中考数学专题3 动态几何问题

中考数学专题3 动态几何问题
中考数学专题3 动态几何问题

中考数学专题3 动态几何问题

第一部分 真题精讲

【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒). (1)当MN AB ∥时,求t 的值;

(2)试探究:t 为何值时,MNC △为等腰三角形.

【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动

态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本

题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】

解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形. ∵AB DE ∥,AB MN ∥.

∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD

=. (这个比例关系就是将静态与动态联系起来的关键)

∴ 1021035t t -=-.解得5017t =

. 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】

(2)分三种情况讨论:

① 当MN NC =时,如图②作NF BC ⊥交BC 于F ,则有2MC FC =即.(利用等腰三角形底边高也是底边中线的性质)

∵4sin 5DF C CD ∠==,∴3cos 5C ∠=,∴310225t t -=?,解得25

8

t =

. ② 当MN MC =时,如图③,过M 作

MH CD ⊥于H .

则2CN CH =,∴()321025t t =-?.∴60

17

t =.

C

M B A

B M

C N

E D A B

M C

N

F D

③ 当MC CN =时, 则102t t -=.10

3

t =. 综上所述,当258t =

、6017或103

时,MNC △为等腰三角形. 【例2】在△ABC 中,∠ACB=45o.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .

(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试

判断线段CF 与BD 之间的位置关系,并证明你的结论.

(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么? (3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC

=3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)

【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个“静止点”,所以需要我们去分析由D 运动产生的变化图形当中,什么条件是不动的。由题我们发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。 【解析】:

(1)结论:CF 与BD 位置关系是垂直;

证明如下: AB=AC ,∠ACB=45o,∴∠ABC=45o. 由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90o, ∴∠DAB=∠FAC ,∴△DAB ≌△FAC ,

∴∠ACF=∠ABD .∴∠BCF=∠ACB+∠ACF= 90o.即 CF ⊥BD .

【思路分析2】这一问是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找AC 的垂线,就可以变成第一问的条件,然后一样求解。

(2)CF ⊥BD .(1)中结论成立.

理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG 可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45o

∠BCF=∠ACB+∠ACF= 90o. 即CF ⊥BD 【思路分析3】这一问有点棘手,D 在BC 之间运动和它在BC 延

长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X 还是4-X 。分类讨论之后利用相似三角形的比例关系即可求出CP . (3)过点A 作AQ ⊥BC 交CB 的延长线于点Q , ①点D 在线段BC 上运动时,

∵∠BCA=45o,可求出AQ= CQ=4.∴ DQ=4-x , 易证△AQD ∽△DCP ,∴CP CD DQ

AQ

= , ∴

44

CP x

x =-, 2

4

x CP x ∴=-+.

②点D 在线段BC 延长线上运动时,

∵∠BCA=45o,可求出AQ= CQ=4,∴ DQ=4+x .

过A 作AC AG ⊥交CB 延长线于点G ,则ACF AGD ???.∴ CF ⊥BD ,

G A B C D E

F

A B

M C

N H

D

∴△AQD ∽△DCP ,∴CP CD DQ

AQ

= , ∴

44

CP x

x =+, 2

4

x CP x ∴=+.

【例3】已知如图,在梯形ABCD 中,

24AD BC AD BC ==∥,,,

点M 是AD 的中点,MBC △是等边三角形.

(1)求证:梯形ABCD 是等腰梯形; (2)动点P 、Q 分别在线段BC 和MC 上运动,

且60MPQ =?∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式; (3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.

【思路分析1】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察几何方面。第一问纯静态问题,自不必说,只要证两边的三角形全等就可以了。第二问和例1一样是双动点问题,所以就需要研究在P ,Q 运动过程中什么东西是不变的。题目给定∠MPQ=60°,这个度数的意义在哪里?其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关系,所以我们很自然想到要通过相似三角形找比例关系.怎么证相似三角形呢? 当然是利用角度咯.于是就有了思路. 【解析】

(1)证明:∵MBC △是等边三角形∴60MB MC MBC MCB ===?,∠∠ ∵M 是AD 中点∴AM MD =∵AD BC ∥∴60AMB MBC ==?∠∠,

60DMC MCB ==?∠∠∴AMB DMC △≌△ ∴AB DC =∴梯形ABCD 是等腰梯形. (2)解:在等边MBC △中,4MB MC BC ===,60MBC MCB ==?∠∠,

60MPQ =?∠∴120BMP BPM BPM QPC +=+=?∠∠∠∠ (这个角度传递非常重要,

大家要仔细揣摩)∴BMP QPC =∠∠∴BMP CQP △∽△∴PC CQ

BM BP = ∵PC x MQ y ==, ∴44BP x QC y =-=-, ∴

444x y x -=

- ∴2

144y x x =-+ (设元以后得出比例关系,轻松化成二次函数的样子)

【思路分析2】第三问的条件又回归了当动点静止时的问题。由第二问所得的二次函数,很轻易就可以求出当X 取对称轴的值时Y 有最小值。接下来就变成了“给定PC=2,求△PQC 形状”的问题了。由已知的BC=4,自然看出P 是中点,于是问题轻松求解。 (3)解: PQC △为直角三角形 ∵()2

1234

y x =

-+∴当y 取最小值时,2x PC == ∴P 是BC 的中点,MP BC ⊥,而60MPQ =?∠,∴30CPQ =?∠,∴90PQC =?∠

A

D

C B P

M

Q

60

以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求解。如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不变的。当动的不是点,而是一些具体的图形时,思路是不是一样呢?接下来我们看另外两道题.

【例4】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,. (1)直接写出线段EG 与CG 的数量关系;

(2)将图1中BEF ?绕B 点逆时针旋转45?,如图2所示,取DF 中点G ,连接EG CG ,,

. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.

(3)将图1中BEF ?绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的

结论是否仍然成立?(不要求证明)

【思路分析1】这一题是一道典型的从特殊到一般的图形旋转题。从旋转45°到旋转任意角度,要求考

生讨论其中的不动关系。第一

问自不必说,两

个共斜边的直角三角形的斜边中线自然相等。第二问将△BEF 旋转45°之后,很多考生就想不到思路了。事实上,本题的核心条件就是G 是中点,中点往往意味着一大票的全等关系,如何构建一对我们想要的全等三角形就成为了分析的关键所在。连接AG 之后,抛开其他条件,单看G 点所在的四边形ADFE ,我们会发现这是一个梯形,于是根据我们在第一讲专题中所讨论的方法,自然想到过G 点做AD,EF 的垂线。于是两个全等的三角形出现了。 (1)CG EG =

(2)(1)中结论没有发生变化,即CG EG =.

证明:连接AG ,过G 点作MN AD ⊥于M ,与EF 的延长线交于N 点. 在DAG ?与DCG ?中,∵AD CD ADG CDG DG DG =∠=∠=,,, ∴DAG DCG ??≌.∴AG CG =.

在DMG ?与FNG ?中,∵DGM FGN FG DG MDG NFG ∠=∠=∠=∠,,, ∴DMG FNG ??≌.∴MG NG = 在矩形AENM 中,AM EN = 在Rt AMG ?与Rt ENG ?中,∵AM EN MG NG ==,,∴AMG ENG ??≌. ∴AG EG =. ∴EG CG =

【思路分析2】第三问纯粹送分,不要求证明的话几乎所有人都会答出仍然成立。但是我们不应该止步于此。将这道题放在

图3图2 图1F

E

A B C D A B C D E F G G F

E D C B A M N

图2

A

B

C

D

E

F

G

动态问题专题中也是出于此原因,如果△BEF 任意旋转,哪些量在变化,哪些量不变呢?如果题目要求证明,应该如何思考。建议有余力的同学自己研究一下,笔者在这里提供一个思路供参考:在△BEF 的旋转过程中,始终不变的依然是G 点是FD 的中点。可以延长一倍EG 到H ,从而构造一个和EFG 全等的三角形,利用BE=EF 这一条件将全等过渡。要想办法证明三角形ECH 是一个等腰直角三角形,就需要证明三角形EBC 和三角形CGH 全等,利用角度变换关系就可以得证了。 (3)(1)中的结论仍然成立.

【例5】已知正方形ABCD 的边长为6cm ,点E 是射线BC 上的一个动点,连接AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B′ 处.

(1)当

CE

BE

=1 时,CF=______cm , (2)当

CE

BE

=2 时,求sin ∠DAB ′ 的值; (3)当

CE

BE

= x 时(点C 与点E 不重合),请写出△ABE 翻折后与正方形ABCD 公共部分的面积y 与x 的关系式,(只要写出结论,不要解题过程).

【思路分析】动态问题未必只有点的平移,图形的旋转,翻折(就

是轴对称)也是一大热点。这一题是朝阳卷的压轴题,第一问给出比例为1,第二问比例为2,第三问比例任意,所以也是一道很明显的从一般到特殊的递进式题目。同学们需要仔细把握翻折过程中哪些条件发生了变化,哪些条件没有发生变化。一般说来,翻折中,角,边都是不变的,所以轴对称图形也意味着大量全等或者相似关系,所以要利用这些来获得线段之间的比例关系。尤其注意的是,本题中给定的比例都是有两重情况的,E 在BC 上和E 在延长线上都是可能的,所以需要大家分类讨论,不要遗漏。 【解析】

(1)CF= 6 cm ; (延长之后一眼看出,EAZY )

(2)① 如图1,当点E 在BC 上时,延长AB ′交DC 于点M , ∵ AB ∥CF ,∴ △ABE ∽△FCE ,∴

FC

AB

CE BE

. ∵

CE

BE

=2, ∴ CF=3. ∵ AB ∥CF ,∴∠BAE=∠F .

又∠BAE=∠B ′ AE , ∴ ∠B ′ AE=∠F .∴ MA=MF . 设MA=MF=k ,则MC=k -3,DM=9-k .

C

A D

B

图1

G

图3

F

E

A

B C

D

在Rt △ADM 中,由勾股定理得:k 2=(9-k)2+62, 解得 k=MA=

132. ∴ DM=5

2

.(设元求解是这类题型中比较重要的方法)∴ sin ∠DAB ′=

13

5

=AM DM ; ②如图2,当点E 在BC 延长线上时,延长AD 交B ′ E 于点N ,同①可得NA=NE .

设NA=NE=m ,则B ′ N=12-m . 在Rt △AB ′ N 中,由勾股定理,得 m 2=(12-m)2+62, 解得 m=AN=152. ∴ B ′ N=9

2

. ∴ sin ∠DAB ′=

5

3

='AN N B . (3)①当点E 在BC 上时,y=

18x

x 1

+; (所求△A B ′ E 的面积即为△ABE 的面积,再由相似表示出边长)

②当点E 在BC 延长线上时,y=

18x 18

x

-. 【总结】 通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。动态几何问题往往作为压轴题来出,所以难度不言而喻,但是希望考生拿到题以后不要慌张,因为无论是题目以哪种形态出现,始终把握的都是在变化过程中那些不变的量。只要条分缕析,一个个将条件抽出来,将大问题化成若干个小问题去解决,就很轻松了.为更好的帮助考生,笔者总结这种问题的一般思路如下:

第一、仔细读题,分析给定条件中那些量是运动的,哪些量是不动的。针对运动的量,要分析它是如何运动的,运动过程是否需要分段考虑,分类讨论。针对不动的量,要分析它们和动量之间可能有什么关系,如何建立这种关系。

第二、画出图形,进行分析,尤其在于找准运动过程中静止的那一瞬间题目间各个变量的关系。如果没有静止状态,通过比例,相等等关系建立变量间的函数关系来研究。 第三、做题过程中时刻注意分类讨论,不同的情况下题目是否有不同的表现,很多同学丢分就丢在没有讨论,只是想当然看出了题目所给的那一种图示方式,没有想到另外的方式,如本讲例5当中的比例关系意味着两种不一样的状况,是否能想到就成了关键。

第二部分 发散思考

【思考1】已知:如图(1),射线//AM 射线BN ,AB 是它们的公垂线,点D 、C 分别

在AM 、BN 上运动(点D 与点A 不重合、点C 与点B 不重合),E 是AB 边上的动点(点E 与A 、B 不重合)

,在运动过程中始终保持EC DE ⊥,且a AB DE AD ==+. (1)求证:ADE ?∽BEC ?; (2)如图(2),当点E 为AB 边的中点时,求证:CD BC AD =+;

(3)设m AE =,请探究:BEC ?的周长是否与m 值有关?若有关,请用含有m 的代

数式表示BEC ?的周长;若无关,请说明理由.

【思路分析】本题动点较多,并且是以和的形式给出长度。思考较为不易,但是图中有多个直角三角形,所以很自然想到利

2

第25题(1) 第25题(2)

用直角三角形的线段、角关系去分析。第三问计算周长,要将周长的三条线段分别转化在一类关系当中,看是否为定值,如果是关于M 的函数,那么就是有关,如果是一个定值,那么就无关,于是就可以得出结论了。

【思考2】 △ABC 是等边三角形,P 为平面内的一个动点,BP=BA ,若0 <∠PBC <180°,

且∠PBC 平分线上的一点D 满足DB=DA ,

(1)当BP 与BA 重合时(如图1),∠BPD= °; (2)当BP 在∠ABC 的内部时(如图2),求∠BPD 的度数;

(3)当BP 在∠ABC 的外部时,请你直接写出∠BPD 的度数,并画出相应的图形.

【思路分析】本题中,和动点P 相关的动量有∠PBC ,以及D 点的位置,但是不动的量就是BD 是平分线并且DB=DA ,从这几条出发,可以利用角度相等来找出相似、全等三角形。事实上,P 点的轨迹就是以B 为圆心,BA 为半径的一个圆,那D 点是什么呢?留给大家思考一下~

【思考3】如图:已知,四边形ABCD 中,AD//BC , DC ⊥BC ,已知AB=5,BC=6,cosB=

35

. 点O 为BC 边上的一个动点,连结OD ,以O 为圆心,BO 为半径的⊙O 分别交边AB 于点P ,交线段OD 于点M ,交射线BC 于点N ,连结MN . (1)当BO=AD 时,求BP 的长; (2)点O 运动的过程中,是否存在BP=MN 的情况?若存在,请求出当BO 为多长时BP=MN ;若不存在,请说明理由;

(3)在点O 运动的过程中,以点C 为圆心,CN 为半径作⊙C ,请直接写出当⊙C 存在时,⊙O 与⊙C 的位置关系,以及相应的⊙C 半径CN 的取值范围。

【思路分析】这道题和其他题目不同点在于本题牵扯到了有关圆的动点问题。在和圆有关的问题当中,时刻不要忘记的就是圆的半径始终相等这一个隐藏的静态条件。本题第一问比较简单,等腰梯形中的计算问题。第二问则需要用设元的方法表示出MN 和BP ,从而讨论他们的数量关系。第三问的猜想一定要记得分类分情况讨论。

【思考4】在ABCD 中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转90得到线段EF(如图1)

(1)在图1中画图探究:

①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转90 得

A B C

D O P

M N A B C D (备用图)

到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;

②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转90得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论. (2)若AD=6,tanB=

4

3

,AE=1,在①的条件下,设CP 1=x ,S 11P FC =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.

【思路分析】本题是去年中考原题,虽不是压轴,但动点动线一起考出来,难倒了不少同学。事实上就在于如何把握这个旋转90°的条件。旋转90°自然就是垂直关系,于是又出现了一堆直角三角形,于是证角,证线就手到擒来了。第二问一样是利用平行关系建立函数式,但是实际过程中很多同学依然忘记分类讨论的思想,漏掉了很多种情况,失分非常可惜。建议大家仔细研究这道中考原题,按照上面总结的一般思路去拆分条件,步步为营的去解答。

第三部分 思考题解析

【思考1解析】

(1) 证明:∵ EC DE ⊥,∴ ?=∠90DEC . ∴ ?=∠+∠90BEC AED .

又∵ ?=∠=∠90B A ,∴ ?=∠+∠90EDA AED . ∴ EDA BEC ∠=∠.∴ ADE ?∽BEC ?. (2)证明:如图,过点E 作EF BC //,交CD 于点F , ∵ E 是AB 的中点,容易证明)(2

1

BC AD EF +=

. 在DEC Rt ?中,∵ CF DF =,∴ CD EF 21=

.∴ )(21BC AD +CD 2

1

=. ∴ CD BC AD =+.

(3)解:AED ?的周长DE AD AE ++=m a +=,m a BE -=. 设x AD =,则x a DE -=.

∵ ?=∠90A ,∴ 2

22AD AE DE +=.即2

2

2

2

2x m x ax a +=+-.

第25题

∴ a

m a x 22

2-=.

由(1)知ADE ?∽BEC ?,

∴ 的周长的周长BEC ??ADE BE AD =m a a m a --=22

2a

m a 2+=. ∴ BEC ?的周长?+=

m

a a

2ADE ?的周长a 2=. ∴ BEC ?的周长与m 值无关. 【思考2答案】

解:(1)∠BPD= 30 °; (2)如图8,连结CD .

解一:∵ 点D 在∠PBC 的平分线上, ∴ ∠1=∠2. ∵ △ABC 是等边三角形, ∴ BA=BC=AC ,∠ACB= 60°. ∵ BP=BA , ∴ BP=BC .

∵ BD= BD , ∴ △PBD ≌△CBD .∴ ∠BPD=∠3. ∵ DB=DA ,BC=AC ,CD=CD , ∴ △BCD ≌△ACD . ∴ 134302

ACB ∠=∠=∠=?. ∴ ∠BPD =30°. 解二:∵ △ABC 是等边三角形, ∴ BA =BC=AC .

∵ DB=DA ,∴ CD 垂直平分AB . ∴ 134302

ACB ∠=∠=∠=?. ∵ BP=BA ,∴ BP=BC .

∵ 点D 在∠PBC 的平分线上, ∴ △PBD 与△CBD 关于BD 所在直线对称. ∴ ∠BPD=∠3. ∴ ∠BPD =30°.

(3)∠BPD= 30°或 150° . 图形见图9、图10.

【思考3解析】

解:(1)过点A 作AE ⊥BC,在Rt △ABE 中,由AB=5,cosB=

3

5

得BE=3. ∵CD ⊥BC ,AD//BC ,BC=6,∴AD=EC=BC -BE=3.

当BO=AD=3时, 在⊙O 中,过点O 作OH ⊥AB,则

BH=HP

cos BH B BO =,∴BH=39355?=. ∴BP=18

5

. (2)不存在BP=MN 的情况- 假设BP=MN 成立,

∵BP 和MN 为⊙O 的弦,则必有∠BOP=∠DOC. 过P 作PQ ⊥BC ,过点O 作OH ⊥AB,

∵CD ⊥BC ,则有△PQO ∽△DOC- 设BO=x ,则PO=x,由

3cos 5BH B x ==,得BH=35x , ∴BP=2BH=6

5

x . ∴BQ=BP×cosB=

1825x ,PQ=2425x .∴OQ=1872525

x x x -=. ∵△PQO ∽△DOC ,∴PQ DC OQ OC =即24

4257

625

x x x =

-,得296x =. 当296x =

时,BP=65x =295

>5=AB ,与点P 应在边AB 上不符, ∴不存在BP=MN 的情况.

(3)情况一:⊙O 与⊙C 相外切,此时,0<CN <6; 情况二:⊙O 与⊙C 相内切,此时,0<CN≤7

3

. 【思考4解析】

解:(1)①直线1FG 与直线CD 的位置关系为互相垂直. 证明:如图1,设直线1FG 与直线CD 的交点为H .

∵线段1EC EP 、分别绕点E 逆时针旋转90°依次得到线段1EF EG 、,

∴111190PEG CEF EG EP EF EC ∠=∠===°,,. ∵1190G EF PEF ∠=-∠°,11

90PEC PEF ∠=-∠°, ∴11G EF PEC ∠=∠.∴11G EF PEC △≌△. ∴11

G FE PCE ∠=∠. ∵EC CD ⊥,∴1

90PCE ∠=°,∴190G FE ∠=°. ∴90EFH ∠=°.∴90FHC ∠=°.∴1FG CD ⊥.

②按题目要求所画图形见图1,直线12G G 与直线CD 的位置关系为互相垂直.

A B

C D

O

P M

N Q H F

D

C B

A

E

图1

G 2

G 1

P 1

H P 2

(2)∵四边形ABCD 是平行四边形,∴B ADC ∠=∠. ∵461tan 3AD AE B ===

,,,∴4

5tan tan 3

DE EBC B =∠==,. 可得4CE =.由(1)可得四边形EFCH 为正方形.∴4CH CE ==.

①如图2,当1P 点在线段CH 的延长线上时,

∵111

4FG CP x PH x ===-,, ∴1111

1(4)

22

P FG x x S FG PH -=

??=△. ∴2

12(4)2

y x x x =

->. ②如图3,当1P 点在线段CH 上(不与C H 、两点重合)时,

∵111

4FG CP x PH x ===-,, ∴1111

1(4)

22

P FG x x S FG PH -=

?=△. ∴2

12(04)2

y x x x =-

+<<. ③当1P 点与H 点重合时,即4x =时,11PFG △不存在.

综上所述,y 与x 之间的函数关系式及自变量x 的取值范围是2

12(4)2

y x x x =

->或21

2(04)2

y x x x =-+<<.

B

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

【中考必备】最新中考数学试题分类解析 专题35 平面几何基础

2012年全国中考数学试题分类解析汇编(159套63专题) 专题35:平面几何基础 一、选择题 1. (2012北京市4分)如图,直线AB,CD交于点O,射线OM平分∠AOD,若∠BOD=760,则∠BOM 等于【】 A.38?B.104?C.142?D.144? 【答案】C。 【考点】角平分线定义,对顶角的性质,补角的定义。 【分析】由∠BOD=760,根据对顶角相等的性质,得∠AOC=760,根据补角的定义,得∠BOC=1040。 由射线OM平分∠AOD,根据角平分线定义,∠COM=380。 ∴∠BOM=∠COM+∠BOC=1420。故选C。 2. (2012重庆市4分)已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD 的度数为【】 A.60°B.50°C.40°D.30° 【答案】B。 【考点】平行线的性质,角平分线的定义。 【分析】∵EF∥AB,∠CEF=100°,∴∠ABC=∠CEF=100°。 ∵BD平分∠ABC,∴∠ABD=1 2 ∠ABC= 1 2 ×100°=50°。故选B。 3. (2012山西省2分)如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于【】

A . 35° B . 40° C . 45° D . 50° 【答案】B 。 【考点】平行线的性质,平角定义。 【分析】∵∠CEF =140°,∴∠FED =180°﹣∠CEF =180°﹣140°=40°。 ∵直线AB ∥CD ,∴∠A =∠FED =40°。故选B 。 4. (2012海南省3分)一个三角形的两边长分别为3cm 和7cm ,则此三角形的第三边的长可能是【 】 A .3cm B .4cm C .7cm D .11cm 【答案】C 。 【考点】三角形的构成条件。 【分析】根据三角形的两边之和大于第三边,两边之差小于第三边的构成条件,此三角形的第三边的长应在7-3=4cm 和7+3=10cm 之间。要此之间的选项只有7cm 。故选C 。 5. (2012海南省3分)小明同学把一个含有450 角的直角三角板在如图所示的两条平行线m n ,上,测得0120α∠=,则β∠的度数是【 】 A .450 B .550 C .650 D .750 【答案】D 。 【考点】平行线的性质,平角定义,对顶角的性质,三角形内角和定理。 【分析】∵m n ∥,∴∠ABn =0120α∠=。∴∠ABC =600 。 又∵∠ACB =β∠,∠A =450, ∴根据三角形内角和定理,得β∠=1800-600-450=750。故选D 。 6. (2012广东省3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【 】 A . 5 B . 6 C . 11 D . 16 【答案】C 。 【考点】三角形三边关系。 【分析】设此三角形第三边的长为x ,则根据三角形两边之和大于第三边,两边之差小于第三边的构成条件,得10﹣4<x <10+4,即6<x <14,四个选项中只有11符合条件。故选C 。

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由. (2)问题解决 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求 AB AD 的值. 2.如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的

等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ; (3)如图2所示,若F 为线段CD 上一点,∠FBC =30o. 求 DF FC 的值. 3.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终.. 为10cm 2.设EP =x cm ,FQ =y cm ,A B C D E 图1 A B C D E 图2 F

解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. 4.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1. A B C D E F (备用图) A B C D E F Q P 图① 图 ① A C A 1 B 1 C 1

中考数学重难点专题讲座动态几何与函数问题含答案(终审稿)

中考数学重难点专题讲座动态几何与函数问题 含答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学重难点专题讲座 第八讲动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E. (1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为s,s关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,且NQ平行于x轴,N点横坐标为4,求梯形上底AB的长及直角梯形OABC的面积. (2)当24 t<<时,求S关于t的函数解析式.

中考数学几何题集锦

地区:浙江省金华市年份:2011 分值:12.0 难度:难 如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上的一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.(1)当∠AOB=30°时,求弧AB的长; (2)当DE=8时,求线段EF的长; (3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E 的坐标;若不存在,请说明理由. 地区:浙江省湖州市年份:2011 分值:14.0 难度:难 如图1.已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D. (1)求点D的坐标(用含m的代数式表示); (2)当△APD是等腰三角形时,求m的值; (3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从点O向点C运动时,点H也随之运动.请直接写出点H所经过的路径长.(不必写解答过程)

地区:山东省济宁市年份:2011 分值:10.0 难度:难 如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C 的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx +3. (1)设点P的纵坐标为p,写出p随K变化的函数关系式. (2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明; (3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由. 地区:湖南省邵阳市年份:2011 分值:10.0 难度:难 如图(十一)所示,在平面直角坐标系Oxy中,已知点A(,0),点C(0,3) 点B是x轴上一点(位于点A右侧),以AB为直径的圆恰好经过点C. (1)求角ACB的度数; (2)已知抛物线y=ax2+bx+3经过A,B两点,求抛物线的解析式; (3)线段BC上是否存在点D,使△BOD为等腰三角形?若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由.

中考数学几何选择填空压轴题精选配答案

中考数学几何选择填空压轴题精选配答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题) 1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB. A .1个B . 2个C . 3个D . 4个 2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作 D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A .B . C . D . 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论: ①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A .1个B . 2个C . 3个D . 4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

中考数学专题(3)动态几何问题分析

中考数学专题3 动态几何问题 第一部分 真题精讲 【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒). (1)当MN AB ∥时,求t 的值; (2)试探究:t 为何值时,MNC △为等腰三角形. 【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】 解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形. A B M C N E D ∵AB DE ∥,AB MN ∥. ∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =. (这个比例关系就是将静态与动态联系起来的关键) ∴ 1021035t t -=-.解得5017t = . 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】 (2)分三种情况讨论:

中考数学之平面几何总结经典习题

平面几何知识要点(一) 【线段、角、直线】 1.过两点有且只有一条直线。 2.两点之间线段最短。 3.过一点有且只有一条直线和已知直线垂直。 4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。 垂直平分线,简称“中垂线”。 定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的 垂直平分线(中垂线)。 线段的垂直平分线可看作和线段两端点距离相等的所有点的

集合。 中垂线性质:垂直平分线垂直且平分其所在线段。 垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。 逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分 线上。 .三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶 点的距离相等。 角 1.同角或等角的余角相等。

2.同角或等角的补角相等。 3.对顶角相等。 角的平分线性质 角的平分线是到角的两边距离相等的所有点的集合 定理1:角的平分线上的点到这个角的两边的距离相等。 定理2:到一个角的两边距离相等的点,在这个角的平分线上。 三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。 【平行线】 平行线性质1:两直线平行,同位角相等。 平行线性质2:两直线平行,内错角相等。

平行线性质3:两直线平行,同旁内角互补。 平行线判定1:同位角相等,两直线平行。 平行线判定2:内错角相等,两直线平行。 平行线判定3:同旁内角互补,两直线平行。 平行线判定4:如果两条直线都和第三条直线平行,这两条直线也互相平行。 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段 成比例。

中考数学几何综合圆的综合大题压轴题

圆的综合大题 1.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=4,DE=3,求AD的长. 2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP. (1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由; (2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.

3.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P. (1)请你在图1中作出⊙O(不写作法,保留作图痕迹); (2)与是否相等?请你说明理由; (3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考) 4.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F. (I)如图①,若∠F=50°,求∠BGF的大小; (II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.

5.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF. (1)求证:∠ACD=∠F; (2)若tan∠F= ①求证:四边形ABCD是平行四边形; ②连接DE,当⊙O的半径为3时,求DE的长. 6.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE. (1)求AC、AD的长; (2)试判断直线PC与⊙O的位置关系,并说明理由.

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

中考数学中的探究性问题动态几何(终审稿)

中考数学中的探究性问 题动态几何 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学中的《探究性问题——动态几何》 动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查 学生的综合分析和解决问题的能力。 有关动态几何的概念,在很多资料上有说明,但是没有一个统一的定义,在这里就不在赘述了。本人只是用2005 年的部分中考数学试题加以说明。 一、知识网络 《动态几何》涉及的几种情况动点问题? 动线问题动形问题? ? 二、例题经典 1.【05 重庆课改】如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1 个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2 个单位长度的速度向点A 移动,设点P、Q 移动的时间为t 秒. (1) 求直线AB 的解析式; y (2) 当t 为何值时,△APQ 与△AOB 相似 24 A (3) 当t 为何值时,△APQ 的面积为 个平方单位 5 P Q

【解】(1)设直线AB 的解析式为y=k x+b 由题意,得b=6 8k+b=0 3 解得k=-b=6 4 3 所以,直线AB 的解析式为y=-x+6. 4 (2)由AO=6,BO=8 得AB=10 所以AP=t ,AQ=10-2t 1°当∠APQ=∠AOB 时,△APQ∽△AOB. t 10 2t 30 所以=解得t= (秒) 6 10 11 2°当∠AQP=∠AOB 时,△AQP∽△AOB. t 10 2t 50 所以=解得t= 10 6 13 (秒) (3)过点Q 作QE 垂直AO 于点E. BO 4 在Rt△AOB 中,Sin∠BAO= = AB 5 O y y A P Q O A Q y B B B x x x

初中数学平面几何建系专题讲课讲稿

初中数学平面几何建系专题 一.创设问题情境,引入新课 1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。 2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。 3.某人买了一张8排6号的电影票,很快找到了自己的座位。 分析以上情景,他们分别利用那些数据找到位置的。 你能举出生活中利用数据表示位置的例子吗? 二、新课讲授 1、由学生回答以下问题: (1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每 个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。 (2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面 图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。” 学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置. 思考: (1)怎样确定教室里坐位的位置 ?

(2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2)在同一位置。 (3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。 让学生讨论、交流后得到以下共识: (1)可用排数和列数两个不同的数来确定位置。 (2)排数和列数先后顺序对位置有影响。(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。因而这一对数是有顺序的。(3)让学生到黑板贴出的表格上指出讨论同学的位置。 2、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示 不同的含义,我们把这种有顺序的两个数a与b组成的数 对,叫做有序数对,记作(a,b) 利用有序数对,可以很准确地表示出一个位置。 3、常见的确定平面上的点位置常用的方法 (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。 (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。(以后学习) 巩固练习:1、教材65页练习 2.如图,马所处的位置为(2,3). (1)你能表示出象的位置吗? (2)写出马的下一步可以到达的位置。

中考数学几何专题知识点总结78点中考数学几何压轴题

中考数学几何专题知识点总结78点中考数学 几何压轴题 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

2020中考数学专题汇编 几何最值 含解析

几何最值 一、选择题 1.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1 B . 2 +1 2 C .2 2 +1 D .2 2 —1 2 {答案} B {解析}本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点C 为坐标平面内一点,BC ﹦1,所以点C 在以点B 为圆心、1长为半径的圆上,在x 轴上取OA ′=OA=2,当A ′、B 、C 三点共线时,A ′C 最大,则A ′C=2 2 +1,所以OM 的最大值为 2 +1 2 ,因此本题选B . 2.(2020·无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =1 2, 有下列结论: ①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+37 2. 其中,正确结论的序号为( ) A .①④ B .②④ C .①③ D .②③ {答案} D {解析}设AQ =x ,则BP =5 2 —x ①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =53 4,∴DE = 34,∴此时QD =212,即0≤QD ≤212;而33 2≤CP ≤3,两个范围没有交集,即不可能相等;①错误 ②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=3 2,∴都存在,∴②正确; ③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S △BPC = 34×32-12?x ?34-1 2 ×3 × D Q P C B A

中考数学--动点问题题型方法归纳

图 B 图 B 图动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1(2009年齐齐哈尔市)直线3 64 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的 平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2.如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

中考数学亮点好题汇编 专题六 平面几何基础专题

平面几何基础专题 一、选择题: 1. (xx?浙江省衢州市,2,2 分)如图,直线a,b 被直线c 所截,那么∠1的同位角是() A.∠2B.∠3C.∠4 D.∠5 【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可. 【解答】解:由同位角的定义可知, ∠1的同位角是∠4, 故选:C. 【点评】此题考查同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解. 2.(xx?广东省广州市,5,3 分)如图,直线AD,BE 被直线BF 和AC 所截,则 ∠1的同位角和∠5的内错角分别是() A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠4 【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之

间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角进行分析即可. 【解答】解:∠1的同位角是∠2,∠5的内错角是∠6,故 选:B. 【点评】此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形. 3.(xx?广东省深圳市,8,3 分)如图,直线a,b 被c,d 所截,且a∥b,则下列结论中正确的是() A.∠1=∠2B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180° 【分析】依据两直线平行,同位角相等,即可得到正确结论. 【解答】解:∵直线a,b 被c,d 所截,且a∥b, ∴∠3=∠4, 故选:B. 【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 4.(xx?广东省,8,3 分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是() A.30° B.40° C.50° D.60° 【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到 ∠B=∠D=40°. 【解答】解: ∵∠DEC=100°,∠C=40°, ∴∠D=40°, 又∵A B∥CD, ∴∠B=∠D=40°, 故选:B. 【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.

中考数学压轴题几何代数综合题(PDF版)

第三课时 几何代数综合题1.已知:如图①,在矩形ABCD 中,AB=5,AD=320 ,AE ⊥BD ,垂足是 E.点F 是点E 关于AB 的对称点,连接 AF 、BF. (1)求AE 和BE 的长; (2)若将△ABF 沿着射线BD 方向平移,设平移的距离为 m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值. (3)如图②,将△ABF 绕点B 顺时针旋转一个角(0°<<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程 中,设A ′F ′所在的直线与直线 AD 交于点P.与直线BD 交于点Q.是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由 . 解:(1)在Rt △ABD 中,AB=5,AD = ,由勾股定理得:BD === . ∵S △ABD =BD?AE =AB?AD , ∴AE===4. 在Rt △ABE 中,AB=5,AE=4,由勾股定理得: BE=3.(2)设平移中的三角形为△ A ′ B ′F ′,如答图2所示:由对称点性质可知,∠ 1=∠2.由平移性质可知,AB ∥A ′B ′,∠4=∠1,BF=B ′F ′=3. ①当点F ′落在AB 上时,∵AB ∥A ′B ′, ∴∠3=∠4,∴∠3=∠2, ∴BB ′=B ′F ′=3,即m=3; ②当点F ′落在AD 上时,∵AB ∥A ′B ′, ∴∠6=∠2,∵∠1=∠2,∠5=∠1, ∴∠5=∠6,又易知A ′B ′⊥AD , ∴△B ′F ′D 为等腰三角形, ∴B ′D=B ′F ′=3, ∴BB ′=B D ﹣B ′D =﹣3=,即m=. (3)存在.理由如下:

中考数学压轴题突破:几何最值问题大全

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡 不归、阿波罗尼斯圆等) 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。 例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上

相关文档
最新文档