四轴加工实例教程

四轴加工实例教程
四轴加工实例教程

UG四轴加工讲解

UG四轴加工讲解 A.零件的建模:梅花滚筒ф100×300 1)建模时要特别小心:在草图上作出梅花的曲线后,采用缠绕的方法使曲线附着在圆柱上。 2)图案的深度是5mm,而不在同一平面上的曲线拉伸后成的是片体。所以采用片体修剪,缝合成实体,再与圆柱求差的方法。因而最初拉伸时可以开始为-2结束为8,上下多2mm。 3)要保证图案的深度,在作修剪圆片体时,草图YZ平面上的ф100的圆心向-Z平移5mm即可。 4)注意修剪片体时的方法,采用曲线修剪省事,先修剪原点的圆柱片体,再作平移5mm的片体,在修剪这个平移5mm的片体。最后缝合成实体。 5)作出第一个实体后,采用变换的方法(实例特征不支持)作出其他七个。 6)最后与圆柱体求差。 B.加工过程: C.加工参数: 1)粗加工 切削模式:跟随周边,步距:%刀具平直,平面直径百分比:20,每一刀的深度:1, 【切削层】类型:用户定义,已测量从:顶层,范围深度:5.0 其他默认就行。 其结果如下: 对其进行变换,结果: 加工 序号 加工工序加工方法投影矢量刀轴刀具部件 余量 公差转速 r/min 进给 mm/min 1 粗加工型腔铣无Z轴T1B8 0.5±0.05 1000 300 2 精加工腔可变轴指向直线离开直线T2D6 0 ±0.01 2000 150 3 精加工侧壁可变轴指向直线离开直线T2D6 0 ±0.01 2000 150

中 其中,CA VITY_MILL_1_1为第一个(即原始生成的) CA VITY_MILL_2_1为将CA VITY_MILL_1_1轴向(+X)平移100复制 出来的。其他6个刀轨为“绕直线旋转”“Multiple Copies”(多重复制) 出来的。 2)精加工腔(采用可变轴铣,即4轴联动) a.采用边界的驱动方式来限制刀具的切削区域 创建的边界 生成的刀轨 边界只能创建在平面上,所以刀轨在上下显得余量很大 b.其他采用精加工的默认参数即可。 c.将刀轨复制平移,然后Multiple Copies。 3)精加工侧壁

多轴数控加工中心

多轴数控加工中心仿真软件简介 2010-08-01 随着我国数控加工业不断发展,加工要求也不断地在提高。三轴数控加工在满足产品形状复杂度、形位高精度和加工周期短等要求方面,存在很多不足。而多轴数控加工中心恰恰可以弥补这些不足,一次装夹可完成多个面的加工,简化对刀、装夹过程,减少由此产生的误差,提高加工效率。可以加工三轴加工中心无法完成的复杂形状的曲面。 多轴数控加工中心具有多轴联动加工和多方向平面定位加工。多轴联动加工功能适合各种复杂曲面的加工,多方向平面定位加工功能适合加工有多方向加工平面特征零件的加工。 多轴数控加工中心有多种结构形式,不同结构形式的机床适用加工对象也不尽相同,即使同一零件在不同结构形式的机床上加工,其编程要求也有所区别。多轴数控加工中心刀具运动轨迹比三轴加工更复杂,发生干涉、碰撞的可能性比三轴加工要大得多。 我国数控职业教育事业经过近十年的快速发展,职业院校对多轴数控加工中心教学和实训的需求也变得比较特出了。但是,多轴数控机床比三轴数控机床的投资和运行成本更大,操作上也更为复杂,发生碰撞的可能性也更大。同时,多

轴数控实训教师也是十分紧缺的。 上海宇龙软件工程有限公司在国家科技部创新基金(https://www.360docs.net/doc/b814118318.html, 2009年年度第一批立项项目代号09C26213100595)的支持下,已经成功开发了《多轴数控加工中心仿真软件》。为我国数控职业教育技术又填补了一个空白。 上海宇龙软件工程有限公司开发的本软件能够实现五轴加工中心的五轴联动加工和多方向平面定位加工仿真,能够实现RTCP(刀尖自动跟踪)功能;能够提供工作台旋转(P型)和工作台旋转+主轴旋转(M型)两种机床结构的多种机床模型;能够实现旋转轴为AC轴、BC轴、A轴等各种四轴或者五轴加工中心的加工仿真。 本软件现有版本已经包含的数控系统有:SIEMENS 840D、广州数控GSK25i、FANUC 0i,年内将相继推出MAZAK mazatrol 640、HEIDENHAIN iTNC 530、FANUC 32i等系统。 本软件在本公司原产品《数控加工仿真系统》4.8版本基础上,还增加了以下各项功能:用户可以使用自己设计定义的夹具、工件可以翻转重新装夹加工、虚拟电子探头、一些针对多轴特点的新测量方法。 上海宇龙软件工程有限公司的这项成果将为我国数控职业教育事业水平跨越性提升做出贡献。

轴联动加工中心后置处理的编写与验证

轴联动加工中心后置处理的编写与验证 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

五轴联动加工中心后置处理的编写与验证 五轴联动加工中心后置处理的编写与验证摘要:本文针对瑞士MIKRON UCP710工作台双摆动式五轴联动加工中心机床的运动原理,以及Heidenhain iTNC430控制系统的特点,阐述运用UG软件中后处理工具——UG POSTBUID 3.4.1,定制适合ucp 710五轴后处理的开发思路,并且通过VERICUT模拟软件进行模拟验证成功。目前成功开发出来的五轴后处理已在本校实训中心MIKRON UCP710五轴机床中得以全面应用,顺利地完成了各种3~5轴的零件加工。 关键词:五轴加工中心 UG Postbuld VERICUT 1、任务的来源 2001年冬,本中心购置了一台由瑞士MIKRON品牌的五轴联动加工中心,型号为——UCP710。如图1所示,此机床为工作台双摆动结构,(俗称:Table—Table双摆台)。通过X/Y/Z三个线性轴、定轴A轴的摆动和转动轴C轴的转动实现五轴联动加工。该机床的控制系统是德国的Heidenhai iTNC 430。目前,后置处理文件是计算机辅助制造软件中CAM与机床控制系统之间沟通的桥梁,是实现多轴加工的关键之一。同时本中心现配有CAD/CAM软件——UG,为了让UCP710早日投入到教学与生产加工,我们必须解决后置处理的问题。 现在国内多轴机床后置处理程序的开发已慢慢开始发展,但很多的资源还要通过国外进行技术支持。即使客户选购能够实现多轴加工编程的软件,但还要额外支付昂贵的后置开发费用才能实现软件与机床的“通讯”。开发通用的编写后置处理工具软件,可以有效地保证NC程序正确性,提高编程人员的后置处理技术以及效率,还可以把零件加工信息(如图号、工序号、刀具规格、程序加工时间等参数)嵌入NC程序中,提高加工的安全性,增加程序的可读性,减少操作人员的人为加工误差。 2、UCP710 post开发的过程 目前,常用的后置处理方法主要有以下两种: 第一种,利用CAD/CAM软件的通用后置处理模块,定义的运动方式,通过选取/软件提供的机床标准控制系统,定义某一类型或某台的后置处理。如PowerMILL的PM—post 模块,UG的UG POSTBULD模块; 第二种,利用VC++计算机语言,按的运动方式和控制系统的编程规范,归纳出计算空间点坐标的数学公式,通过编制专用的后置处理程序并生成可执行文件,定义的后置处理。 在这我们只对第一种方法进行讨论。 首先在做后置前要熟悉机床参数。 1)Mikron UCP710的机床技术参数: X axis 710mm

四轴加工理论讲解

四轴加工理论讲解 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

四轴加工典型案例教程 第1节四轴机床结构特点与工作原理 1.四轴的定义:一台机床上至少有4个坐标,分别为3个直线坐标和1个旋转坐标 2.四轴加工特点: (1).三轴加工机床无法加工到的或需要装夹过长 (2).提高自由空间曲面的精度、质量和效率 (3).四轴与三轴的区别;四轴区别与三轴多一个旋转轴,四轴坐标的确立及其代码的表示 Z轴的确定:机床主轴轴线方向或者装夹工件的工作台垂直方向为Z轴 X轴的确定:与工件安装面平行的水平面或者在水平面内选择垂直与工件的旋转轴线的方向为X轴,远离主轴轴线的方向为正方向 3.直线坐标X轴Y轴Z轴 旋转坐标A轴、B轴 A轴:绕X轴旋转为A轴(G代码) B轴:绕Y轴旋转为B轴(G代码) XYZ+A、XYZ+B、两种形式四轴 XYZ+A适合加工旋转类工件、车铣复合加工 XYZ+B工作台相对较小、主轴刚性差、适合加工小产品

四轴可以实现产品除底面外5个面都可以做加工,加工前我们必须对产品进行分析,确定四轴机床。 第2节四轴加工优点应运典型零件的工艺方案实际生产加工常发生的问题及其解决方案 1.三轴加工的缺点:1.刀具长度过长,刀具成本过高 2.刀具振动引发表粗糙度问题 3.工序增加,多次装夹 4.刀具易破损 5.刀具数量增加 6.易过切引起不合格工件 7.重复对刀产生累积公差 2.四轴优点:1.刀具得到很大改善2.加工工序缩短装夹时间 3.无需夹具 4.提高表面质量 5.延长刀具寿命 6.生产集中化 7.有效提高加工效率和生产效率 3.四轴加工主要应运的领域:航空、造船、医学、汽车工业、模具 4.四轴应运的典型零件:凸轮、涡轮、蜗杆、螺旋桨、鞋模、人体模型、汽车配件、其他精密零件加工 5.四轴加工工工艺及其实际生产加工常发生的问题及其解决方案: (1).四轴工件坐标系的确立、四轴G代码NC程序表示 (2).各种不同机台复杂零件的装夹 (3).加工辅助线、辅助面的制作 (4).四轴加工刀具与工件点接触,非刀轴中心的补偿 (5).加工过程中刀具碰撞问题 (6).刀轨的校验及其仿真加工 (7).不同四轴机器,不同刀轨和后处理 第3节结合案例讲解软件的综合使用技巧和新增功能的使用

四轴联动加工中心弧齿锥齿轮展成加工的CAM研究

摘要 弧齿锥齿轮结构的复杂性和独特性,给其设计与制造带来一定的困难。我国传统弧齿锥齿轮加工方法主要是利用格里森机床。而数控技术是弧齿锥齿轮加工的一个发展趋势。 本文将数控多轴联动加工与弧齿锥齿轮加工技术相结合,基于三维工程软件强大的造型功能及相关接口技术,利用VC++创建参数输入人机界面及软件数据传输通道,尝试开发基于四轴加工中心的弧齿锥齿轮数控加工方法。 所做工作包括:利用UG的建模功能生成铣刀盘:并创建刀具库;根据铣刀盘的结构、类型和被加工齿轮的特征建立数学模型,再根据假想平顶齿轮原理和展成加工方法,计算刀位轨迹并利用VC++实现刀位轨迹的参数化;进而在UG/CAM环境下模拟仿真:最后采用特殊的后处理技术,生成适合在四轴联动加工中心下加工弧齿锥齿轮的数控代码。 关键词:弧齿锥齿轮:加工中心:铣刀盘;展成加工Abstract 1绪论 1.1引言 目前,弧齿锥齿轮(图1—1)广泛应用在各种高速重载的相交轴传动中,特别是航空、航海、汽车、飞机、工程机械车以及各种精密机床等行业。它具有传动重合度大、承载能力高、传动效率高、传动平稳、噪声小等优点。因此,弧齿锥齿轮的设计与制造在机械行业中占有相当重要的地位。 弧齿锥齿轮理论是由美国Gleason公司的科学家E.威尔德哈泊(E.wilhaber)、M.L.巴斯特尔(M.L“Baxter)等人提出。后来瑞士的奥利康(Oerlikon)公司和德国的克林根贝格(Klingelnberg)公司也拥有了自己的弧齿锥齿轮技术,并各自制定了自己的标准,通常分别简称为“格”制、“奥”制和“克”制。其中最瞩目的是格里森公司(G1eason)推出的弧齿锥齿轮。其主要特点是:齿线为段圆弧,齿形较复杂,制造较难,承载能力高,运转平稳,噪声小,磨齿后可以用于高速转动。它在Y225、Y2290等专用机床l二用多刃面铣刀加工而成,齿坯相对于旋转的刀具滚动而成一齿槽后,刀具退回并转到原始位置,同时齿坯分度。 1主动轮2从动轮 图1-1弧齿锥齿轮 随着计算机技术和数字控制技术的发展,高精度电子传动的实现,为高精、高效和柔性化的弧齿锥齿轮加工开辟了新的途径。Nc技术的应用极大简化了机床结构和加工计算,目前仍只有少数国家拥有该方面技术,国内在这方面研究仍处于探索阶段,因此开展弧齿锥齿轮Nc加工研究具有重要理论意义和实际意义。 1.2弧齿锥齿轮的国内外发展与现状 1.2.1国外发展与现状 国外对弧齿锥齿轮的研究处于领先地位,特别是德国、美国和只本等几个工业发达国家。

四轴加工理论讲解

UG8、5四轴加工典型案例教程 第1节四轴机床结构特点与工作原理 1、四轴的定义:一台机床上至少有4个坐标,分别为3个直线坐标与1个旋转坐标 2、四轴加工特点: (1)、三轴加工机床无法加工到的或需要装夹过长 (2)、提高自由空间曲面的精度、质量与效率 (3)、四轴与三轴的区别; 四轴区别与三轴多一个旋转轴,四轴坐标的确立及其代码的表示 Z轴的确定:机床主轴轴线方向或者装夹工件的工作台垂直方向为Z轴 X轴的确定:与工件安装面平行的水平面或者在水平面内选择垂直与工件的旋转轴线的方向为X轴,远离主轴轴线的方向为正方向 3、直线坐标X轴Y轴Z轴 旋转坐标A轴、B轴 A轴:绕X轴旋转为A轴(G代码) B轴:绕Y轴旋转为B轴(G代码) XYZ+A、XYZ+B、两种形式四轴 XYZ+A 适合加工旋转类工件、车铣复合加工 XYZ+B 工作台相对较小、主轴刚性差、适合加工小产品 四轴可以实现产品除底面外5个面都可以做加工,加工前我们必须对产品进行分析,确定四轴机床。

第2节四轴加工优点应运典型零件的工艺方案实际生产加工常发生的问题及其解决方案 1、三轴加工的缺点:1、刀具长度过长,刀具成本过高 2、刀具振动引发表粗糙度问题 3、工序增加,多次装夹 4、刀具易破损 5、刀具数量增加 6、易过切引起不合格工件 7、重复对刀产生累积公差 2、四轴优点:1、刀具得到很大改善2、加工工序缩短装夹时间 3、无需夹具 4、提高表面质量 5、延长刀具寿命 6、生产集中化 7、有效提高加工效率与生产效率 3、四轴加工主要应运的领域: 航空、造船、医学、汽车工业、模具 4、四轴应运的典型零件:凸轮、涡轮、蜗杆、螺旋桨、鞋模、人体模型、汽车配件、其她精密零件加工 5、四轴加工工工艺及其实际生产加工常发生的问题及其解决方案: (1)、四轴工件坐标系的确立、四轴G代码NC程序表示 (2)、各种不同机台复杂零件的装夹 (3)、加工辅助线、辅助面的制作 (4)、四轴加工刀具与工件点接触,非刀轴中心的补偿 (5)、加工过程中刀具碰撞问题 (6)、刀轨的校验及其仿真加工 (7)、不同四轴机器,不同刀轨与后处理 第3节结合案例讲解软件的综合使用技巧与UG8、5新增功能的使用麻花钻四轴加工及其UG8、5多轴驱动的讲解 1、UG多轴驱动的应用,四轴加工的基本流程

三轴、四轴、五轴加工中心、卧加

三轴、四轴、五轴加工中心、卧式加工中心的区别。 五轴加工中心、四轴、三轴加工中心区别、立式加工中心(三轴)最有效的加工面仅为工件的顶面,卧式加工中心借助回转工作台,也只能完成工件的四面加工。目前高档的加工中心正朝着五轴控制的方向发展,工件一次装夹就可完成五面体的加工。如配置上五轴联动的高档数控系统,还可以对复杂的空间曲面进行高精度加工。立式五轴加工中心这类加工中心的回转轴有两种方式,一种是工作台回转轴。设置在床身上的工作台可以环绕X轴回转,定义为A 轴,A轴一般工作范围+30度至-120度。工作台的中间还设有一个回转台,在图示的位置上环绕Z轴回转,定义为C轴,C轴都是360度回转。这样通过A轴与C轴的组合,固定在工作台上的工件除了底面之外,其余的五个面都可以由立式主轴进行加工。A轴和C轴最小分度值一般为0.001度,这样又可以把工件细分成任意角度,加工出倾斜面、倾斜孔等。A轴和C轴如与XYZ三直线轴实现联动,就可加工出复杂的空间曲面,当然这需要高档的数控系统、伺服系统以及软件的支持。这种设置方式的优点是主轴的结构比较简单,主轴刚性非常好,制造成本比较低。但一般工作台不能设计太大,承重也较小,特别是当A轴回转大于等于90度时,工件切削时会对工作台带来很大的承载力矩。另一种是依靠立式主轴头的回转(图)。主轴前端是一个回转头,能自行环绕Z轴360度,成为C轴,回转头上还带可环绕X轴旋转的A 轴,一般可达±90度以上,实现上述同样的功能。这种设置方式的优点是主轴加工非常灵活,工作台也可以设计的非常大,客机庞大的机身、巨大的发动机壳都可以在这类加工中心上加工。这种设计还有一大优点:我们在使用球面铣刀加工曲面时,当刀具中心线垂直于加工面时,由于球面铣刀的顶点线速度为零,顶点切出的工件表面质量会很差,采用主轴回转的设计,令主轴相对工件转过一个角度,使球面铣刀避开顶点切削,保证有一定的线速度,可提高表面加工质量。这种结构非常受模具高精度曲面加工的欢迎,这是工作台回转式加工中心难以做到的。为了达到回转的高精度,高档的回转轴还配置了圆光栅尺反馈,分度精度都在几秒以内,当然这类主轴的回转结构比较复杂,制造成本也较高。 主轴回转的立式五轴加工中心立式加工中心的主轴重力向下,轴承高速空运转的径向受力是均等的,回转特性很好,因此可提高转速,一般高速可达1,2000r/min以上,实用的最高转速已达到4,0000转。主轴系统都配有循环冷却装置,循环冷却油带走高速回转产生的热量,通过制冷器降到合适的温度,再流回主轴系统。X、Y、Z三直线轴也可采用直线光栅尺反馈,双向定位精度在微米级以内。由于快速进给达到40~ 60m/min以上,X、Y、Z轴的滚珠丝杠大多采用中心式冷却,同主轴系统一样,由经过制冷的循环油流过滚珠丝杠的中心,带走热量。卧式五轴加工中心此类加工中心

四轴加工

MasterCAM在四轴、五轴加工中的应用技巧 一、四轴加工的应用 卫生巾切刀成型辊的数控加工主要是通过用平铣刀和锥度成型刀在XK-715M机床(带旋转轴的三坐标数控机床)上实现的。旋转轴上夹持的切刀成型辊相当于第四轴——A轴,刀具在圆柱体上走空间曲线,就得到刀刃的型面。 那么,如何建出这条卷在圆柱体上的空间曲线呢? 首先,在MasterCAM8.0中,根据切刀理论刃口展开图画出不同刀具的中心轨迹展开图,这是二维曲线。 然后,利用主菜单的转换→卷筒→串连,用串连的方式选取刀具轨迹曲线→然后设定卷筒直径、旋转轴X及曲线放置在圆柱体上的位置→确认后再作出与卷筒直径同样大小的圆柱曲面,作为4轴曲线加工的导动曲面,将空间曲线以投影方式投到圆柱面上进行加工。 虽然同样是FANUC系统,但XK-715M机床和加工中心控制器的所使用的格式稍有区别,所以在用MasterCAM后处理产生NC程序之前需修改后置处理文件MPFAN.PST。 方法如下:进入文件→编辑→*.PST→找到系统默认的MPFAN.PST文件,先作备份,如另存为MPFAN-1.PST文件,然后打开,找到下面清单中的变量 rot_ccw_pos : 1,将其改为rot_ccw_pos : 0,并存盘。 # Rotary Axis Settings # -------------------------- vmc : 1 #0 = Horizontal Machine, 1 = Vertical Mill rot_on_x : 1 #Default Rotary Axis Orientation, See ques. 164. #0 = Off, 1 = About X, 2 = About Y, 3 = About Z rot_ccw_pos : 1 #Axis signed dir, 0 = CW positive, 1 = CCW positive 之后,进入“NC管理”菜单→更改后置处理文件→选中MPFAN-1.PST文件,再对NCI文件进行后置处理,产生符合XK-715M机床的NC格式。 二、五轴加工的应用 以在FIDIA系统的T20上加工双角度叉耳内外形为例,说明用MasterCAM8.0实现T20上带固定角度的五轴加工。 T20的A、B角的是这样定义的:A角绕X轴旋转,B角绕Y轴旋转,B角是主动角,A角附加在B角上。T20的工作台不旋转,刀头可以作A、B角旋转。在MasterCAM建模时,首先要确定零件实际装夹位置(不超过A、B角定义的范围),构图面选择要与零件实际装夹面一致。

五轴加工中心和三轴四轴的区别

五轴加工中心介绍及其和三轴、四轴的区别 太空模具网 2010-9-3 16:16:00 阅读:825次 【字体:大中小】 立式加工中心(三轴)最有效的加工面仅为工件的顶面,卧式加工中心借助回转工作台,也只能完成工件的四面加工。目前高档的加工中心正朝着五轴控制的方向发展,工件一次装夹就可完成五面体的加工。如配置上五轴联动的高档数控系统,还可以对复杂的空间曲面进行高精度加工。 立式五轴加工中心 这类加工中心的回转轴有两种方式,一种是工作台回转轴。设置在床身上的工作台可以环绕X轴回转,定义为A轴,A轴一般工作范围+30度至-120度。工作台的中间还设有一个回转台,在图示的位置上环绕Z轴回转,定义为C轴,C轴都是360度回转。这样通过A轴与C 轴的组合,固定在工作台上的工件除了底面之外,其余的五个面都可以由立式主轴进行加工。A轴和C轴最小分度值一般为0.001度,这样又可以把工件细分成任意角度,加工出倾斜面、倾斜孔等。A轴和C轴如与XYZ三直线轴实现联动,就可加工出复杂的空间曲面,当然这需要高档的数控系统、伺服系统以及软件的支持。这种设置方式的优点是主轴的结构比较简单,主轴刚性非常好,制造成本比较低。但一般工作台不能设计太大,承重也较小,特别是当A轴回转大于等于90度时,工件切削时会对工作台带来很大的承载力矩。 主轴前端是一个回转头,能自行环绕Z轴360度,成为C轴,回转头上还带可环绕X轴旋转的A轴,一般可达±90度以上,实现上述同样的功能。这种设置方式的优点是主轴加工非常灵活,工作台也可以设计的非常大,客机庞大的机身、巨大的发动机壳都可以在这类加工中心上加工。这种设计还有一大优点:我们在使用球面铣刀加工曲面时,当刀具中心线垂直于加工面时,由于球面铣刀的顶点线速度为零,顶点切出的工件表面质量会很差,采用主轴

加工中心四轴加工中

加工中心四轴加工中,对刀时将XYZ的实际坐标输入到指定坐标系后此时第四轴的角度值也得输入到指 定坐标系? ( ⊙ o ⊙ )是的,分两种情况:1、你的加工中心为立式,4轴为附加型(可以拆装的),你的工件不是 装在4轴转盘上,可以不指定4轴坐标系。因为你就没有用。2、你装在转盘上了,你以回零点状态找正 ,始终不操作4轴。不过这样很危险,建议不用。 如果是卧式加工中心,必须在G54-59中指定4轴。 基于FANUC β 伺服电动机系列的I/ O LINK 轴的数控机床第四轴分度头电气设计 马晓东黄锟健《现代制造工程》2005(8) 摘要介绍基于FANUC 0i-mate β 系列的I / O LINK 轴在数控机床第四轴电气设计中的应用,并分析介绍分度头的工作原理,其数控功能的实现和一些相关设置连接。通过实际投产证明,基于FANUC I / O LINK 轴的第四轴设计应用能够满足加工及其设计要求,并且该设计与传统方案相比应用成本较低,性能稳定,特别适合企业设备数控化更新改造。 多面体一次装夹数控加工成形已受到用户的高度重视,但机床性能的增强导致成本随之增长。传统方案是选用具有四轴(或以上)联动功能的高档CNC

系统,虽然其控制功能强大,但价格昂贵。为此又发展到三轴CNC 系统加挂标准PMC 轴驱动模块来实现第四轴功能,使成本投入较前者有所降低。本文提供了一种性能可靠、成 本投入更加优化,并且在实际生产中得以验证的三轴CNC 系统的第四轴电气设计方案———基于FANUC 0i—mate β 系列的I / O LINK 轴数控机床第四轴分度头电气设计方法,并阐述I / O LINK 轴特点及其在第四轴分度头电气设计应用中的关键技术问题。 1 第四轴分度头动作分析及设计要求 一般情况下数控铣床或加工中心有X、Y、Z 三个基本轴,其他旋转、进给轴为第四轴,后者可以实现刀库定位,回转工作台、分度头的旋转定位,更高级的系统还可以与基本轴进行插补运算,实现四轴、五轴联动。一般多面体加工,如涡轮式空压机壳体的四面孔、槽的加工可以由第四轴分度头功能来完成,一次装夹就可以完成多道工序,其加工精度、效率得以显着的提高,以下以分度头旋转分度控制来说明。一般数控分度头的分度运动是伺服电动机通过联轴器驱动一组蜗轮蜗杆,从而使分度头旋转分度。本文提出 的设计要求:分度精度(系统)< 0. 05o,点位控制、能手动、自动运行程序,可回零。分度头的夹紧是通过一组气压夹紧装置来实现,夹紧动作的发出由一电磁阀控制。 2 数控系统选用 本文的方案是选用在中低档数控系统中有良好信誉的FANUC 0i Mate-MB 系统,并增加β 伺服电动机系列的I / O LINK 轴来实现第四轴功能。该系统采用了FSSB 技术,容易增加控制轴数,能够很好地满足设计及加工要求。FANUC I / O LINK 是一个串行接口,将CNC、单元控制器、分布式I / O 机床操作面板或Power Mate 连接

四轴加工理论讲解

四轴加工理论讲解 This model paper was revised by the Standardization Office on December 10, 2020

U G8.5四轴加工典型案例教程第1节四轴机床结构特点与工作原理 1.四轴的定义:一台机床上至少有4个坐标,分别为3个直线坐标和1个旋转坐标 2.四轴加工特点: (1).三轴加工机床无法加工到的或需要装夹过长 (2).提高自由空间曲面的精度、质量和效率 (3).四轴与三轴的区别;四轴区别与三轴多一个旋转轴,四轴坐标的确立及其代码的表示 Z轴的确定:机床主轴轴线方向或者装夹工件的工作台垂直方向为Z轴 X轴的确定:与工件安装面平行的水平面或者在水平面内选择垂直与工件的旋转轴线的方向为X轴,远离主轴轴线的方向为正方向 3.直线坐标X轴Y轴Z轴 旋转坐标A轴、B轴 A轴:绕X轴旋转为A轴(G代码) B轴:绕Y轴旋转为B轴(G代码) XYZ+A、XYZ+B、两种形式四轴 XYZ+A适合加工旋转类工件、车铣复合加工 XYZ+B工作台相对较小、主轴刚性差、适合加工小产品

四轴可以实现产品除底面外5个面都可以做加工,加工前我们必须对产品进行分析,确定四轴机床。 第2节四轴加工优点应运典型零件的工艺方案实际生产加工常发生的问题及其解决方案 1.三轴加工的缺点:1.刀具长度过长,刀具成本过高 2.刀具振动引发表粗糙度问题 3.工序增加,多次装夹 4.刀具易破损 5.刀具数量增加 6.易过切引起不合格工件 7.重复对刀产生累积公差 2.四轴优点:1.刀具得到很大改善2.加工工序缩短装夹时间 3.无需夹具 4.提高表面质量 5.延长刀具寿命 6.生产集中化 7.有效提高加工效率和生产效率 3.四轴加工主要应运的领域:航空、造船、医学、汽车工业、模具 4.四轴应运的典型零件:凸轮、涡轮、蜗杆、螺旋桨、鞋模、人体模型、汽车配件、其他精密零件加工 5.四轴加工工工艺及其实际生产加工常发生的问题及其解决方案: (1).四轴工件坐标系的确立、四轴G代码NC程序表示 (2).各种不同机台复杂零件的装夹 (3).加工辅助线、辅助面的制作 (4).四轴加工刀具与工件点接触,非刀轴中心的补偿 (5).加工过程中刀具碰撞问题 (6).刀轨的校验及其仿真加工 (7).不同四轴机器,不同刀轨和后处理 第3节结合案例讲解软件的综合使用技巧和UG8.5新增功能的使用

第一周四轴理论讲解机床结构工作原理典型零件的工艺方案

第一周四轴理论讲解机床结构工作原理典型零件的工艺方案 第一节四轴机床结构特点与工作原理 25min 1、四轴的定义:一台机床上至少有4个坐标,分别为3个直线坐标和1个旋转坐标 2、四轴加工特点: (1)三轴加工机床无法加工到的或需要装夹过长 (2)提高自由空间曲面的精度、质量和效率 (3)四轴与三轴的区别; 四轴区别与三轴多一个旋转轴,四轴坐标的确立及其代码的表示 Z轴的确定:机床主轴轴线方向或者装夹工件的工作台垂直方向为Z轴 X轴的确定:与工件安装面平行的水平面或者在水平面内选择垂直与工件的旋转轴线的方向为X轴,远离主轴轴线的方向为正方向 3、直线坐标X轴Y轴Z轴 旋转坐标A轴、B轴 A轴:绕X轴旋转为A轴(G代码) B轴:绕Y轴旋转为B轴(G代码) XYZ+A、 XYZ+B、两种形式四轴 XYZ+A 适合加工旋转类工件、车铣复合加工 XYZ+B 工作台相对较小、主轴刚性差、适合加工小产品 四轴可以实现产品除底面外5个面都可以做加工,加工前我们必须对产品进行分析,确定四轴机床。 第二节四轴加工优点应运典型零件的工艺方案实际生产加工常发生的问题及其解决方案 20min 1、三轴加工的缺点: (1)刀具长度过长,刀具成本过高 (2)刀具振动引发表粗糙度问题 (3)工序增加,多次装夹 (4)刀具易破损 (5)刀具数量增加 (6)易过切引起不合格工件 (7)重复对刀产生累积公差 2、四轴优点: (1)刀具得到很大改善 (2)加工工序缩短装夹时间 (3)无需夹具 (4)提高表面质量 (5)延长刀具寿命 (6)生产集中化 (7)有效提高加工效率和生产效率 3、四轴加工主要应运的领域:航空、造船、医学、汽车工业、模具

5轴加工中心与四轴三轴介绍

五轴加工中心与四轴三轴区别 立式加工中心(三轴)最有效的加工面仅为工件的顶面,卧式加工中心借助回转工作台,也只能完成工件的四面加工。目前高档的加工中心正朝着五轴控制的方向发展,工件一次装夹就可完成五面体的加工。如配置上五轴联动的高档数控系统,还可以对复杂的空间曲面进行高精度加工。 立式五轴加工中心 这类加工中心的回转轴有两种方式,一种是工作台回转轴。设置在床身上的工作台可以环绕X轴回转,定义为A轴,A轴一般工作范围+30度至-120度。工作台的中间还设有一个回转台,在图示的位置上环绕Z轴回转,定义为C轴,C轴都是360度回转。这样通过A轴与C轴的组合,固定在工作台上的工件除了底面之外,其余的五个面都可以由立式主轴进行加工。A轴和C轴最小分度值一般为0.001度,这样又可以把工件细分成任意角度,加工出倾斜面、倾斜孔等。A轴和C轴如与XYZ三直线轴实现联动,就可加工出复杂的空间曲面,当然这需要高档的数控系统、伺服系统以及软件的支持。这种设置方式的优点是主轴的结构比较简单,主轴刚性非常好,制造成本比较低。但一般工作台不能设计太大,承重也较小,特别是当A轴回转大于等于90度时,工件切削时会对工作台带来很大的承载力矩。

另一种是依靠立式主轴头的回转(图)。主轴前端是一个回转头,能自行环绕Z 轴360度,成为C轴,回转头上还带可环绕X轴旋转的A轴,一般可达±90度以上,实现上述同样的功能。这种设置方式的优点是主轴加工非常灵活,工作台也可以设计的非常大,客机庞大的机身、巨大的发动机壳都可以在这类加工中心上加工。这种设计还有一大优点:我们在使用球面铣刀加工曲面时,当刀具中心线垂直于加工面时,由于球面铣刀的顶点线速度为零,顶点切出的工件表面质量会很差,采用主轴回转的设计,令主轴相对工件转过一个角度,使球面铣刀避开顶点切削,保证有一定的线速度,可提高表面加工质量。这种结构非常受模具高精度曲面加工的欢迎,这是工作台回转式加工中心难以做到的。为了达到回转的高精度,高档的回转轴还配置了圆光栅尺反馈,分度精度都在几秒以内,当然这类主轴的回转结构比较复杂,制造成本也较高。 主轴回转的立式五轴加工中心 立式加工中心的主轴重力向下,轴承高速空运转的径向受力是均等的,回转特性很好,因此可提高转速,一般高速可达1,2000r/min以上,实用的最高转速已达到4,0000转。主轴系统都配有循环冷却装置,循环冷却油带走高速回转产生的热量,通过制冷器降到合适的温度,再流回主轴系统。X、Y、Z三直线轴也可采用直线光栅尺反馈,双向定位精度在微米级以内。由于快速进给达到40~

数控机床加工中心定义

加工中心 加工中心(Computerized Numerical Control Machine )简称cnc,是由机械设备与数控系统组成的使用于加工复杂形状工件的高效率自动化机床。加工中心又叫电脑锣。加工中心备有刀库,具有自动换刀功能,是对工件一次装夹后进行多工序加工的数控机床。加工中心是高度机电一体化的产品,工件装夹后,数控系统能控制机床按不同工序自动选择、更换刀具、自动对刀、自动改变主轴转速、进给量等,可连续完成钻、镗、铣、铰、攻丝等多种工序,因而大大减少了工件装夹时间、测量和机床调整等辅助工序时间,对加工形状比较复杂,精度要求较高,品种更换频繁的零件具有良好的经济效果。 数控机床实现了中、小批量加工自动化,改善了劳动条件。此外,它还具有生产率高、加工精度稳定、产品成本低等一系列优点。为了进一步发挥这些优点,数控机床遂向“工序集中”,即一台数控机床在一次装夹零件后能完成多工序加工的数控机床(即加工中心)方面发展。? 钻、镗、铣、车等单功能数控机床只能分别完成钻、镗、铣、车等作业,而在机械制造工业中,大部分零件都是需要多工序加工的。在单功能数控机床的整个加工过程中,真正用于切削的时间只占30%左右,其余的大部分时间都花费在安装、调整刀具、搬运、装卸零件和检查加工精度等辅助工作上。在零件需要进行多种工序加工的情况下,单功能数控机床的加工效率仍然不高。加工中心一般都具有刀具自动交换功能,零件装夹后便能一次完成钻、镗、铣、锪、攻丝等多种工序加工。 加工中心的用途: (1)周期性重复投产的工件。有些产品的市场需求具有周期性和季节性,如果采用专门生产线则得不偿失,用普通设备加工效率又太低,且质量不稳定,数量也难以保证。而采用CNC加工中心,首件(批)试切完后,程序和相关生产信息可保留下来.下次产品再生产时,只要很少的准备时间就可以开始生产。CNC加工中心工时包括准备工时和加工工时,CNC加工中心把很长的单件准备工时平均分配到每一个工件上,使每次生产的平均实际工时减少,生产周期大大缩短。 (2)高精度工件。有些工件需求甚少,但属关键部件,要求精度高且工期短,用传统工艺需用多台机床协调工作,其周期长、效率低,在长工序流程中,受人为影响容易出废品,从而造成重大经济损失。而采用CNC加工中心进行加工,生产完全由程序自动控制.避免了长工序流程,减少了硬件投资及人为干扰,具有生产效益高及质量稳定的特点。 (3)批量生产的工件。CNC加工中心生产的柔性不仅体现在对特殊要求的快速反应上,而且可以快速实现批量生产,以提高市场竞争能力。CNC加工中心适合于中小批量生产,特别是小批量生产,在应用CNC加工中心时。尽量使批量大于经济批量,以达到良好的经济效果。随着CNC加工中心的不断发展,经济批量越来越小,对一些复杂工件,5-10件就可以生产,甚至单件生产时也可以考虑用CNC加工中心。

四轴加工理论讲解

UG8.5四轴加工典型案例教程 第1节四轴机床结构特点与工作原理 1.四轴的定义:一台机床上至少有4个坐标,分别为3个直线坐标和1个旋转坐标 2.四轴加工特点: (1).三轴加工机床无法加工到的或需要装夹过长 (2).提高自由空间曲面的精度、质量和效率 (3).四轴与三轴的区别; 四轴区别与三轴多一个旋转轴,四轴坐标的确立及其代码的表示 Z轴的确定:机床主轴轴线方向或者装夹工件的工作台垂直方向为Z轴 X轴的确定:与工件安装面平行的水平面或者在水平面内选择垂直与工件的旋转轴线的方向为X轴,远离主轴轴线的方向为正方向 3.直线坐标X轴Y轴Z轴 旋转坐标A轴、B轴 A轴:绕X轴旋转为A轴(G代码) B轴:绕Y轴旋转为B轴(G代码) XYZ+A、XYZ+B、两种形式四轴 XYZ+A 适合加工旋转类工件、车铣复合加工 XYZ+B 工作台相对较小、主轴刚性差、适合加工小产品 四轴可以实现产品除底面外5个面都可以做加工,加工前我们必

须对产品进行分析,确定四轴机床。 第2节四轴加工优点应运典型零件的工艺方案实际生产加工常发生的问题及其解决方案 1.三轴加工的缺点:1.刀具长度过长,刀具成本过高 2.刀具振动引发表粗糙度问题 3.工序增加,多次装夹 4.刀具易破损 5.刀具数量增加 6.易过切引起不合格工件 7.重复对刀产生累积公差 2.四轴优点:1.刀具得到很大改善2.加工工序缩短装夹时间 3.无需夹具 4.提高表面质量 5.延长刀具寿命 6.生产集中化 7.有效提高加工效率和生产效率 3.四轴加工主要应运的领域:航空、造船、医学、汽车工业、模具 4.四轴应运的典型零件:凸轮、涡轮、蜗杆、螺旋桨、鞋模、人体模型、汽车配件、其他精密零件加工 5.四轴加工工工艺及其实际生产加工常发生的问题及其解决方案: (1).四轴工件坐标系的确立、四轴G代码NC程序表示 (2).各种不同机台复杂零件的装夹 (3).加工辅助线、辅助面的制作 (4).四轴加工刀具与工件点接触,非刀轴中心的补偿 (5).加工过程中刀具碰撞问题

四轴实验报告

目录 一、实验目的 (2) 二、实验原理 (2) 三、实验设备 (3) 四、实验步骤 (3) 1、认识MAHO MC50卧式加工中心 (3) 2、熟悉夹具 (4) 3、设计图案 (4) 4、NC代码生成 (7) 5、加工成果图 (8) 五、实验心得 (9)

一、实验目的 (1)通过实验的实际加工,以达到进一步掌握数控加工的基本原理和数控编程的基础知识。 (2)学习并掌握Mastercam软件的基本建模方法、刀具设置及路径仿真功能,能根据所学的数控编程知识对Mastercam软件后处理所生成的NC代码进行必要的修改,以更好地满足数控机床的实际加工生产。 (3)学习并掌握数控机床组合夹具的使用及刀具的装夹。 (4)熟练掌握数控机床的操作方法,包括程序的输入、工件坐标系的建立、自动对刀等操作,了解MAHO MC50加工中心的组成、功能与基本操作等知识。 (5)练习操作MAHO MC50加工中心,并导入Mastercam生成的NC代码加工程序,加工复杂零件。 二、实验原理 本实验的操作平台为四轴卧式数控加工中心。数控加工中心是由机械设备与数控系统组成的适用于加工复杂零件的高效率自动化机床。 本实验通过数控机床的控制系统控制加工中心刀具加工出零件要求的尺寸。MAHO MC50是四轴联动卧式加工中心,可以在X轴、Y轴、Z轴和B轴四轴方向上运动,可以满足本实验中复杂曲线的加工。 实验中使用Mastercam X6软件建模、设计刀具路径及仿真,最后生成可执行的NC程序代码,经必要修改后输入数控系统。由于加工平台的输入装置出现故障,只能采用手动程序输入方式。因此本实验要求所建立模型在不过于复杂的条件下尽可能的实现多种加工方式。 因此它的综合加工能力较强,工件一次装夹好后能完成较多的加工内容,加工精度较高,就中等加工难度的批量工件,其效率是普通设备的5~10倍,特别是它能完成许多普通设备不能完成的加工,对形状较复杂,精度要求高的单件加工或中小批量多品种生产更为适用。

加工中心操作工(四轴应用技术)赛项

加工中心操作工(四轴应用技术)赛项 技术文件 1.赛项技术描述 1.1.技能说明 铣类加工中心是当代数控机械加工中的主要装备,亦是智能制造的核心设备之一,其在装备制造、航空、航天、兵器、船舶、工程机械、电子电器等制造领域,均不可或缺。本赛项选取四轴加工中心的操作技能比赛为主体,重点考核内容如下: ·读识图能力,及对机械产品整体的理解。 ·产品的简单工艺和零部件的铣加工工艺(2、3、4轴加工、工件装夹、刀具应用、冷却方法等)。 ·零部件的三维建模和工艺模型处理。 ·零部件的手工编程与CAM编程、刀具应用技术。 ·加工实操。 ·零部件测量、检验。 ·简单装配。 ·操作规范及劳动安全。 1.2. 能力要求与考核范围 本赛项是对四轴加工中心应用技能的展示与评估。除现场考核的实践操作方面的能力外,由于现场设备的限制,针对加工中心操作工应用技术其它方面考核,通过理论比赛完成。 1.1.1.理论知识要求及范围

具备以下理论知识: ·机械图纸的读识图能力。 ·多轴加工知识。 ·数控机床知识(含加工中心维护保养知识)。 ·智能制造先进理念、实现手段、技术发展方向及应用 ·材料和工艺等知识。 ·切削刀具知识。 ·CAD/CAM知识。 ·安全生产与环境保护知识。 ·职业道德与质量管理知识。 理论比赛参考书: ·《数控系统使用说明书》(各控制系统厂家) ·《数控机床编程与操作》(各控制系统厂家) ·《金属切削原理与刀具》机械工业出版社 ·《数控综合加工技术案例·分析·点评》机械工业出版社 1.1. 2.实操 技术标准:参照国家职业资格三级要求,结合国内企业应用水平适当增加了考核难度。试件四轴加工要素明显,不仅有多轴定位加工,还有三轴、四轴联动加工。试件借鉴了企业产品特征,为组合体部件,可实现设定功能,观赏性强。试件加工要素包括:平面、孔系、槽型、圆弧、螺纹和特型加工等要素。试件加工含单件及组合件(配合件)加工。尺寸和位置精度不高于IT6级,表面粗糙度不超

MASTERCAM四轴加工实例教程

1 4.1 加工任务概述加工任务概述加工任务概述加工任务概述利用图4-1 所示的“福”字图片,通过Mastercam 的四轴加工功能得到笔筒造型。具体步骤如下:1)把图片中的“福”字转化成Mastercam 可读入的Autodesk 格式,或利用Mastercam9.1 自带的功能,直接可以把图片格式转换成线条。2)经过编辑后,得到我们加工笔筒所需要的线条图形,再把图形缠绕在直径为95mm 的圆筒上3)通过Mastercam 的四轴加工功能得到笔筒造型。图图图图4-1 未编辑前的福字为图片格式未编辑前的福字为图片格式未编辑前的福字为图片格式未编辑前的福字为图片格式经过图片转换,再加上修饰花边,加工后即为如图4- 2 效果。多轴数控设备实训丛书多轴数控设备实训丛书多轴数控设备实训丛书多轴数控设备实训丛书————四轴加工四轴加工四轴加工四轴加工 2 图图图图4-2 经过图片转换经过图片转换经过图片转换经过图片转换、、、、修饰后的加工效果修饰后的加工效果修饰后的加工效果修饰后的加工效果 4.2 工艺方案工艺方案工艺方案工艺方案笔筒的加工工艺方案如表4-1 所示。1))))工艺设计工艺设计工艺设计工艺设计表表表表4-1 笔筒的加工工艺方案笔筒的加工工艺方案笔筒的加工工艺方案笔筒的加工工艺方案工序号工序号工序号工序号加工内容加工内容加工内容加工内容加

工方式加工方式加工方式加工方式机床机床机床机床刀具刀具刀具刀具夹具夹具夹具夹具10 下料φ100×120 20 车:车外圆及长度至尺寸车卧式车床30 车:车内孔至尺寸车卧式车床40 铣:铣福字图案铣立式加工中心雕刻刀(或1mm 中心钻)专用心轴笔筒毛坯如图4-3 所示,材质为铝镁合金5050。在实际加工中,毛坯已没有夹持余量,不可能再用三爪夹持笔筒外圆的方法加工,但可设计一阶梯芯轴,用三爪夹持心轴,找正后,把笔筒套入芯轴,并用顶尖顶牢,由于实际加工过程中,切削力很小,笔筒内孔与芯轴之间为精密配合,顶尖顶牢后,预紧力完全满足加工切削力的要求。装夹方案设计如图4-4 所示。北京市北京市北京市北京市工贸技师工贸技师工贸技师工贸技师学院学院学院学院机 电分院机电分院机电分院机电分院 3 图图图图4-3 笔筒毛坯半剖视图笔筒毛坯半剖视图笔筒毛坯半剖视图 笔筒毛坯半剖视图图图图图4-4 笔筒加工示意图笔筒 加工示意图笔筒加工示意图笔筒加工示意图2))))芯轴设计芯轴设计芯轴设计芯轴设计经测量,笔筒的内孔直径为φ80.01mm,故芯轴直径选用φ80h5 (0.015 0 + ),最小间隙为0.01mm,最大间隙为0.025mm,可以满足装配加工要求。芯轴设计方案如图4-5 所示。多轴数控设备实训丛书多轴数控设备实训丛书多轴数控设备实

相关文档
最新文档