UA741高增益运算放大器

UA741高增益运算放大器
UA741高增益运算放大器

音频功率放大器的设计与制作

电子技术课程设计报告 设计课题:音频功率放大器的设计与制作 拔河游戏机的设计与制作

模电部分 音频功率放大器的设计与制作 一、设计任务与要求 1)话筒放大器和前置放大器由于话筒的输出信号一般只有5mV左右,而输出阻抗达到20kΩ(也有低输出阻抗的话筒如20Ω,200Ω等),所以话筒放大器的作用是不失真的放大声音信号(最高频率达到20kHz)。其输入阻抗应远大于输出阻抗。前置放大器要求失真小、通频带宽。 2)电子混响器电子混响器的作用是用电路模拟声音的多次反射,产生混响效果,使声音听起来具有一定的深度感和空间立体感。该部分电路有专用电路可以选用,不作设计要求。 3)音调控制器音调控制器的作用是控制、调节音响放大器输出频率的高低,音调控制器只对低音频或高音频的增益进行提升或衰减,中音频增益保持不变。这部分参考电路较多,要求通过仿真进行选取,并进行必要的计算。 4)功率放大器功率放大器的作用是给音响放大器的负载RL(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能的大,输出信号的非线性失真尽可能小,效率尽可能高。功率放大器的常见电路形式有单电源供电的OTL电路和正负双电源供电的OCL 电路。有专用集成电路功率放大器芯片。可采用由集成运算放大器和晶体管组成的功率放大器,要求进行必要的计算和计算机仿真。 设计参数 ①放大器的失真度<1%。 ②放大器的功率>1W。 ③放大器的频响为50Hz—20kHz。 ④音调控制特性为自选。 (3)设计要求 1)调研,查找并收集资料。 2)总体设计,画出框图。

3)单元电路设计。 4)电气原理设计---绘制原理图。 5)参数计算——列元器件明细表。 6)用EWB对设计电路进行仿真实验,并给出仿真结果及关键点的波形。 7)撰写设计说明书。 8)参考资料目录。 二、方案设计与论证 2.1 音响模块流图 图2-1电路整体框图 话音放大器:话音放大器的作用是不失真地放大音频信号。 电子混响器:电子混响器是用电路模拟声音的多次反射,产生混响效果,使声音听起来具有一定的深度感和空间立体感。 混合前置放大器:混合前置放大器的作用是将音乐信号和电子混响后的声音信号混合放大。 音调控制器:音调控制器主要是控制、调节音响放大器的幅频特性。 功率放大器:功率放大器的作用是给音响放大器的负载RL提供一定的输出功率 电路方案的比较与论证 2.2话音放大电路的比较与论证 方案一:采用uA741运算放大器设计电路,uA741通用高增益运算通用放大器,早些年最常用的运放之一。应用非常广泛,双列直插8脚或圆筒8脚封装。工

自动增益放大器剖析

自动增益控制放大器 一、设计思路描述 本自动增益控制放大器系统以MSP430G2553为控制核心。利用单片机内部ADC10对末级输出信号采样,可由按键控制三种模式以及增益倍数的切换,也可根据采样得到的末级输出信号幅度大小,自动控制DAC7811作为TLC085反馈电阻网络,从而实现对末级自动增益控制。在软件设计中,我们实现三种不同的模式切换: 1.交流手动模式中。根据选择增益倍数不同,我们可以算出不同的code值,将code值传给DAC7811。例如:当我选择0.2倍增益时,那么需要控制前级衰减,同时code值为2048,因此增益倍数Av=0.1*4096/2048=0.2。 2.直流自动换挡模式。根据单片机内部ADC10对输出信号采样幅度大小,自动控制前级是否衰减、控制CD4051选择OPA 2227反馈电阻,从而实现0.2、0.5、 2、5的最大增益倍数。 3.自动增益模式。根据利用单片机内部ADC10对输出信号采样幅度大小自动控制前级是否衰减,控制CD4051选择OPA 2227反馈电阻。 二、硬件电路设计 2.1前级信号衰减电路 VDD

图2.1 前级衰减电路 如图2.1所示,前级衰减电路由CD4051、OPA2227、20K?以及2K?电阻组成,其中CD4051为单刀八掷开关。在该电路中,单片机MSP430G2553通过P1.3口进行对CD4051中两种电阻进行选择,改变OPA2227反馈电阻,从而实现0.1倍与1倍的控制。 在整个电路中,前级衰减电路十分重要,它不仅仅是对输入信号进行衰减,还可以对单片机MSP430G2553进行保护。 2.2末级DAC7811增益自动控制电路 图2.2 DAC7811增益自动控制电路 图2.2为末级DAC7811增益自动控制电路。利用单片机内部ADC10对输出信号经过OPA2340绝对值整形后的波形进行采样,根据幅值控制CD4051选择

低噪放大器的原理应用及其常用规格

低噪放大器定义: 噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。由放大器所引起的信噪比恶化程度通常用噪声系数F来表示。理想放大器的噪声系数 F=1(0分贝),其物理意义是输入信噪比等于输出信噪比。现代的低噪声放大器大多采用晶体管、场效应晶体管;微波低噪声放大器则采用变容二极管参量放大器,常温参放的噪声温度Te可低于几十度(绝对温度),致冷参量放大器可达20K以下,砷化镓场效应晶体管低噪声微波放大器的应用已日益广泛,其噪声系数可低于 2 分贝。放大器的噪声系数还与晶体管的工作状态以及信源内阻有关。为了兼顾低噪声和高增益的要求,常采用共发射极一共基极基联的低噪声放大电路。 低噪放大器的原理: 地球站的品质因数(G/T)主要取决于天线和低噪声放大器(LNA)的性能。接收系统的噪声温度Ts是指折算到LNA输入端的系统等效噪声温度,它主要由天线噪声温度TA、馈线损耗LALA 和低噪声接收机噪声三个部分组成。 低噪放大器的应用: 低噪放大器(LNA)主要面向移动通信基础设施基站应用,例如收发器无线通信卡、塔顶放大器(TMA)、组合器、中继器以及远端/数字无线宽带头端设备等应用设计,并为低噪声指数(NF, Noise Figure)立下了新标竿。目前无线通信基础设施产业正面临必须在拥挤的频谱内提供信号质量和覆盖度的挑战,接收器灵敏度是基站接收路径设计中最关键的要求之一,合适的LNA选择,特别是第一级LNA可以大幅度改善基站接收器的灵敏度表现,低噪声指数也是关键的设计目标,Avago提供了1900MHz下0.48dB同级产品的噪声指数。另一个关键设计为线性度,它影响了接收器分辨紧密接近信号和假信号分别的能力,三阶截点OIP3可以用来定义线性度,在1900MHz和5V/51mA的典型工作条件下,Avago特有的GaAs增强模式pHEMT工艺技术可以带来0.48dB的噪声指数和35dBm的OIP3,在2500MHz和5V/56mA的典型工作条件下,噪声指数为0.59dB,OIP3则为35dBm。通过低噪声指数和高OIP3,这些Avago的新低噪声放大器可以提供基站接收器路径比现有放大器产品更大的设计空间。 LNA经历了早期液氦致冷的参量放大器、常温参量放大器的发展过程,随着现代科学技术的高速发展,近几年已被微波场效应晶体管放大器所取代,此种放大器具有尺寸小、重量轻和成本低的优异特性。特别是在射频特性方面具有低噪声、宽频带和高增益的特点。在C、Ku、Kv 等频段中已被广泛的使用,目前常用的低噪声放大器的噪声温度可低于45K。 在雷达射频接收系统中,对系统性能指标的要求越来越高,其中低噪声放大器是影响着整个接收系统的噪声指标的重要因素。与普通的放大器相比,低噪声放大器作用比较突出,一方面可以减少系统的杂波干扰,提高系统的灵敏度;另一方面可以放大系统的射频信号,保证系统正常工作。因此,低噪声放大器的性能制约着整个接收系统的性能,对整个接收系统性能的提高起了决定性的作用。因此,研制宽频带、高性能、更低噪声的放大器,已经成为微波技术中发展的核心之一。 由放大器所引起的信噪比恶化程度通常用噪声系数F来表示。理想放大器的噪声系数F=1(0分贝),其物理意义是输出信噪比等于输入信噪比。现代的低噪声放大器大多采用晶体管、场效应晶体管;微波低噪声放大器则采用变容二极管参量放大器,常温参放的噪声温度Te可低于几十度(绝对温度),致冷参量放大器可达20K以下,砷化镓场效应晶体管低噪声微波放大器的应用已日益广泛,其噪声系数可低于2分贝。

低频低噪声高增益放大器讲解

低频低噪声高增益放大器 一、基本要求 (1)放大器 a.电压放大倍数200~2000倍,放大倍数可预置步进(间隔不大于200倍),有数字显示额外加分。 b.通频带3kHz~5kHz。 c.放大倍数为2000倍时,测得输出噪声电压峰—峰值等效到输入端小于800nV。d.最大不失真输出幅度不小于8V。 e.输入电阻不小于1kΩ,输出电阻不大于20Ω。 (2)自制供电电源。单相交流220伏电压供电,电源波动±10%时可正常工作。 (3)自制适合于本放大器测试用的信号源。 发挥部分 (1)电压放大倍数更高、步长更小 (2)等效输入噪声不大于200nV。 (3)等效输入电阻大于10kΩ。 (4)数字显示精度进一步改善 二、方案设计 2.1方案流程图

2.2 信号源制作模块 信号源原理图

信号源效果图 说明:单片机制作4.5KHZ的信号源,为电路提高信号源。 2.3 π网络衰减射随器带通滤波器模块制作 衰减网络 说明:由于单片机制作的信号源输出幅度很大,4V左右,而题目的要求知,信号源提供的电压幅度在10mV左右,因此通过衰减网络达到目的。

射随器 说明:射随器提高输入阻抗,以达到题目指定的要求。 带通滤波器 说明:带通滤波器的范围为3kHz~5kHz,因此可以满足通频带3kHz~5kHz的要求。 2.4 DAC0832程控网络

说明:通过DAC0832实现电压放大倍数200~3000倍的控制,把放大3000倍后的信号作为DAC0832的参考电压,通过数字量实现步进100倍的增益控制。 2.5 后级放大

说明:放大倍数进一步放大,固定放大1000倍。 2.6 电源制作模块

多级放大电路电压增益的计算

多级放大电路电压增益的计算 在求分立元件多级放大电路的电压放大倍数时有两种处理方法: 一是将后一级的输入电阻作为前一级的负载考虑,即将第二级的输入电阻与第一级集电极负载电阻并联,简称输入电阻法。 二是将后一级与前一级开路,计算前一级的开路电压放大倍数和输出电阻,并将其作为信号源阻加以考虑,共同作用到后一级的输入端,简称开路电压法。 现以图示两级放大电路为例加以说明。 例1:三极管的β1=β2=β=100,V BE1=V BE2=0.7V。计算总电压放大倍数。分别用输入电阻法和开路电压法计算。 解:一、求静态工作点: A 9.3 = mA 0.0093 = mA 7.2 101 ) 20 // 51 ( 7.0 38 .3 ) + (1 + ) // ( ' = e1 b2 b1 BE1 CC BQ1 μ β? + - = - R R R V V I mA 93.0 BQ1 CQ1 = =I Iβ V 26 .7 V )1.5 93 .0 12 ( c1 CQ1 cc B2 C1 = ? - = - = =R I V V V CEQ1cc CQ1c1CQ1BQ1e1cc CQ1c1e1 = 1209378 V47 V ()() (..). V V I R I I R V I R R --+≈-+ =-?= V 96 .7 V )7.0 26 .7( BE2 B2 E2 = + = + =V V V V 47 .4 V )3.4 04 .1( mA 04 .1 mA 9.3/ 04 .4 mA ]9.3/) 96 .7 12 [( /) ( c2 CQ2 C2 e2 E2 CC CQ2 EQ2 = ? = = = = - = - = ≈ R I V R V V I I V 45 .3 V ) 96 .7 47 .4( E2 C2 CEQ2 - = - = - =V V V 二、求电压增益:

自动增益控制AGC

任务一 自动增益控制(AGC )电路 任务引入 在调幅接收机接收电台信号时 ,由于各发射台功率有大有小,发射台离接收机的距离远近不一,无线电波传播过程中的多径效应与衰落等原因,使接收天线上感生的有用信号强度相差非常悬殊,而且往往有很大的起伏变化(约为~倍),有可能在接收微弱信号时造成某些电路(例如检波器)不能正常工作而丢失信号,而在接收强信号时造成放大电路的阻塞(非线性失真)。为此在接收设备中几乎无例外的都必须采用自动增益控制电路,用来压缩有用信号强度的变化范围。 任务分析 自动增益控制(AGC )电路的作用就是能根据输入信号的电压的大小,自动调整放大器的增益,使得放大器的输出电压在一定范围内变化。 自动增益控制(AGC )电路就是无线电接收设备中的重要电路,用来保证接收幅度的稳定。它一般由电平检测器(峰值检波电路)、低通滤波器、直流放大器、电压比较器、控制电压产生器与可控增益放大器组成。其中可控增益放大器就是实现增益控制的关键。 相关知识 一、自动增益控制电路(AGC)的工作原理 1.AGC 的作用 自动增益控制电路的作用,就是在输入信号幅度变化很大的情况下,自动保持输出信号幅度在很小范围内变化的一种自动控制电路。 2.AGC 的组成框图 自动增益控制电路的组成框图如图3-5-2所示。

图3-5-2 自动增益控制电路的组成框图 由图可见,自动增益控制电路可以瞧成由反馈控制器与(控制)对象两部分组成,其中反馈控制器由电平检测器、低通滤波器、直流放大器、电压比较器与控制电压产生器组成,被控对象就是可控增益放大器。可控增益放大器的输入信号就就是AGC电路的输入信号,其输出信号,其增益为 增益受控制电压的控制,控制电压就是由电压比较器产生的误差电压经控制电压产生器变换后得到的,增益可写成或,它就是误差电压(或控制电压)的函数。也可以直接用误差电压控制可控增益放大器的增益。 3.AGC各单元电路的功能与基本工作原理 (1)电平检测器电平检测器的功能就是检测出输出信号的电平值,通常由振幅检波器实现,它的输出与输入信号电平成线性关系,其输出电压为。 (2)低通滤波器环路中的低通滤波器具有非常重要的作用。由于发射功率变化、距离远近变化、电波传播衰落等引起信号强度的变化就是自动增益控制电路需要进行控制的范围,这些变化比较缓慢,而当输入为调幅信号时,调幅波的幅值变化就是传递信息的有用幅值变化.这种变化不应被自动增益控制电路的控制作用减弱或抵消(此现象称为反调制),由于两类信号的变化频率不同,就可以恰当选择环路的频率响应特性,适当地选择低通滤波器的传输特性,使环路对高于某一频率的调制信号的变化无响应,而对低于这一频率的缓慢变化具有抑制作用。 (3)直流放大器直流放大器将低通滤波器输出的电平值进行放大后送至电压比较器,由于电平检测器输出的电平信号的变化频率很低,例如几赫左右,所以一般均采用直流放大器进行放大。 (4)电压比较器经直流放大器放大后的输出电压与给定的基准电压进行比较,输出误差信号电压,当电压比较器增益为时,服从下列关系式

低频低噪声高增益放大器

低 频 低 噪 声 高 增 益 放 大 器——设计与报告总结 2012年7月15日 目录: 一.方案设计与论证 A.题目要求和指标分析

B.信号源部分 C.前级放大部分 D.滤波器部分 E.压控放大模块 F.功率放大模块 G.负反馈放大模块 二.电路设计 A.整体电路设计 B.信号源部分 C.前级放大部分 D.滤波器部分 E.压控放大部分 F.功率放大部分 G.负反馈部分 三.测试方法与测试结果 a.仿真部分 b.实测部分 本次设计是以vca810,op07,tda2030,msp430为核心器件的低频低噪声放大器。带宽为3kHz~5kHz,电压放大系数可达200~2000倍,

能保证波形不失真,噪声系数小,性能良好。信号由自制正弦波振荡器产生,经过前级放大,再经vca810进行压控放大,而后经过3阶有源切比雪夫带通滤波器,最后经过tda2030为核心的功率放大器,输出给负载。而由Msp430单片机进行AD采样和DA输出,实现负反馈。设计方案具有放大倍数高,预置步长小,低噪声,数字显示精度高等特点,达到了设计要求,切实可行。 一.方案论证 1.题目要求和指标分析 根据题目要求,设计方案应该实现电压放大,预置步进,数字显示,并且信号的通频带要在3kHz~5kHz,低噪声。综合各项设计指标,将该系统设计为以下模块:信号发生模块,前级放大模块,步进放大模块,滤波器模块,功率放大模块,反馈模块; 具体设计框图如下: 2. 信号源部分 方案1:以为LM358为核心的正弦波振荡器,优点是元器件少,成本低,稳定性好,失真度小,幅度频率可调,常用于音频电路。

电压控制增益可变放大器

电压控制增益可变放大器(VGA)设计 摘要 本设计以VCA822芯片为核心,加以其它辅助电路实现对宽带电压放大器的电压放大倍数、输出电压进行精确控制。放大器的电压放大倍数从0.1倍到10倍变更,通过电压跟随器确保输入阻抗>1012Ω。选用高增益带宽积的运放保证放大器的带宽大于15MHz。 关键词:宽带直流放大器;控制电压;电压变换;VCA822; ABSTRACT This experiment is designed with VCA822 chip as the core, with other auxiliary circuit to realize the voltage gain of the broadband voltage magnification, as well as the accurate control of the output voltage. Amplifier voltage magnification changes from 0.1 times to 0.1 times through the voltage follower to ensure that the input impedance > 1012Ω. At the same time, the selection of high gain bandwidth product of the op-amp is to ensure the bandwidth of the amplifier greater than 15 MHZ.

目录 1.系统方案比较与设计 2.理论分析与计算 3.单元电路设计与计算 3.1一级同相放大电路 3.2二级可控放大电路 3.3三级同相放大电路 3.4四级反向放大电路 3.5甲乙类功率放大电路 4.系统测试 5.结论 6.参考文献

单片机自动增益放大器

自动增益放大器 摘要:本系统有四个模块组成:程控放大器,峰值检测,液晶。程控放大器采用两片AD603接连组成,放大电压增益可达50dB,增益0.2v步进可调,电压增益误差不大于5%。放大器输出无明显失真。峰值测量采用真有效值采样芯片AD637先进行有效值采样,然后通过PCF8951进行AD采样,最后再转换成峰值,液晶采用LCD1602,系统以stc89c51单片机为控制核心,经测试验证,系统运行稳定,操作方便。 关键词:程控放大器,峰值检测,AD采样,单片机。 Abstract:This system has three modules: SPC amplifiers, peak detection, liquid crystal. By two AD603 program-controlled amplifier amplification voltage gain one, can gain 1db stepping 0.2v, adjustable, voltage gain error is not more than 5%. Amplifier output without obvious distortion. Measure true RMS peak by sampling AD637 chip on sampling, then PCF8951 through effective sampling, finally to AD convert peak, LCD USES lcd1602 management system with stc8951 SCM as control core and tested, the system runs stably, convenient operation. Key: SPC amplifier Peak detection AD sampling chip SCM 1. 方案的论证与比较 1.1 设计需求 1.1.1 基本要求 (1)放大器可以从信号发生器或音乐播放器输入音频信号(50Hz~10KHz), 输出可以带200Ω负载或驱动8Ω喇叭(2~5W)。(20 分) (2)当输入信号幅度在10mV~5V 间变化时,放大器输出默认值保持在2V ±0.2V(有效值)内,波动越小越好。(30 分) (3)可以显示输入信号幅度和频率。(10 分) (4)能够在1V~3V 范围内步进式调节放大器输出幅度,步距0.2V。(15 分) (5)能够根据环境噪声调整自动调节放大器输出幅度。(15分) (6)其它发挥设计。(10 分) (7)设计报告。(20 分) 1.1.2 发挥部分

高增益宽带放大器的研究与设计

南京师范大学中北学院 毕业设计(论文)(2013届) 题目:高增益宽带放大器的研究与设计 专业:电子信息工程 姓名:XXX 学号: XXX 指导教师:王兴和职称:教授 填写日期: 2013-5-10 南京师范大学中北学院教务处制

摘要 在无线通信系统中,高增益宽带放大是其重要的组成部分,它性能的好坏对整个系统起着重要的的作用。随着通信技术的发展,军用和民用对其提出了更高的要求,对射发系统的研制提出了更高的要求甚至是全新的要求。 文章介绍了一种基于模拟运算放大器实现的增益可控的宽带放大器。该器件由三个部分组成,第一部分由运算放大器OPA2613组成,第二部分中间级连续可调增益由放大器OPA842完成,第三部分功放由AD811完成。工作频带宽可达3.9MHZ,增益调节0dB-53dB。放大器噪声小, 动态范围宽。在通频带内增益起伏为1dB左右。通过反馈电阻可调,可实现增益的变化。通过Multisim的仿真能达到良好的效果。整个系统工作可靠,稳定,而且成本低效率高。 关键词:OPA2613 OPA8421 AD811 可控增益带宽放大器

ABSTRACT In a wireless communication system, high-gain broadband amplification is an important part of that, It is good or bad performance of the whole system plays an important role. With the development of communication technology, military and civilian put forward higher requirements for it, Hair on the radio system development put forward higher requirements even entirely new requirements. This paper presents a simulation-based operational amplifier gain controlled wideband amplifier. The device consists of three parts, the first part of the operational amplifier OPA2613, and the second part of the intermediate stage adjustable gain amplifier OPA842 completed by the third part of the amplifier by the AD811 is completed. Frequency band up to 3.9MHZ, gain adjustment 0dB-53dB. Amplifier noise, wide dynamic range. Ups and downs in the pass band gain is about 1dB.. Adjustable through the feedback resistor, the gain variation can be achieved. By Multisim simulation can achieve good results. The whole system is reliable, stable and cost-inefficient rate. Key words: OPA2613 OPA8421 AD811 Controllable gain Bandwidth amplifier

自动增益控制放大器

摘要 自动增益控制电路已广泛用于各种接收机、录音机和信号采集系统中,另外在光纤通信、微波通信、卫星通信等通信系统以及雷达、广播电视系统中也得到了广泛的应用。 本课题主要研究应用于音频放大的前级电压放大,因此设计的电路需容纳的频带范围应较宽,以至于使语音信号通过。由于语音信号的频带范围为300hz-3400hz,所以该电路所应设计的频带范围应在300hz-3400hz之间,并且电路应该实现增益的闭环调节,通过此电路可以实现增益的自动调整,以至于使音频信号强时自动减小放大器的倍数,信号弱时自动增大放大器的倍数,从而实现音量的自动调节。 本课题介绍了自动增益控制的概念原理以及对自动增益控制放大器各部分的工作原理,最后对系统的测试结果以及设计与实现中应该注意的问题也做了详细分析。 关键词:放大器;自动增益控制;电压跟随器;滤波器 目录 摘要 (1) 第1章引言 (4) 第2章自动增益控制 (4) 2. 1自动增益控制 (4) 2.1.1自动增益控制基本概念 (4) 2.1.2自动增益控制的原理 (5) 2. 2自动增益控制放大器 (5) 2. 3本课题的研究内容 (5) 第3章自动增益控制放大器的电路设计 (6) 3. 1方案选择 (6) 3. 2压随器工作原理 (8) 3. 3整流电路工作原理 (8) 3. 4滤波 (9) 3. 5增益控制工作原理 (9) 3. 6电路元器件选择 (10) 3.6.1运算放大器 (10) 3.6.2场效应管的选择 (11) 3.6.3其他元器件的选择 (11)

第4章放大器电路的调试及实验结果 (12) 4. 1放大器电路的调试 (12) 4. 2实验结果及存在问题 (12) 第5章总结 (14) 参考文献 (15) 附录 (15) 致谢 (16) 第1章引言 随着微电子技术、计算机网络技术和通信技术等行业的迅速发展,自动增益 控制电路越来越被人们熟知并且广泛的应用到各个领域当中。自动增益控制线路,简称AGC线路,A是AUTO(自动),G是GAIN(增益),C是CONTROL(控制)。它是输出限幅装置的一种,是利用线性放大和压缩放大的有效组合对输出信号进 行调整。当输入信号较弱时,线性放大电路工作,保证输出声信号的强度;当输 入信号强度达到一定程度时,启动压缩放大线路,使声输出幅度降低,满足了对 输入信号进行衰减的需要。也就是说,AGC功能可以通过改变输入输出压缩比例自 动控制增益的幅度,扩大了接收机的接收范围,它能够在输入信号幅度变化很大 的情况下,使输出信号幅度保持恒定或仅在较小范围内变化,不至于因为输入信 号太小而无法正常工作,也不至于因为输入信号太大而使接收机发生饱和或堵塞。在电路设计中,这种线路被大量的运用,从尖端的雷达技术到日常的广播电视系统,自动增益控制无疑很好的解决了各种技术中存在的信号强度问题。目前,实 现自动增益控制的手段有很多,在本文中,主要研究的是如何以放大器来实现自 动增益控制的目的,也就是自动增益控制放大器。 第2章自动增益控制 2. 1自动增益控制 2. 1. 1自动增益控制的基本概念 接收机的输出电平取决于输入信号电平和接收机的增益。由于各种原因,接 收机的输入信号变化范围往往很大,信号弱时可以是一微伏或几十微伏,信号强 时可达几百毫伏,最强信号和最弱信号相差可达几十分贝。这个变化范围称为接 收机的动态范围。 影响接收机输入信号的因素很多,例如:发射台功率的大小、接收机离发射 台距离的远近、信号在传播过程中传播条件的变化(如电离层和对流层的骚动、天

低噪声放大器lna

低噪声放大器设计指南 1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,这就对系统的接收灵敏度提出了更高的要求,我们知道,系统接收灵敏度的计算公式如下: S = -174+ NF+10㏒BW+S/N (1) min 由上式可见,在各种特定(带宽、解调S/N 已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机的噪声系数的关键部件就是处于接收机最前端的低噪声放大器。 低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以低噪声放大器的设计对整个接收机来说是至关重要的。 2. 低噪声放大器的主要技术指标: 2.1 噪声系数NF 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: out out in in N S N S NF //= 对单级放大器而言,其噪声系数的计算为: 222min |1)||1(||4opt s opt s n R NF NF Γ?Γ?Γ?Γ+= 其中 F min 为晶体管最小噪声系数,是由放大器的管子本身决定的, Γopt 、Rn 和Γs分 别为获得 F min 时的最佳源反射系数、 晶体管等效噪声电阻、以及晶体管输入端的源反射系数。 对多级放大器而言,其噪声系数的计算为: NF=NF 1+(NF -1)/G 1+(NF -1)/G 1G +…… (4) 232其中NF n 为第n级放大器的噪声系数,G n 为第n级放大器的增益。 在某些噪声系数要求非常高的系统,由于噪声系数很小,用噪声系数表示很不方便,常常用噪声温度来表示,噪声温度与噪声系数的换算关系为: T e = T 0 ( NF – 1 ) (5) 其中T e 为放大器的噪声温度,T 0 =2900 K,NF为放大器的噪声系数。 NF(dB) = 10LgNF (6) 2. 2 放大器增益G: 放大器的增益定义为放大器输出功率与输入功率的比值: G=P out / P in (7) 从式(4)中可见,提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪声放大器的增益过高会影响整个接收机的动态范围。 所以,一般来说低噪声放大器的增益确定应与系统的整机噪声系数、接收机动态范围等结合起来考虑。

高速高增益运算放大器的设计及应用

2008 年 4 月 JOURNAL OF CIRCUITS AND SYSTEMS April, 2008 文章编号:1007-0249 (2008) 02-0031-05 高速高增益运算放大器的设计及应用* 朱颖,何乐年,严晓浪 (浙江大学超大规模集成电路设计研究所,浙江杭州 310027) ??ǖ本文设计了一种高速高增益放大器,该放大器通过增加全差分的共源共栅电路作为辅助放大器来提高运放增益,并采用频率补偿和钳位管相结合的技术改善运放的频响特性,使得运放在通频带范围内类似于单极点运放,大大减少了运放的转换时间。采用SMIC的0.35μm工艺模型进行仿真,结果表明,运放的直流增益达到110dB,带宽266MHz(负载电容C load=1pF),相位裕度55°,只需10ns即可达到0.1%的稳定精度,因而是一种有效的高速高精度运放的实现途径。 ???ǖ运算放大器;高增益;高速 ?????ǖTN401 ?????ǖA 1 引言 随着数模混和电路应用的发展,对模拟电路的速度和精度提出了越来越高的要求。模拟电路的速度和精度与运算放大器的性能有关,为了得到更快的速度和更高的精度,要求运算放大器具有更宽的单位增益带宽和更高的直流电压增益。 本文设计的运放用于光电鼠标芯片中的A/D变换的采样放大级。整体设计要求采样放大器的采样速率为12~40MHz,直流电压增益100dB。它的输入信号是CMOS图像传感器经双差分采样后的输出信号,幅度为±0.4V,经过开关电容电路构成的精确放大两倍的电路后,输出信号幅度为±0.8V。 以上是本文提出的对运放的速度和精度的要求。在通常的情况下,两级运算放大器在实现高精度的同时无法实现高速度[1],共源共栅结构的运放在实现高速的同时无法实现高精度[1]。常规的高增益运算放大器可以实现很高的精度[1],但是零极点对的存在严重影响了运放的稳定性和速度。为了同时满足速度和精度的要求,本文提出了一种改进的套筒型增益提高运算放大器,该运放采用频率补偿和钳位管相结合的技术改善运放的频响特性,减少运放的转换时间。另外为了达到加大输出摆幅的目的,还增加了一级增益接近于1的线性输入/输出特性电路。仿真表明,运放的直流增益达到110dB,带宽266MHz(负载电容C load=1pF),相位裕度55°,只需10ns即可达到0.1%的稳定精度,完全满足光电鼠标芯片采样放大级的要求。 2 电路结构 增益提高运算放大器使用折叠式共源共栅电路作为其辅助放大器,其实质就是通过反馈增加输出阻抗,从而达到增加增益的目的。增益提高放大器的常规电路图如图1(a)所示,改进电路图如图1(b)所示。常规的增益提高运算放大器的稳定性和转换时间常常受到零极点对的影响。如果零极点对所对应的频率小于闭环运放的主极点,需要的转换时间便大大延长。 为了加快转换时间,在辅助放大器的输出端增加了补偿电容,使得零点和极点尽可能地接近甚至对消。频率补偿后运放所表现的转换特性接近于单极点运放的转换特性,大大加快了运放的转换时间,具体将在3.1和3.2.1中论述。 对于折叠式共源共栅电路来说,针对其特点,在辅助放大器输出端增加了一对栅漏短接的NMOS 管,它们只在辅助放大器输出端的差值大于V th时导通,起钳位作用并加快了运放的转换速率。而且 * ????ǖ2005-01-25 ????:2005-07-03

自动增益控制(AGC)放大器..

自动增益控制放大器(AGC)设计 摘要:本设计以程控增益调整放大器AD603为核心,通过单片机MSP430控制各模块,实现电压增益连续可调,输出电压基本恒定。系统由5个模块组成:前级缓冲模块,电压增益调整模块,峰值检测模块,后级输出缓冲模块,控制与显示模块。将输入信号经前级缓冲电路输入给程控增益调整放大器AD603,将信号放大输出,通过峰值检测电路检测输出信号,并送给单片机AD采样,与理想输出信号数值进行比较,若有多偏差,则通过调整对AD603的增益控制电压,来调整放大倍数,从而实现输出信号的稳定。整个设计使用负反馈原理,实现了自动增益的控制。 关键字:AD603 MSP430 峰值检测自动增益控制 一、方案设计与论证 1.1整体方案 方案一:采用纯硬件电路实现,由AD603和运放构成的电压比较器和减法电路实现。把实际电压与理论电压的差值通过适当幅值和极性的处理,作为AD603的控制信号,从而实现放大倍数的自动调整,实现输出电压恒定。 优点:该方案理论简单,制作起来也相对容易,只有硬件电路。 缺点:理论低端,精度不够,没有创新,通用性不好。 方案二:采用AD603和单片机结合,通过单片机对输出信号AD采样并转化为数字量,与理论输出电压值进行比较,得到差值转换为控制电压,通过DA转化,对程控增益放大器AD603的放大倍数惊醒调整,从而实现输出电压的恒定。 优点:该方案控制精确,自动控制速度快,系统可移植性强,功能改变和增加容易,对后期改善和提升电路性能有益。 缺点:需要软硬件配合,系统稍复杂。 通过对两个方案的综合对比,我们选用方案二。 1.2控制模块 方案一:采用MCS-51。Intel公司的MCS-51的发展已经有比较长的时间,以其典型的结构、完善的总线、SFR的集中管理模式、位操作系统和面向控制功能的丰富的指令系统,为单片机的发展奠定了良好的基础,应用比较广泛,各种技术都比较成熟。 MCS-51优点是控制简单,二缺点也明显因为资源有限,功能实现有困难,而

运算放大器的参数选择

运算放大器的参数选择

运算放大器的参数指标 1.开环电压增益Avd 开环电压增益(差模增益)为运算放大器处于开环状态下,对小于200Hz的交流输入信号的放大倍数,即输出电压与输入差模电压之比。它一般为104~106,因此它在电路分析时可以认为无穷大。 2.闭环增益A F 闭环增益是运算放大器闭环应用时的电压放大倍数,其大小与放大电路的形式有关,与放大器本身的参数几乎无关,只取决于输入电组和反馈电阻值的大小。 反相比例放大器,其增益为 A F=- RF RI 3.共模增益Avc和共模抑制比 当两个输入端同时加上频率小于200Hz的电压信号Vic时,在理想情况下,其输出电压应为零。但由于实际上内部电路失配而输出电压不为

零。此时输出电压和输入电压之比成为共模增益Avc。 共模抑制比Kcmr= Avc Avd 共模增益 运算放大器的差模增益, 通常以对数关系表示:Kcmr=20log Avc Avd 共模增益 运算放大器的差模增益共模抑制比一般在80~120Db范围内,它是衡量放大器对共模信号抑制能力高低的重要指标。这不仅是因为许多应用电路中要求抑制输入信号中夹带的共模干扰,而且因为信号从同相端输入时,其两个输入端将出现较大的共模信号而产生较大的运算误差。 4.输入失调电压 在常温(25℃)下当输入电压为零时,其输出电压不为零。此时将其折算到输入端的电压称为输入失调电压。它一般为±(0.2~15)mV。 这就是说,要使放大器输出电压为零,就必须在输入端加上能抵消Vio的差值输入电压。5.输入偏置电流 在常温(25℃)下输入信号为零(两个输入端均接地)时,两个输入端的基极偏置电流的平均值称为输入偏置电流,即 I IB= 2 1( I IB -+I IB+)

可控增益放大器的应用

2012年TI杯上海赛区竞赛题目 可控增益放大器 1、任务 基于乘法器型DAC或压控增益放大器设计一个可控增益放大器,并将其用于自动增益控制器中。 2、基本要求: 设计一个负载为1K欧姆的可控增益放大器,可控增益放大器的放大倍数从1至128倍可调;通过按键短按,控制步进为4倍循环(1,4,16,64,128,1,…);(1)输入信号为频率为1KHz,200mVpp的正弦信号时,在所有增益条件下: a.增益精度高于1%; b.无明显波形失真; (2)输入一个1KHz,200mVpp的方波,在所有增益条件下, a. 输出方波没有形态失真(输出变为三角波/正弦波,或有寄生振荡频率); b. 输出方波的过冲不超过5%; c. 输出方波的上升到90%的上升时间应小于80uS; (3)制作一个100mV的直流电平(用万用表测量),做为可控增益放大器的输入,在增益为128倍时: a. 用万用表测量得到的输出电压误差不超过1%; b. 用示波器测量得到的电压纹波不大于1%; 3、发挥要求: (1)基于基本部分的可控增益放大器,设计一个自动增益控制器。长按按键可进入(LED亮)或退出(LED灭)自动增益控制器功能,当向可控增益放大器输入1KHz,200mVpp-2Vpp间变化的正弦信号或其他波形信号时: a.输出波形稳定在0.5Vpp,幅度精度为1%;

b.频率和波形不变; c.响应时间小于1s;并尽可能提高响应速度; (2)将输入信号扩展为1KHz,20mVpp – 20Vpp间变化的正弦信号或其他波形信号时,完成自动增益控制功能: a.输出波形稳定在0.5Vpp,幅度精度为1%; b.频率和波形不变; c.响应时间小于1s;并尽可能提高响应速度; d.在自动增益控制模式下,通过按键短按,输出信号的幅度可以在 0.5Vpp,1Vpp和2Vpp间切换; (4)减少器件使用的数量,降低成本; 5、说明 所有放大器的供电由实验室台式电源提供,供电电压自由选择;MSP430和乘法器型DAC的供电电源由运放供电电压转换后获取,可利用Launchpad上的线性稳压器(测试时不得挂USB数据线),注意调试时可能和Launchpad 上的USB 供电冲突。

低噪声放大器介绍

低噪声放大器 低噪声放大器是一种具有优良噪声特性而增益较高的小信号放大器,一般位于接收机的前端,是决定整个接收系统噪声特性的关键部件。 目前常见的低噪声放大器有以下几种:低温制冷参量放大器、常温恒温参量放大器、微波场效应晶体管放大器和高电子迁移率晶体管放大器等。参量放大器采用变容电抗元件(变容二极管)对信号进行放大,可以获得满意的低噪声性能,进一步降低其工作的环境温度(例如环境温度达20K),会大幅度改善其噪声性能。然而随着金属半导体场效应晶体管性能的改善与提高,低噪声场效应放大器的噪声性能已接近于常温参量放大器的水平。同时,由于FET放大器具有性能稳定、结构紧凑、价格低廉等优点,它已逐步取代了参量放大器。目前,Ku频段以下的低噪声放大器普遍采用低噪声FET放大器。继低噪声MESFET之后,高电子迁移率晶体管(High Electron Mobiliey Transistor),简称HEMT器件,获得了迅速的发展。它在低噪声、高工作频率方面比FET更优越,已广泛投入使用。 目前广泛使用的是金属半导体场效应管低噪声放大器。它的核心部件是金属半导体场效应管(MESFET)。金属半导体场效应管是用本征砷化镓作为基片的衬底,用特殊工艺形成源极(S)、栅极(G)和漏极(D)三个电极;通过栅极电压来控制漏极电流,从而实现对小信号的放大功能。 微波场效应管的主要参数有:特征频率、单向功率增益和最大振

荡频率、最大输出功率和噪声特性。 微波场效应管低噪声放大器设计主要考虑的问题是计算输入、输出匹配网络和选择工作点。通常第一、二级按最小噪声系数设计,中间级按高增益设计,末级则保持良好的线性,满足系统互调特性的要求。 微波场效应管低噪声放大器的设计步骤: 1、 选择适当的电路形式 一般采用共源极电路形式,并尽可能选用f T 高的管子。 一般0)5~3(f f T =。 2、 确定工作点和偏置电路 小信号管做低噪声放大时,漏极电流很小,一般为10mA 左右。而作高增益放大时,漏极电流略大些,一般在10~30mA 。偏置电路的选择和低频电路类似,有恒流式偏置电路和分压式偏置电路两类。 3、 晶体管噪声参量和S 参数的获得 大多数情况下晶体管的生产厂家提供相应型号的器件的噪声参量和S 参数。晶体管的噪声参量和S 参数也可以通过在实际工作点下,测量所需频段的噪声参量和S 参数得到。实际的噪声系数表达式为:()()[] 22min /op s op s s n B B G G G R F F -+-+= ; 式中,n R 是网络的等效电阻; min F 是网络的最小噪声系数; op op op jB G Y +=是对应于最小噪声系数的最佳源导纳;

相关文档
最新文档