x x x x x +∞ -∞ = =+-? ?? 2 1 3 32011 1.33x x x ?? ??=+-=??????? ? 1 2 2 2 3 20 1 7 ()()d d (2)d 6 E X x f x x x x x x x +∞ -∞ ==+-= ? ?? 故 2 2 1()()[()].6 D X E X E X =-= 6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U =2X +3Y +1; (2) V =YZ -4X . 【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=?+?+= (2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X - 因独立 1184568.=?-?= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ), D (2X -3Y ). 【解】(1) (32)3()2()3323 3. E X Y E X E Y -=-=?-?= (2) 2 2 (23)2()(3)412916192.D X Y D X DY -=+-=?+?= 8.设随机变量(X ,Y )的概率密度为

概率论与数理统计课后习题答案

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数 (设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产 品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上 “正品”,不合格的记上“次品”,如连续查出2个次品 就停止检查,或检查4个产品就停止检查,记录检查的 结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100, 1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

(2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC , (5)C B A , (6)C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, (8)BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作 图说明。 (1)B B A B A =(2)AB B A = (3)AB B A B =?则若,(4)若 A B B A ??则, (5)C B A C B A = (6)若Φ=AB 且A C ?,

概率论第五章答案

习题5-1 1. 设随机变量X 的方差为2, 用切比雪夫不等式估计{||2}P X E X -()≥. 解 由切比雪夫不等式, 对于任意的正数ε, 有 2 () {()}D X P X E X εε -≥≤ , 所以 1{||2} 2 P X E X -()≥≤. 2. 设随机变量X , Y 的数学期望分别是2和-4, 方差分别是1和4, 而相关系数为0.5. 则根据切比雪夫不等式估计 {|2|P X Y +≥12}. 解 {2}2()() 22(4) E X Y E X E Y +=+=?+-=, {2}4()()22Cov(,)D X Y D X D Y X Y +=+-? 840.5124=-???=. 所以, {|2|P X Y +≥12}≤ 2 4112 36 = . 3. 设随机变量X 的数学期望E (X ) = μ, 方差D (X ) = σ2 , 由切比雪夫不等式估计P {|X -μ|≥3σ}. 解 令ε = 3σ, 则由切比雪夫不等式P {|X -μ|}≥ε}≤ 2 () D X ε , 有 P {|X -μ|≥3σ}≤ 22 1(3) 9 σ σ= . 4. 独立重复地做一项试验, 假设每次试验成功的概率为0.7 5. 用切比雪夫不等式求: 至少需要做多少次 试验, 才能以不低于0.90的概率使试验成功的频率保持在0.74和0.76之间? 解 假设做n 次试验, 才能以0.90的概率使试验成功的频率保持在0.74和0.76之间. 用X 表示试验成功的次数, 从而~(,0.75)X B n , 由题设, 要使 {0.740.76}{ 0.750.01}0.90X X P P n n < <=-<≥. 又由切比雪夫不等式得 2 2 ( )0.750.25{0.740.76}{ 0.750.01}110.01 0.01 X D X X n P P n n n ?< <=-<- =- ?≥. 要满足题意, 只需2 0.750.2510.900.01 n ?- ?≥即可. 解之得 2 0.750.25 187500.010.10 n ? =?≥ . 习题 5-2 1. 一本书有十万个印刷符号, 排版时每个符号被排错的概率为0.0001, 用中心极限定理求排版后错误不多于15个的概率. 解 设

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论与数理统计复旦大学出版社第二章课后答案(供参考)

概率论与数理统计习题二答案 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只 球中的最大号码,写出随机变量X 的分布律. 【解】X 的可能取值为3,4,5,其取不同值的概率为 以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)1 33{},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】X 的可能取值为0,1,2,其取不同值的概率为 (2) 当0x <时,{}()0F x P X x =≤= 当01x ≤<时,{}{}22()035 F x P X x P X =≤=== 当12x ≤<时,{}{}{}34()0135 F x P X x P X P X =≤==+== 当2x ≥时,{}{}{}{}()0121F x P X x P X P X P X =≤==+=+== 故X 的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示3次射击中击中目标的次数.则X 的可能取值为0,1,2,3,显然~(3,0.8)X b 其取不同值的概率为 分布函数 3次射击中至少击中2次的概率为 4.(1) 设随机变量X 的分布律为 {}! k P x k a k λ==, 其中k =0,1,2,…,λ>0为常数,试确定常数a .

(2) 设随机变量X 的分布律为 {}a P x k N == , k =1,2,…,N , 试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率;(2) 甲比乙投中次数多的概率. 【解】设X 、Y 分别表示甲、乙投中次数,则~(3,0.6)X b ,~(3,0.7)Y b (1) {}{}{}{}{}0,01,12,23,3P X Y P X Y P X Y P X Y P X Y ====+==+==+== 33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++222233 33C (0.6)0.4C (0.7)0.3(0.6)(0.7)+ (2) {}{}{}{}1,02,03,0P X Y P X Y P X Y P X Y >===+==+== 312322 33(0.6)C 0.7(0.3)(0.6)C (0.7)0.3++=0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则~(200,0.02)X b ,设机场需配备N 条跑 道,根据题意有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松定理近似计算 查表得N ≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0001) 8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 13 p = 所以 4 451210 (4)C () 33243 P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率;

天津理工大学概率论与数理统计第五章习题答案详解

第 5 章 大数定律与中心极限定理 一、 填空题: 1.设随机变量μξ=)(E ,方差2 σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 9 1 . 2.设n ξξξ,,, 21是 n 个相互独立同分布的随机变量, ),,,(,)(,)(n i D E i i 218===ξμξ对于∑== n i i n 1ξξ,写出所满足的切彼雪夫不等式 2 28εεξεμξn D P =≤ ≥-)(}|{| ,并估计≥ <-}|{|4μξP n 21 1- . 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =, 1(1,2,,9)i DX i == , 令9 1 i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式 直接可得{} ≥<-ε9X P 2 9 1ε- . 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有 22{||}P X σμεε-≥≤, 或者2 2{||}1.P X σμεε -<≥- 由于随机变量129,,,X X X 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i === 所以 99 9111()()19,i i i i i E X E X E X μ===??===== ???∑∑∑ 99 9 2 111()()19.i i i i i D X D X D X σ===??===== ???∑∑∑ 4. 设随机变量X 满足:2 (),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 1 16 ≤ . 解:切比雪夫不等式为:设随机变量X 满足2 (),()E X D X μσ==, 则对任意 的0ε>, 有22{||}.P X σμεε-≥≤由此得 221 {||4}.(4)16 P X σμσσ-≥≤=

概率论与数理统计复旦大学出版社第四章课后答案

概率论 习题四 答案 1.设随机变量X 的分布律为 X -1 0 1 2 P 1/8 1/2 1/8 1/4 求E (X ),E (X ),E (2X +3). 【解】(1) 11111 ()(1)012;8 2842 E X =-?+? +?+?= (2) 22 22211115()(1)012;82844 E X =-?+?+?+?= (3) 1 (23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. X 0 1 2 3 4 5 P 5905100 C 0.583C = 14 1090 5 100 C C 0.340C = 231090 5 100 C C 0.070C = 321090 5 100 C C 0.007C = 4110905100 C C 0C = 510 5 100 C 0C = 故 ()0.58300.34010.07020.00730405E X =?+?+?+?+?+? 0.501,= 5 2 ()[()]i i i D X x E X P == -∑ 222(00.501)0.583(10.501)0.340(50.501)00.432. =-?+-?++-?=L 3.设随机变量X -1 0 1 P p 1 p 2 p 3 且已知E (X )=0.1,E (X 2)=0.9,求123,,p p p . 【解】因1231p p p ++=……①, 又12331()(1)010.1E X p p p p p =-++=-=g g ……②, 222212313()(1)010.9E X p p p p p =-++=+=g g g ……③ 由①②③联立解得1230.4,0.1,0.5.p p p ===

概率论与数理统计及其应用课后答案

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录 投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰 子,观察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =; (4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___ ___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P ,

875.0)(1)(___--=AB P AB P , 5 .0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。 解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为 72.0900 648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为48344=??个,所以出现奇数的概率为 48.0100 48= (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为

概率论与数理统计复旦大学出版社第一章课后答案

第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1) A 发生,B ,C 都不发生; (2) A ,B ,C 都发生; (3) A ,B ,C (4) A ,B ,C 都不发生; (5) A ,B ,C (6) A ,B ,C 至多有1个不发生; 【解】(1) ABC (2) ABC (3)A B C (4) ABC =A B C (5) ABC (6) ABC ∪ABC ∪ABC ∪ABC =AB BC AC 3. . 4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6 5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB (2) 在什么条件下P (AB 【解】(1) 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6. (2) 当A ∪B =Ω时,()()()()0.3P AB P A P B P A B =+-=,()P AB 取到最小值为0.3. 6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率. 【解】 因为P (AB )=P (BC )=0,所以P (ABC )=0, 由加法公式可得 ()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ = 14+14+13-112=34

概率论课后作业及答案

1. 写出下列随机试验的样本空间及事件中的样本点: 1) 将一枚均匀硬币连续掷两次,记事件 =A {第一次出现正面}, =B {两次出现同一面}, =C {至少有一次正面出现}. 2) 一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5,从中同时取3只球. 记事件 =A {球的最小号码为1}. 3) 10件产品中有一件废品,从中任取两件,记事件=A {得一件废品}. 4) 两个口袋各装一个白球与一个黑球,从第一袋中任取一球记下其颜色后放入第二袋,搅均后再 从第二袋中任取一球.记事件=A {两次取出的球有相同颜色}. 5) 掷两颗骰子,记事件 =A {出现点数之和为奇数,且其中恰好有一个1点}, =B {出现点数之和为偶数,但没有一颗骰子出现1点}. 答案:1) }),(),,(),,(),,({T T H T T H H H =Ω, 其中 :H 正面出现; :T 反面出现. }),(),,({T H H H A =; }),(),,({T T H H B =; }),(),,(),,({H T T H H H C =. 2) 由题意,可只考虑组合,则 ? ?? ?? ?=)5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1(Ω; {})5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1(=A . 3) 用9,,2,1 号表示正品,10号表示废品.则 ??? ? ????? ?????????=)10,9()10,8()10,2(,),4,2(),3,2()10,1(,),4,1(),3,1(),2,1( Ω; {})10,9(,),10,2(),10,1( =A . 4) 记第一袋中的球为),(11b w ,第二袋中的球为),(22b w ,则 {}),(),,(),,(),,(),,(),,(112121112121b b b b w b w w b w w w =Ω; {}),(),,(),,(),,(11211121b b b b w w w w A =.

李贤平 第2版《概率论基础》第五章答案

1 第5章 极限定理 1、ξ为非负随机变量,若(0)a Ee a ξ <∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。 2、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >, 1{()}()P h c c Eh ξξ-≥≤。 4、{}k ξ各以 12 概率取值s k 和s k -,当s 为何值时,大数定律可用于随机变量序列1,,,n ξξL L 的算术平均值? 6、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件: (1)1{2}2 k k P X =±= ; (2)(21) 2{2}2 ,{0}12k k k k k P X P X -+-=±===-; (3)1 1 2 21{2},{0}12 k k k P X k P X k --=±===-。 7、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的, 证明这时对{}k ξ大数定律成立。 8、已知随机变量序列12,,ξξL 的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明 对{}k ξ成立大数定律。 9、对随机变量序列{}i ξ,若记11()n n n ηξξ= ++L ,11 ()n n a E E n ξξ=++L ,则{}i ξ服从大数定律的充要条件是22()lim 01()n n n n n a E a ηη→∞?? -=??+-?? 。 10、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而 0m n →时, 2 221~2n m n n n m -???? ???-?? ??。 12、某计算机系统有120个终端,每个终端有5%时间在使用,若各个终端使用与否是相互独立的,试 求有10个或更多终端在使用的概率。

概率论与数理统计课后习题及答案

习题八 1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N,.现在测了5炉铁水,其含碳量(%)分别为 问若标准差不改变,总体平均值有无显着性变化(α=) 【解】 0010 /20.025 0.025 : 4.55;: 4.55. 5,0.05, 1.96,0.108 4.364, (4.364 4.55) 3.851, 0.108 . H H n Z Z x x Z Z Z α μμμμ ασ ==≠= ===== = - ===- > 所以拒绝H0,认为总体平均值有显着性变化. 2. 某种矿砂的5个样品中的含镍量(%)经测定为: 设含镍量服从正态分布,问在α=下能否接收假设:这批矿砂的含镍量为. 【解】设 0010 /20.005 0.005 : 3.25;: 3.25. 5,0.01,(1)(4) 4.6041 3.252,0.013, (3.252 3.25) 0.344, 0.013 (4). H H n t n t x s x t t t α μμμμ α ==≠= ==-== == - === < 所以接受H0,认为这批矿砂的含镍量为. 3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为(克),样本方差s2=(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=). 【解】设 0010 /20.025 2 0.025 : 1.1;: 1.1. 36,0.05,(1)(35) 2.0301,36, 1.008,0.1, 6 1.7456, 1.7456(35) 2.0301. H H n t n t n x s x t t t α μμμμ α ==≠= ==-=== == === =<= 所以接受H0,认为这堆香烟(支)的重要(克)正常. 4.某公司宣称由他们生产的某种型号的电池其平均寿命为小时,标准差为小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短设电池寿命近似地

概率论与数理统计习题答案(廖茂新复旦版)

习 题 一 1.设A ,B ,C 为三个事件,用A ,B ,C 的运算式表示下列事件: (1) A 发生而B 与C 都不发生; (2) A ,B ,C 至少有一个事件发生; (3) A ,B ,C 至少有两个事件发生; (4) A ,B ,C 恰好有两个事件发生; (5) A ,B 至少有一个发生而C 不发生; (6) A ,B ,C 都不发生. 解:(1)A C B 或A -B -C 或A -(B ∪C ). (2)A ∪B ∪C . (3)(AB )∪(AC )∪(BC ). (4)(AB C )∪(AC B )∪(BC A ). (5)(A ∪B )C . (6)C B A 或C B A . 2.对于任意事件A ,B ,C ,证明下列关系式: (1)(A +B ) (A +B )(A + B )(A +B )= ?; (2)AB +A B +A B +A B AB -= AB ; (3)A -(B +C )= (A-B )-C . 证明:略. 3.设A ,B 为两事件,P (A )=0.5,P (B )=0.3,P (AB )=0.1,求: (1) A 发生但B 不发生的概率; (2) A ,B 都不发生的概率; (3) 至少有一个事件不发生的概率. 解(1) P (A B )=P (A -B )=P (A -AB )=P (A )-P (AB )=0.4; (2) P (B A )=P (B A )=1-P (A ∪B )=1-0.7=0.3; (3) P (A ∪B )=P (AB )=1-P (AB )=1-0.1=0.9. 4.调查某单位得知。购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD 占10%,购买电脑和DVD 占5%,三种电器都购买占2%。求下列事件的概率。 (1)至少购买一种电器的; (2)至多购买一种电器的; (3)三种电器都没购买的.

概率论与数理统计第五章习题解答.dot资料

第五章 假设检验与一元线性回归分析 习题详解 5.01 解:这是检验正态总体数学期望μ是否为32.0 提出假设:0.32:, 0.32:10≠=μμH H 由题设,样本容量6n =, 21.12=σ,1.121.10==σ,所以用U 检验 当零假设H 0成立时,变量:)1,0(~61 .10 .320 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}|{|=≥λU P ,查表得96.1=λ 得到拒绝域: 96.1||≥u 计算得: 6.31)6.318.310.326.310.306.32(6 1=+++++?=x 89.061 .10 .326.310 0-=-= -= n x u σμ 因 0.89 1.96u =< 它没有落入拒绝域,于是不能拒绝H 0,而接受H 0,即可以认为 0.32=μ,所以可以认为这批机制砖的平均抗断强度μ显著为 32.0kg/cm 2。 5.02 解:这是检验正态总体数学期望μ是否大于10 提出假设:10:, 10:10>≤μμH H 即:10:, 10:10>=μμH H 由题设,样本容量5n =,221.0=σ,1.01.020==σ,

km x 万1.10=,所以用U 检验 当零假设H 0成立时,变量:)1,0(~51 .010 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}{='≥λU P ,查表得64.1'=λ 得到拒绝域: 64.1≥u 计算得: 24.251 .010 1.100 =-= -= n x u σμ 因 2.24 1.64u => 它落入拒绝域,于是拒绝零假设 H 0,而接受备择假设H 1,即可认为10>μ 所以可以认为这批新摩托车的平均寿命μ有显者提高。 5.03 解:这是检验正态总体数学期望μ是否小于240 提出假设:240:,240:10<≥μμH H 即:240:, 240:10<=μμH H 由题设,样本容量6n =,6252=σ,256250==σ,220=x ,所以用U 检验 当零假设H 0成立时,变量:)1,0(~625 240 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}{='-≤λU P ,查表得64.1'=λ 得到拒绝域: 64.1-≤u 计算得:959.1625 240 2200 -=-= -= n x u σμ 因 1.959 1.64u =-<-

概率统计习题带答案

概率统计习题带答案 概率论与数理统计习题及题解沈志军盛子宁第一章概率论的基本概念1.设事件A,B及A?B的概率分别为p,q及r,试求P(AB),P(AB),P(AB)及P(AB) 2.若A,B,C相互独立,试证明:A,B,C 亦必相互独立。3.试验E为掷2颗骰子观察出现的点数。每种结果以(x1,x2)记之,其中x1,x2分别表示第一颗、第二颗骰子的点数。设事件A?{(x1,x2)|x1?x2?10},事件B?{(x1,x2)|x1?x2}。试求P(B|A)和P(A|B) 4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。问:恰好第三次打开房门锁的概率?三次内打开的概率?如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n个白

球、m个红球,乙袋中装有N个白球、M个红球。今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为,,在甲系统失灵的条件下乙系统也失灵的概率为。试求下列事件的概率:仓库发生意外时能及时发出警报;乙系统失灵的条件下甲系统亦失灵?9.设A,B为两随机变量,试求解下列问题:已知P(A)?P(B)?1/3,P(A|B)?1/6。求:P(A|B);

概率论和数理统计_复旦大学_课后题答案6.

6习题六 1.设总体X ~N (60,152),从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之 差的绝对值大于3的概率. 【解】μ=60,σ2=152,n =100 ~(0,1) X Z N = 即 60 ~(0,1)15/10 X Z N -= (|60|3)(||30/15)1(||2)P X P Z P Z ->=>=-< 2[1(2)]2(10.9772)0.0456.=-Φ=-= 2.从正态总体N (4.2,52)中抽取容量为n 的样本,若要求其样本均值位于区间(2.2,6.2)内的概率不小于0.95,则样本容量n 至少取多大? 【解】 ~(0,1) X Z N = (2.2 6.2)P X P Z <<=<< 210.95,=Φ-= 则Φ,故>1.96, 即n >24.01,所以n 至少应取25  3.设某厂生产的灯泡的使用寿命X ~N (1000,σ2) (单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果, 只记得样本方差为S 2=1002,试求P (X >1062). 【解】μ=1000,n =9,S 2=1002 1000 ~(8) 100/3X X t t -= = 10621000 (1062)()( 1.86)0.05100/3 P X P t P t ->=> =>= 4.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差. 【解】~(0,1) X Z N =,由P (|X -μ|>4)=0.02得

P |Z |>4(σ/n )=0.02, 故210.02σ?? ??-Φ=?? ? ??????? , 即0.99.σ??Φ= ? ??? 查表得 2.33,σ = 所以 5.43.2.33 σ= = 5.设总体X ~N (μ,16),X 1,X 2,…,X 10是来自总体X 的一个容量为10的简单随机样本, S 2为其样本方差,且P (S 2>a )=0.1,求a 之值. 【解】22 22299~(9),()0.11616S a P S a P χχχ? ?=>=> ?? ?.= 查表得 914.684,16 a = 所以 14.68416 26.105.9 a ?== 6.设总体X 服从标准正态分布,X 1,X 2,…,X n 是来自总体X 的一个简单随机样本,试问统计量 Y = ∑∑==-n i i i i X X n 6 25 1 2)15(,n >5 服从何种分布? 【解】 25 2 2 2 2 221 1 ~(5),~(5i n i i i i X X X χχχ=== =∑∑)n -且12 χ与22 χ相互独立. 所以 2122/5~(5,5)/5 X Y F X n n =-- 7.求总体X ~N (20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于 0.3的概率. 【解】令X 的容量为10的样本均值,Y 为容量为15的样本均值,则X ~N (20,310), Y ~N (20, 3 15 ),且X 与Y 相互独立. 则33~0, (0,0.5),1015X Y N N ?? -+= ???

相关文档
最新文档