谈谈构造法在数学解题中的技巧

谈谈构造法在数学解题中的技巧
谈谈构造法在数学解题中的技巧

浅谈构造法在解题中的技巧

---- 张艳辉

关键词:构造法 转化 简便

数学是一门基础学科,是一门能够激发人的思维的学科。学好数学可以让你变得更加的聪明、灵活。可是,很多人对于数学的学习又感到是非常的烦闷,因为很多学生很努力的学习数学,但是最后的效果却是令人不堪回首,久而久之,最后干脆就放弃数学了。究其数学学不好的原因,我认为可能是学生不能准确的把握做题的思想方法和解题技巧。

数学不能只是简单的学习,更应该 “玩”,并且是深入的“玩”,去挖掘数学中的解题技巧,这样就能够举一反三,事半功倍。在初中数学中的解题技巧是非常多的,下面我就通过例题简单的谈谈构造法在数学解题中的应用。

例题1 如图,在正五边形ABCDE 中,MN ∥CD ,求∠1的度数.

分析:首先我们可以通过正多边形的定义,可以求出

正五边形的内角的大小,要求∠1的度数,我们只要转化成 三角形的内角和或三角形内角与外角之间的关系即可,但是图中

没有三角形,因此要构造一个三角形,如图延长DE 交MN 于F,

要求∠1,根据MN ∥CD ,可以求出∠AFE ,再根据∠AED

=∠1+∠AFE,即可求出∠1.

解:如图延长DE 交MN 于F,

∵MN ∥CD 五边形ABCDE 为正五边形

∴ ∠AED=∠D=108°

∵MN ∥CD

∴∠AFE+∠D=180°

∴∠AFE=180°— 108°=72°

∴∠1=∠AED —∠AFE=180°— 72°=36°

A B C E

D 21

M N

F

例题1中是通过构造法,把学生不熟的正多边形求角度转化成了学生熟悉的三角形求角度,把未知转发成已知,通过这种构造技巧和转化思想的结合,使得题目更加容易和简便了。

例题2 如图所示,AD ∥BC ,∠ABC 的平分线BP 与∠BAD 的平分线AP 相交于点P ,作PE 垂直AB 于点E ,若PE=2,则平行线AD 与BC 间的距离为 .

分析:题目的已知条件与求的目标似乎毫

无关系,很难找到突破口。但是,这道题 已知的是角平分线以及角平分线上一点到 角一边的垂线,这使我们可以联想到角平分线的性质,但是此图形比角平分线的性质图形少了点到另一边的垂线,于是我们可以想到构造角平分线的性质的图形。过P 点分别作AD 与BC 的垂线,分别交AD 、BC 于点M 、N ,由于PE=2,得到PM=PE=PN=2,而PM 与PN 的长度和即为AD 与BC 的距离,马上可以得到此题的答案为4。

例题3 如图,O 为△ABC 内的一点,点P 、M 、N 分别为点O 关于AB 、BC 、AC 的对称点,则∠APB+∠BMC+ANC= .

分析:要求∠APB 、∠BMC 、ANC 的和,

从图形中看,这三个角没有任何联系,从已知

条件来看,也不能分别求出每个角的大小,可

以说是没有任何的突破口。但是,题目已知点

P 、M 、N 分别为点O 关于AB 、BC 、AC 的对 称点,于是可以想到构造对称图形来进行求解。连接AO 、BO 、CO ,则∠APB 、∠BMC 、ANC 分别与∠AOB 、∠BOB 、∠COA 相等,要求要求∠APB 、∠BMC 、ANC 的和,即求∠AOB 、∠BOB 、∠COA 的和,为360°.

A D E

B P C

M N O N M

A P C B

例题2、3 题目较难,但是通过联系所学的知识进行构造,把一个无从下手的图形,转化成一个学生极为熟知的图形,从而题目迎刃而解,变得简单明了。

构造法是数学解题中的一种常见的方法和技巧,它要求学生对知识有深入的理解和有较强的应用知识的能力,构造法的得当应用可使得数学题目变得更加的容易和简便,使学生做起题目起来,得心应手,所以构造法是中学学生必须要掌握的解题方法。

最新浅谈构造法在中学数学解题中的应用上课讲义

浅谈构造法在中学数学解题中的应用 富源六中范文波 [摘要]:现代数学素质教育要求大力提高学生的数学素养,这不仅要使学生掌握数学知识,而且要使学生掌握渗透于数学知识中的数学思想方法,使他们能用数学知识和方法解决实际问题。构造法作为一种数学方法,不同于一般的逻辑方法,它是一步一步寻求必要条件,直至推导出结论,它属于非常规思维。其本质特征是“构造”,用构造法解题,无一定之规,表现出思维的试探性、不规则性和创造性。本文主要通过大量的例题说明构造法是广泛存在于解题过程中的,而且对于解某些问题是非常有用的. [关键词]:构造法;创造性;构造;几何变换 1 前言 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方向,换一个角度去思考从而找到一条绕过障碍的新途径。构造法就是这样的手段之一. 构造的数学思想提炼于数学各分支的研究方法之中,它融直观性、简单性、统一性、抽象性、相似性于一体,显示出简化与精密、直观与抽象的高度统一. 什么是构造法又怎样去构造呢?构造法是运用数学的基本思想经过认真的观察,深入的思考、分析,迁移联想,正确思维,巧妙地、合理地构造出某些元素、某种模式,使问题转化为新元素的问题,或转化为新元素之间的一种新的组织形式,从而使问题得以解决,这种方法称之为“构造法”. 构造法的内涵十分丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体的问题的特点而采取相应的解决办法,其基本的方法是:借用一类问题的性质,来研究另一类问题的思维方法.在解题过程中,若按习惯定势思维去探求解题途径比较困难时,我们可以根据题目特点,展开丰富的联想拓宽自己思维范围,运用构造法来解题也是培养我们创造意识和创新思维的手段之一,同时对提高我们的解题能力也有所帮助. 构造法包含的内容很多,在解题中的应用也千变万化,无一定规律可言,它需要更多的分析、类比、归纳、判断,同时能激发人们的直觉思维和发散思维.

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

数学解题中的构造法思想

数学解题中的构造法思想 数学科 庞春英 我们首先从下面例题的解法开始讨论: 例:解方程组 ?? ???=++=++=++323232c z c cy x b z b by x a z a ay x 解法一:直接按照三元一次方程组的消元法解题 (略)。 解法二:把原方程组改写为?????=---=---=---0002323 23x cy z c c x by z b b x ay z a a 利用方程根的定义,我 们把a,b,c 看成关于t 的三次方程023=---x yt zt t 的三个根。根据韦达定理得: x abc y ac bc ab z c b a ==++=++,,,因此原方程组的解为:?? ? ??++=++==c b a z ca bc ab y abc x 。 比较例题的两种解法:解法一作为一般的方法,求解极为麻烦,运算量大;解法二则是构造一个满足问题条件的关于t 的三次方程,构造的元件是a,b,c ,构造的“支架”是原方程变形的关系式“023=---x yt zt t ”。在解法二中,以问题已知元素或条件为“元件”,数学中的某些关系式为“支架”,在思维中构造了一种新的“建筑物”这种方法有一定的普遍意义。 在解题过程中思维的创造活动的特点是“构造”,我们称之为构造性思维,运用构造性思维解题的方法称为构造法,即为了解决某个数学问题,我们通过联想和化归的思想,人为地构造辅助图形、模型、方程、函数以帮助解决原来的问题,这样的解题方法,可以看作是构造解题。 早在公元前三百年左右,欧几里德为了证明素数有无穷多个,假设只有有限个素数n p p p p 321,,,而构造一个新素数121+n p p p ,从而证明了原命题。另外,古希腊人为了证明毕达哥拉斯学派的信条“万物皆为(有理数)”是不对的,构造一个边长为1的正方形,则它的对角线竟不是一个“有理数”。上述这些大概是数学史上最早采用构造法解题的例子吧。 所谓构造法,其实质就是运用数学的基本思想,经过认真的观察,深入的思考,构造出解题的数学模型,从而使问题得以解决。构造法体现了数学发现的思想,因为解决问题同获得知识一样,首先需要感知它,要通过仔细地观察、分析,去发现问题的各个环节以及其中的联系,从而为寻求解法创造条件;构造法还体现了类比的思想,为了找出解题的途径,很自然地联系已有知识中与之类似的或与之相关的问题,从而为构造模型提供了参照对象;构造法还体现了化归的思想,把一个个零散的发现由表及里,由浅入深地集中和联系起来,通过恰当的方法加

巧用构造法解数学题

巧用构造法解数学题 作者:邱习常, 李福兴, QIU Xi-Chang, LI Fu-xing 作者单位:邱习常,QIU Xi-Chang(贺州学院教育科学系,广西,贺州,542800), 李福兴,LI Fu-xing(贺州学院数学系,广西,贺州,542800) 刊名: 中国西部科技 英文刊名:SCIENCE AND TECHNOLOGY OF WEST CHINA 年,卷(期):2009,8(8) 被引用次数:0次 相似文献(10条) 1.期刊论文李芝金构造法在数学竞赛中的应用-中国西部科技2009,8(21) 构造法是数学学习中重要的思想方法之一,也是训练学生发散思维,培养学生创造意识和创新思维的手段之一.在数学竞赛中有着广泛的应用,纵观每届数学竞赛都存在不同类型的数学问题应用构造的思想方法来解答及证明.本文通过构造函数、构造方程、构造图形、构造数列等思想方法举例说明构造法的应用.旨在探讨培养学生的解题思想方法,训练学生的思维,增强学生的思维的灵活性,开拓性和创造性. 2.期刊论文叶剑辉浅谈数学的美——构造法-黑龙江科技信息2009,""(22) 研究构造法与数学美,可以培养开拓型创造型人才,也能激发学生学习数学的兴趣.构造法是欣赏数学美的旋律,通过恰如其分的构造去体验、衬托数学美,数学美往往贯穿于构造法的整个过程. 3.期刊论文彭培年浅谈构造法在数学竞赛中的应用-科技信息(科学·教研)2007,""(31) 解决数学问题的方法很多,构造法是其中一种十分重要的基本方法.本文简明地指出了构造法的关键以及利用构造法解决数学问题应具有的观察问题、分析问题、联想、转化等能力.并将引入特殊例题来介绍构造法的妙用,为中学数学教学中渗透构造法提供一点参考. 4.学位论文黄加卫高中数学构造性方法的研究与实践2006 江泽民同志曾指出:“二十一世纪的竞争是人才的竞争,”这里的人才是指具有创造性思维的人才。而数学思想方法在数学创造性教育中处于十分关键的地位,所以对数学思想方法的辩证分析就成为成功地实践数学创造性教育的关键。在高中数学教学中,构造思想方法是一种富有创造性的数学思想方法,它充分渗透在归纳、类比等重要的数学方法之中。而由于在高中数学教学中,构造思想的渗透教学常蕴涵在构造法的解题教学之中,故本文的内容主要体现在构造法的研究领域上。具体来说,本文将重点阐述以下几个问题: 一、数学构造性方法研究综述。主要介绍了数学思想方法与构造思想方法的关系,构造思想与构造法两者之间的区别与联系,构造法的界定,国内外有关数学构造法的历史及研究现状,并对构造法解题中教师和学生各自的作用及一些困惑进行了阐述。 二、关于构造法的理论构建。首先阐明了构造法的两个理论基础,即建构主义理论与波利亚的解题思想;其次指明了构造思想方法在高中数学教学中的作用以及构造法解题的思维策略及生成途径;最后研究了构造法与模式识别解题策略、数学美这两者的辩证关系以及构造法在解题中的负迁移效应及其克服。 三、高中数学教学中构造思想的渗透及培养。首先说明了高中数学教学中构造思想渗透的几种方式,即如何在数学概念教学、定理和公式教学、解题教学、复习课教学以及研究性学习教学中渗透构造思想;其次阐述了高中数学教学中构造思想的几种常见的培养方法,即完善、发展学生已有的数学认知结构以及数学思维能力,培养学生数学语言的转译能力,提高学生的审美能力,培养学生的求简意识,培养学生敏锐的观察力,加强其它数学思想,特别是数形结合思想的运用,培养学生的创造性思维。 四、构造思想渗透教学的一次实验研究。在教学实践的基础上,笔者通过实验研究发现,构造思想的渗透教学对提高学生的思维水平以及创新能力有着较好的效果。它不但能加深学生对数学知识的理解和运用,有助于完善学生的认知结构,而且能使学生的学习方式发生变化,从而有利于学生数学知识的掌握及解决问题能力的培养。 本文最后根据前面研究与实践的结果,提出了若干有待于进一步研究的问题。 5.期刊论文何映定关于用构造法解数学题的一点探讨-中国科技博览2009,""(16) 根据题目的条件和结论,构造出几何图形、方程、代数式、函数、数列、多项式等寻求解题途径的方法,称之为构造法.构造法是中学数学一种重要的解题方法,虽然构造过程存在一定的难度,但是它对于培养学生的创新能力却是很有益处的.因此,在教学过程中要有意识地对学生进行这方面能力的引导和训练.下面,笔者通过构造法 (函数式) 数学题进行这方面知识的探讨. 6.期刊论文徐秋丽浅谈构造法在数学中的应用-长春师范学院学报(自然科学版)2004,23(4) 解决数学问题的方法有很多,构造法是其中的一种基本方法.本文通过实例介绍了几种构造法,简明的指出了构造法的关键以及利用构造法解决数学问题应具有观察问题、分析问题、联想、转化等能力. 7.期刊论文高长峰.段崇华例谈数学构造法解题的功能-硅谷2009,""(1) 当解决命题p遇到阻碍时,可以跳过思维定势,设想构造一个与命题p相关的新命题q,通过对命题q的研究达到解决命题的目的,这种处理问题的方法称之为构造法.构造法是一种精巧的数学方法,其策略具有非常规性,方法带有试探性,思维富有创造性.因此,构造法解题是数学中最富有活力的思想方法之一,而且具有还原、分解、简化及数形转化功能,对培养学生的创造性思维大有裨益. 8.期刊论文柳长青例说构造法对数学创新思维能力的培养-南宁师范高等专科学校学报2004,21(3) 创新教育是实施素质教育的有效突破口,是素质教育的具体化,而学科创新教育则以培养学生的创新能力为重点.本文试图通过对构造法在数学问题解决的分析,探讨培养学生的创新思维能力. 9.学位论文孙林坡中学数学竞赛中的构造性思想方法研究2009 数学奥林匹克竞赛在我国方兴未艾,许多相关人员对竞赛的诸多方面进行了深入的研究,好的思想、好的方法不断涌现。构造性思想方法在数学竞赛中从命题到解题都有着极其广泛的应用,然而,根据了解,真正系统深入研究的人则少之又少,对它进行一番深入的研究是很有价值的。鉴于这种现状,本文对构造性思想方法进行了研究。研究主要是通过对近30年来已发表文献的分析、对从事竞赛事业人员的调查访谈以及自己的亲身体验等方面进行的。 本研究分为五个部分:第一章对研究背景进行了分析,以及数学构造法在国内外研究的历史及现状,说明了研究的日的和意义、内容和方法。第二章对国际数学奥林匹克竞赛历史进行了一些简单的介绍,以及在我国的发展情况。第三章分析了构造思想与构造法的关系,找到了构造法解题的理论依据:一是建构主义理论,二是波利亚的解题思想,研究了构造法的意义、构造法的特征、构造的功能、构造法与数学美的辩证关系、以及构造思想与方法的培养等。第四章利用实例分别在初等数论、代数、几何、组合数学中的应用加以实证。第五章对构造法解题在教学、培训、学习中的培养、应用和注意事项提出了一些建议,以及需要进一步研究的方向。 10.期刊论文耿济.GENG Ji数学娱乐(四)——Nasik幻方的性质与构造法-海南大学学报(自然科学版)2009,27(2)

中考数学构造法解题技巧

构造法在初中数学中的应用 所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面介绍几种数学中的构造法: 一、构造方程 构造方程是初中数学的基本方法之一。在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。 1、某些题目根据条件、仔细观察其特点,构造一个"一元一次方程" 求解,从而获得问题解决。 例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少? 解:原方程整理得(a-4)x=15-b ∵此方程有无数多解,∴a-4=0且15-b=0 分别解得a=4,b=15 2、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。

3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。 例3:已知3,5,2x,3y的平均数是4。 20,18,5x,-6y的平均数是1。求 的值。 分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出x、y的值,再求出的值。 二、构造几何图形 1、对于条件和结论之间联系较隐蔽问题,要善于发掘题设条件中的几何意义,可以通过构造适当的图形把其两者联系起来,从而构造出几何图形,把代数问题转化为几何问题来解决.增强问题的直观性,使问题的解答事半功倍。 例4:已知,则x 的取值范围是()

数列解题技巧归纳总结---好(5份)

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-? ?-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ??????????????????? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和 求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握 了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =?

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

浅谈构造法解题在高中数学竞赛中的应用

学好构造法 妙解竞赛题 在数学竞赛辅导过程中,需要长期给学生进行有针对性的数学思想方法的训练。其中构造法解题的思想,就是一种值得推广的解题思想方法。通过构造,可以建立起各种数学知识之间的联系与相互转化,让学生在熟练掌握各种数学知识的前提下交互使用,融会贯通。 一、构造几何模型,使代数问题几何化。 代数运算虽然直接,但有时会比较抽象且运算复杂,构造合乎要求的几何图形,可以是所求解的问题变得直观明朗,从而找到一个全新的接替办法。 例一,设a 为实数,证明:以1,1,34222+++-+a a a a a 为边长可以构成一个三角形,且三角形的面积为定值。 分析:从题目给出的三个根式我们知道,当实数a 去互为相反的两数时,只是其中两式角色互换,实质一样,故只需争对非负实数a 展开讨论即可。 ()( ) ? ???-+=++????-+=+-+= +120cos 121160cos 12113 2342222222 22a a a a a a a a a a 构造合乎要求的几何图形如图所示: ? =∠?=∠======120601CBE DAB CD BE AB a BC DF AD 于是:()( ) 343 2,3,222 2+=+= = =a a EF AE a AF 1 120cos 121,1,160cos 121,1,2 2 2 222++=????-+===+-=????-+====a a a a CE BE a BC a a a a DB FC AB a AD 所以:以1,1,34222+++-+a a a a a 为边长可以构成一个三角形,即ECF ?。 则:AEF AECF ECF S S S ??-= ?60 F E D C B A ?30 ? 120a a a 1 1 1

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

数列的几种构造法解题

数列几种构造法解题 数列的构造法,我这里仅仅表示的是n 1a 与+n a 之间的常见关系,还有很多需要补充的。 以下主要是以例题为主,表示不同类型的构造方法。 1-n 1-n 1n n 1n 2q a a 等比数列,a 2a ,1例=?==+. 1 -n 2d )1n (a a 等差数列,2a 2.a 例1n n 1n =-+=+=+ 1 2a 化简可得2)1a (1a 所以整体是等比数列1a ,所以1x 展开解得)x a (2x a 构造等比数列1 a 2a 。3例n n 1 -n 1n n n 1n n 1n -=+=++=+=++=++ 1-n n 011-n 1-n n n 1n n n n 1n n n n 110111 1n 1n n n n 1n n n n n 1 -n 1n n n n 1n 1n n n 1n 2n a 所以n 1)1-n (2a 2a 可以得到 12a 2a 得到 2同除以22a a )22-3a 化简即可得3 2)32()33a (33a 即整体是等比数列33a 。所以3x 展开解得)3a (32x 3a 构造13a 23a 可以得到 3首先同除以,间接构造 2解2-3a 所以2)3-a (3-a 所以1 x 展开解得) 3x a (23x a 构造,直接构造法: 1解32a a )1,4例n ?==?+==-+==-=-=---=+=++==?=-=+=++=++-----+++++n n n n n n n n n x

3n 327an 所以2)33a (33n a 即是等比数列, 3n 3a 所以3 t ,3m 展开解得), t mn a (2t )1n (m a 构造 n 3+2a =a ,5例1-n 1 -n 1n n n 1n n 1+n --?=?++=++++==++=+++?+ 综合例6的通项公式。a ,试求n 3a 2a ,2a 已知n n n 1n 1++==+ 1n -23a 所以22 )113-a (1n 3a 所以1y ,1x ,1m 展开化简依次可以解得)y xn 3m a (2y )1n (x 3m a 解:构造1n n n 1n 1n 11n n n n 1n 1n -+==?++=++-==-=+++=++++---++

数列构造法 (2)

构造法求数列的通项公式 在数列求通项的有关问题中,经常遇到即非等差数列,又非等比数列的求通项问题,特别是给出的数列相邻两项是线性关系的题型,在老教材中,可以通过不完全归纳法进行归纳、猜想,然后借助于数学归纳法予以证明,但新教材中,由于删除了数学归纳法,因而我们遇到这类问题,就要避免用数学归纳法。这里我向大家介绍一种解题方法——构造等比数列或等差数列求通项公式。 构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助模型,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉. 供参考。 1、构造等差数列或等比数列 由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法. 例1设各项均为正数的数列的前n项和为S n ,对于任意正整数n ,都有等式:成立,求的通项a n. 解:,∴ ,∵,∴. 即是以2为公差的等差数列,且. ∴ 例2数列中前n项的和,求数列的通项公式. 解:∵ 当n≥2时, 令,则,且 是以为公比的等比数列, ∴. 2、构造差式与和式 解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式. 例3设是首项为1的正项数列,且,(n∈N*),求数列的通项公式a n. 解:由题设得. ∵,,∴. ∴ .

. 例4数列中,,且,(n∈N*),求通项公式a n. 解:∵ ∴(n∈N*) 3、构造商式与积式 构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法. 例5数列中,,前n 项的和,求. 解: , ∴ ∴ 4、构造对数式或倒数式 有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决. 例6设正项数列满足,(n≥2).求数列的通项公式. ,设,则 解:两边取对数得:, ,,, ∴ 例7已知数列中,,n≥2时,求通项公式. 解:∵,两边取倒数得. 可化为等差数列关系式. ∴ .

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

数学解题技巧与解题思路

解题技巧 一、三角函数题 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后, 如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。 三、立体几何题 1、证明线面位置关系,一般不需要去建系,更简单;

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 四、概率问题 1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数; 2、搞清是什么概率模型,套用哪个公式; 3、记准均值、方差、标准差公式; 4、求概率时,正难则反(根据p1+p2+...+pn=1); 5、注意计数时利用列举、树图等基本方法; 6、注意放回抽样,不放回抽样; 7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透; 8、注意条件概率公式; 9、注意平均分组、不完全平均分组问题。 五、圆锥曲线问题 1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

高中数学核心方法:构造法

高中数学核心方法:构造法 构造法,顾名思义是指当解决某些数学问题使用通常方法按照定向思维难以解决问题时,应根据题设条件和结论的特征、性质,从新的角度,用新的观点去观察、分析、理解对象,牢牢抓住反映问题的条件与结论之间的内在联系,运用问题的数据、外形、坐标等特征,使用题中的已知条件为原材料,运用已知数学关系式和理论为工具,在思维中构造出满足条件或结论的数学对象,从而,使原问题中隐含的关系和性质在新构造的数学对象中清晰地展现出来,并借助该数学对象方便快捷地解决数学问题的方法。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这些想法的实现是非常灵

活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特点,以便依据特点确定方案,实现构造。 下面,我们通过几个例题,来简单看一下高中阶段几种常见的构造法。 例1.(构造函数)已知三角形的三边长分别为,,a b c ,且m 为正数,求证:a b c a m b m c m +>+++ 解:构造函数()1x m f x x m x m = =-++,则()f x 在()0+∞,上是增函数。 0a b c +>> ,()()f a b f c ∴+>。 ()()()()a b a b a b f a f b f a b f c a m b m a b m a b m a b m ++= +>+==+>++++++++ a b c a m b m c m ∴+>+++ 例2.(构造距离)求函数 ()f x =的最小值。 解:()f x =其几何意义是平面内动点(),0P x 到两定点()()1,4,3,2M N --的距离之和,当 ,,P M N 三点共线时距离之和最小为MN ==即() f x 的最小值为。 例3.(构造直线斜率)求函数()sin cos 3x f x x =- 的值域。 解:构造动点()cos ,sin P x x 与定点()3,0Q 的连线的斜率,而动点P 的轨迹为单位圆。

相关文档
最新文档