2.1曲线方程的概念和圆的参数方程作业

2.1曲线方程的概念和圆的参数方程作业
2.1曲线方程的概念和圆的参数方程作业

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信

自己目标,不断努力、不断奋斗的人,才能取得最终的成功。但有一点我始终坚信,那就是,当你能把自己感动得哭了的时候,你就成功了!

2.1参数方程的概念和圆的参数方程作业

当堂检测

1.当参数θ变化时,由点P (2cos θ,3sin θ)所确定的曲线过点( )

A .(2,3)

B .(1,5)C.? ?

???0,π2 D .(2,0)

2.方程???

??x =t +1t ,

y =2(t 为参数)表示的曲线是( ) A .一条直线 B .两条射线 C .一条线段D .抛物线的一部分

3.若直线3x +4y +m =0与圆???x =1+cos θ,

y =-2+sin θ(θ为参数)没有

公共点,则实数m 的取值范围是________.

4.(2014·江苏盐城模拟)已知圆C 的参数方程为???x =cos θ,

y =sin θ+2(θ

为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ+ρcos θ=1,求直线l 截圆C

所得的弦长. .

一、基础达标

1.已知曲线C 的参数方程是???x =a +2cos θ,

y =2sin θ.(θ为参数),曲

线C 不经过第二象限,则实数a 的取值范围是( ) A .a ≥2 B .a >3 C .a ≥1 D .a <0

2.将参数方程?

??x =2+sin 2

θ,

y =sin 2

θ(θ为参数)化为普通方程为( )

A .y =x -2

B .y =x +2

C .y =x -2(2≤x ≤3)

D .y =x +2(0≤y ≤1)

3.若曲线的参数方程是???

??x =1-1t ,

y =1-t 2(t 是参数,t ≠0),它的普通方程是( )

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信自己目标,不断努力、不断奋斗的人,才能取得最终的成功。但有一点我始终坚信,那就是,当你能把自己感动得哭了的时候,你就成功了!

A .(x -1)2

(y -1)=1B .y =x (x -2)

(1-x )2

C .y =

1(1-x )2-1D .y =x

1-x 2

4.已知直线l 的参数方程为???x =a +t

y =b +t (t 为参数),l 上的点P 1对

应的参数是t 1,则点P 1与P (a ,b )之间的距离为( ) A .|t 1| B .2|t 1| C.2|t 1| D.2

2|t 1|

5.若曲线???x =1+cos θ,y =2sin θ(θ为参数)经过点? ????

32,a ,则a =

________.

6.已知圆C 的参数方程为???x =cos α,

y =1+sin α(α为参数),以原点为

极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 与圆C 的交点的直角坐标为________. 7.已知曲线C :???x =cos θ,y =-1+sin θ,

(θ为参数)如果曲线C 与直

线x +y +a =0有公共点,求实数a 的取值范围.

二、能力提升

8.在直角坐标系下,曲线C 的参数方程为:??

?x =1+cos α,

y =sin α.(α为参数)在以坐标原点为极点,x 轴正半轴为极轴的极坐标系下,曲线C 的极坐标方程为( ) A .ρcos θ=2 B .ρsin θ=2 C .ρ=2sin θ D .ρ=2cos θ

9.直线???x =2+t ,y =-1-t (t 为参数)与曲线???x =3cos α,y =3sin α(α为任意实

数)的交点个数为________.

10.把圆x 2+y 2+2x -4y +1=0化为参数方程为________.

11.(2014·扬州、南通、泰州、宿迁调研) 在平面直角坐标系xOy 中,已知圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信自己目标,不断努力、不断奋斗的人,才能取得最终的成功。但有一点我始终坚信,那就是,当你能把自己感动得哭了的时候,你就成功了!

(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别求圆C 1,C 2的极坐标方程及这两个圆的交点的极坐标; (2)求圆C 1与C 2的公共弦的参数方程.

12.(2014·天津卷改编)在以O 为极点的极坐标系中,圆ρ=4sin θ和直线

ρsin θ=a 相交于A ,B 两点,若△AOB 是等边三角形,求a 的值.

三、探究与创新

13.已知C (r ,0)(r >0),动点M 满足|MC |=r ,根据下列选参

数的方法,分别求动点M 的轨迹方程. (1)以x 轴正方向到CM 所成角θ为参数; (2)以x 轴正方向到OM 所成角α为参数. 答案 1.答案 D

解析 当2cos θ=2,即cos θ=1时,3sin θ=0. ∴过点(2,0).

2.答案 B

解析 t >0时x =t +1

t ≥2,

当t <0,x =t +1t =-(-t +1

-t )≤-2.

即曲线方程为y =2(|x |≥2),表示两条射线.

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信自己目标,不断努力、不断奋斗的人,才能取得最终的成功。但有一点我始终坚信,那就是,当你能把自己感动得哭了的时候,你就成功了!

3.答案 (-∞,0)∪(10,+∞)

解析 把圆的参数方程化成普通方程为(x -1)2+(y +2)2=1,由已知直线与圆相离,∴|3×1+4×(-2)+m |

5>1,解得m <0

或m >10,故填(-∞,0)∪(10,+∞).

4.解 圆C 的方程为 x 2+(y -2)2=1;直线l 的方程为 x +y =1.圆心(0,2)到直线的距离为d =

||

0+2-12

=22,故所求

弦长为2

1-(2

2)2= 2.

一、基础达标 1.答案 A

解析 ∵曲线C 的参数方程是???x =a +2cos θ,

y =2sin θ.(θ为参数),

∴化为普通方程为(x -a )2

+y 2

=4, 表示圆心为(a ,0),半径等于2的圆.

∵曲线C 不经过第二象限,则实数a 满足a ≥2,

故选A. 2.答案 C

解析 将参数方程中的θ消去,得y =x -2.又x ∈[2,3],故选C.

3.答案 B

解析 由x =1-1t ,得1

t =1-x ,由y =1-t 2,得t 2=1-y . ∴(1-x )2

·(1-y )=? ??

??1t 2·t 2

=1.整理得

y =

x (x -2)

(1-x )2

.

4.答案 C

解析 点P 1对应的点的坐标为(a +t 1,b +t 1), ∴|PP 1|=(a +t 1-a )2+(b +t 1-b )2=2t 21=2|t 1|. 5.答案 ±3

解析 点? ????

32,a 代入曲线方程得cos θ=12,a =2sin θ=±2

1-1

4=±3.

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信自己目标,不断努力、不断奋斗的人,才能取得最终的成功。但有一点我始终坚信,那就是,当你能把自己感动得哭了的时候,你就成功了!

6.答案 (-1,1),(1,1)

解析 由圆C 的参数方程为???x =cos α,

y =1+sin α.可求得在直角坐标

系下的方程为

x 2+(y -1)2=1,由直线l 的极坐标方程ρsin θ=1可求得在直角坐标系下的

方程为y =1,由???y =1,x 2+(y -1)2

=1可解得???x =±

1,y =1. 所以直线l 与圆C 的交点的直角坐标为(-1,1),(1,1). 7.解 ∵???x =cos θ,

y =-1+sin θ,

∴x 2+(y +1)2=1.

∵圆与直线有公共点,则d =|0-1+a |

2≤1,

解得1-2≤a ≤1+ 2. 二、能力提升 8.答案 D

解析 由???x =1+cos α,

y =sin α.(α为参数)得(x -1)2+y 2=1.

所以曲线C 表示以(1,0)为圆心,以1为半径的圆. 选项A 的直角坐标方程为x =2;选项B 的直角坐标方程为y =2;

对于选项C ,由ρ=2sin θ,得ρ2=2ρsin θ,即x 2+y 2-2y =0,不相符;

对于选项D ,由ρ=2cos θ,得ρ2=2ρcos θ,即x 2+y 2-2x =0,整理得 (x -1)2+y 2=1.

所以曲线C 的极坐标方程为ρ=2cos θ. 故选D. 9.答案 2

解析 消参后,直线为x +y =1,曲线为圆x 2+y 2=9,圆心(0,0)到直线的距离为2

2

,小于半径3,所以直线与圆相交,因此,交点个数为2.

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信自己目标,不断努力、不断奋斗的人,才能取得最终的成功。但有一点我始终坚信,那就是,当你能把自己感动得哭了的时候,你就成功了!

10.答案 ?

??x =-1+2cos θ

y =2+2sin θ(θ为参数)

解析 圆x 2+y 2+2x -4y +1=0的标准方程是(x +1)2+(y -2)2=4,圆心为

(-1,2),半径为2,

故参数方程为???x =-1+2cos θ,

y =2+2sin θ

(θ为参数).

11.解 (1)圆C 1的极坐标方程为ρ=2,圆C 2的极坐标方程为ρ=4cos θ,

由???ρ=2,ρ=4cos θ得ρ=2,θ=±π3,故圆C 1,C 2交点坐标为圆?

?

???2,π3,? ????2,-π3.

(2)由(1)得,圆C 1,C 2交点直角坐标为(1,3),(1,-3), 故圆C 1与C 2的公共弦的参数方程为???x =1,y =t (-3≤t ≤3).

12.解 由ρ=4sin θ可得x 2+y 2=4y ,即x 2+(y -2)2=4. 由ρsin θ=a 可得y =a .

设圆的圆心为O ′,y =a 与x 2+(y -2)2=4的两交点A ,B 与O 构成等边三角形,如图所示. 由对称性知∠O ′OB =30°,OD =a . 在Rt △DOB 中,易求DB =3

3a ,

∴B 点的坐标为? ????

33a ,a ,

又∵B 在x 2+y 2-4y =0上, ∴? ??

??33a 2

+a 2-4a =0, 即4

3

a 2-4a =0,解得a =0(舍去)或a =3. 13.解 (1)如图所示,依题意动点M 的轨迹是以C (r ,0)为圆心,r 为半径的圆,设圆和x 轴的正半轴交于A ,OA 为直径.

设M (x ,

y ),作MN ⊥Ox 于N ,

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信自己目标,不断努力、不断奋斗的人,才能取得最终的成功。但有一点我始终坚信,那就是,当你能把自己感动得哭了的时候,你就成功了!

在Rt △MCN 中,|CM |=r ,∠ACM =θ,

∴x =ON =OC +CN =r +r cos θ,y =MN =r sin θ. ∴动点M 轨迹的参数方程是???x =r (1+cos θ)

y =r sin θ(θ为参数).

(2)设点M 的坐标为M (x ,y ),OA =2r , 则ON =OA cos α·cos α=2r cos 2α,

NM =OA cos α·sin α=2r sin α·cos α=r sin 2α.

∴点M 的轨迹方程是???x =2r cos 2

α,

y =r sin 2α.

(α为参数)

二元一次方程组的概念及解法

二元一次方程组的概念及解法 知识点梳理 知识点一二元一次方程组的概念 含有两个未知数,并且含有未知数的相的次数都是1,像这样的方程叫做二元一次方程。 把两个二元一次方程合在一起就组成了一个方程组,像这样的方程组叫做二元一次方程组。 使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。 一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。 典例分析 例1、在方程组、、、、 、中,是二元一次方程组的有个; 例2、已知二元一次方程2x-y=1,若x=2,则y=;若y=0,则x=. 变式1:方程x+y=2的正整数解是__________. 变式2、在方程3x-ay=8中,如果是它的一个解,那 么a的值为? ? ? = = 1 3 y x

例3 方程组???=+=-5 21 y x y x 的解是( ) A 、 ???=-=21y x B 、???-==12 y x C 、???==21y x D 、???==12y x 例4、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组 。 例5、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十头,下有九十四足。问鸡兔各几何。”你能用二元一次方程组表示题中的数量关系吗?使找出问题的解。 知识点二 解二元一次方程 消元解二元一次方程???代入消元法加减消元法 典例分析 例1、 把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = . 化成含x 的代数式表示y 的形式:y = .

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

曲线和方程的概念说课

《曲线和方程的概念》说课稿 临朐二中谢文利 各位评委、老师,大家好! 我说课的内容是“曲线和方程的概念”。下面我从教材分析、教学方法、学法指导、教学程序设计、板书设计以及教后评价六个方面来汇报对教材的钻研情况和本节课的教学设想。恳请在座的领导、专家、同仁批评指正。 一、关于教材分析 1、教材的地位和作用 “曲线和方程”是高中数学人教B版选修2-1第二章第一节的重点内容之一,对一般曲线(也包括直线)与二元方程的关系作进一步的研究。这部分内容从理论上揭示了几何中的“形”与代数中的“数”相统一的关系,为“形”与“数”的相互转化开辟了途径,同时也体现了解析几何的基本思想,为解析几何 https://www.360docs.net/doc/b616735994.html,/view/900761eae009581b6bd9eb45.html 的教学奠定了一个理论基础。 2、教学内容的选择和处理 本节教材主要讲解曲线的方程和方程的曲线 https://www.360docs.net/doc/b616735994.html,/view/9d02094fc850ad02de8041ad.html) 坐标法、解析几何等概念,讨论怎样求曲线的方程以及曲线的交点等问题。共分两课时,这是第一课时。此课时的主要内容是建立“曲线的方程”和“方程的曲线”这两个概念,并对概念进行初步运用。我在处理教材时,不拘泥于教材,敢于大胆进行调整。主要体现在对曲线的方程和方程的曲线的定义进行归纳上,通过构造反例,引导学生进行观察、讨论、分析、正反对比,逐步揭示其内涵,加深学生对概念的认识然后在此基础上归纳定义。 3、教学目标的确定 根据新课程标准的要求以及本节教材的地位和作用,结合高二学生的认知特点,我认为,通过本节课的教学,应使学生理解曲线和方程的概念;会用定义来判断点是否在方程的曲线上、证明曲线的方程;培养学生分析、判断、归纳的逻辑思维能力,渗透数形结合的数学思想;并借用曲线与方程的关系进行辩证唯物主义观点的教育;通过对问题的不断探讨,培养学生勇于探索的精神。 4、关于教学重点、难点和关键 由于曲线和方程的概念体现了解析几何的基本思想,学生只有透彻理解了这个概念,才能用解析法去研究几何图形,才算是踏上学好解析几何的入门之径。因此,我把曲线和方程的概念确定为本节课的教学重点。另外,由于曲线和方程的概念比较抽象,加之刚刚进入高二的学

2.2常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程 一椭圆的参数方程 1、中心在坐标原点,焦点在x 轴上,标准方程是22 221(0)x y a b a b +=>>的椭圆的参数方程 为cos (sin x a y b ? ??=??=? 为参数) 同样,中心在坐标原点,焦点在y 轴上,标准方程是22 221(0)y x a b a b +=>>的椭圆的参 数方程为cos (sin x b y a ? ??=??=? 为参数) 2、椭圆参数方程的推导 如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,和小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。 设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(,)x y 。那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点,A B 都在角?的终边上,由三角函数的定义有 cos cos ,sin sin x OA a y OB b ????==== 3 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ? ?? =??=?为 参数) 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 3、椭圆的参数方程中参数?的意义 圆的参数方程cos (sin x r y r θ θθ =?? =?为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆 的参数方程cos (sin x a y b ? ?? =?? =?为参数)中的参数?不是动点(,)M x y 的旋转角,它是动点 (,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋 转角,通常规定[)0,2?π∈ 4、椭圆参数方程和普通方程的互化

二元一次方程的概念及其解法

二元一次方程(组)的概念及其解法 【知识要点】 1. 什么叫做二元一次方程?什么叫做二元一次方程组? 2. 你知道解二元一次方程组的基本思路吗? 3.掌握二元一次方程组的两种解法“代入消元法”“加减消元法”【典型例题】 概念 1.下列方程中属二元一次方程的是( ) A.x+y=3z B.3xy-7=0 C.6x-7y=8 D.113 x y += 2.下列是二元一次方程组的是( ) A. 1 2 3 y x x ? -= ? ? ?= ? B.19 2 4 x y ? -= ? ? ?= ? C. 1 2 x y y x + ? = ? ? ?-= ? D. 2 2 1 2 2 x y y x ?= ? ? += ?? 3.数对 2 4 x y =- ? ? = ? 是下列哪一个方程的解( ) A.x+y=2 B.x+y=0 C.2x+y=1 D.x-y=2 4.已知5x+y=25,则用x的代数式表示y为______,用y的代数式表示x为____. 5.写出二元一次方程3x-5y=1的一个正整数解________. 6.两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨? 7.在平面直角坐标系中,已知点A)8 2(- -, b a与点B)3 2 (b a+ -,关于原点对称,求a、b的值.

解法一——代入消元法 例1.把方程3x=1-4y变形:(1)用含x的代数式表示y;(2)用含y的代数式表示x. 例2.用代入法解方程组: (1) 23 3280 y x x y =+ ? ? --= ? (2) 31 324 x y x y += ? ? +=- ? 练习 解下列方程组 (1)(2) 解法二——加减消元法 例4. (1 ).(2) 561 324 x y x y -= ? ? -= ? (3) 15 35 35250 y y x x y +- ? = ? ? ?--= ?

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:12 22 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆)0(12 22 2 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 2002 01 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

曲线和方程典型例题

典型例题一 例1如果命题“坐标满足方程f x, y 0的点都在曲线C上”不正确,那么以下正确的命题是 (A)曲线C上的点的坐标都满足方程f x, y 0 . (B)坐标满足方程f x, y 0的点有些在C上,有些不在C 上. (C)坐标满足方程f x, y 0的点都不在曲线C 上. (D)—定有不在曲线C上的点,其坐标满足方程f x, y 0 . 分析:原命题是错误的,即坐标满足方程 f x, y 0的点不一定都在曲线C上,易知答案为D. 典型例题二 例2说明过点P(5, 1)且平行于x轴的直线I和方程y 1所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可?其中“曲线上的点的坐标都是方程f(x,y) 0的解”,即纯粹性;“以方程的解为坐标的点都是 曲线上的点”,即完备性?这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P且平行于x轴的直线I的方程为y 1,因而y 在直线I上的点的坐标都满足y 1,所以直线I上的点都在方程y 1表示的曲线上.但是以|y 1这个方程的解为坐标的点不会都在直线I上,因此方 ------ ■ — 程y 1不是直线I的方程,直线I只是方程|y 1所表示曲线的一部分. |1说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三 例3说明到坐标轴距离相等的点的轨迹与方程y x所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程y x所表示的曲线上每一个点都满足到坐标轴距离相等?但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程y x,例如点(3,3)到两坐标轴的距离均为3,但它不满足方 程y x.因此不能说方程y x就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的 点的轨迹也不能说是方程y x所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都 满足方程”,即不满足纯粹性?只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例4曲线x2 (y 1)2 4与直线y k(x 2) 4有两个不同的交点,求k的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分

二元一次方程组基本概念及配套练习题

二元一次方程组的基本概念及配套练习题 【课前导入】 (1)什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗? 1)代数式:单独的一个数字或单独的一个字母以及用运算符号把数或表示数 的字母连成的式子。 2)等式:用“=”表示相等关系的式子。 3)方程:含有未知数的等式。 4)方程的解:使方程左右两边相等的未知数的值。 5)一元一次方程:在一个方程中未知数只有1个,并且未知数的最高次数是 1的等式。 【新课内容】 我们来看一个问题: 例1、丁丁想利用家里的天平称出一个苹果和一个梨的质量分别是多少? 问题展示:一个苹果和一个梨的质量合计200g。 这个问题中,如果设苹果和梨的质量分别为x g和y g,你能列出方程吗? 利用这个方程你能帮助丁丁分别求出苹果和梨的质量吗? 这个苹果的质量加上一个10g的砝码恰好与这个梨的质量相等,你还能列出方程吗? 例2、篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。 某队为了争取较好名次想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少? 思考:以上问题包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗? 胜的场数+负的场数=总场数, 胜场积分+负场积分=总积分, 这两个条件可以用方程表示:

x +y =22 2x +y =40 上面两个方程中,每个方程都含有两个未知数(x 和y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。 这两个方程有什么特点?与一元一次方程有什么不同? 注意:二元一次方程的左边和右边都应是整式 上面的问题中包含两个必须同时满足的条件,也就是未知数x 、y 必须同时满足方程 x +y =22 ① 和2x +y=40 ② 把这两个方程合在一起,写成 x y 222x y 40+=?? +=? 由于问题中包含两个必须同时满足的条件(等量关系),所以未知数x ,y 必须同时满足方程 ①,②,也就是说,我们要解出的x ,y 必须是这两个方程的公共解。 像这样,把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。 这里给出二元一次方程组的概念,两个二元一次方程合在一起就组成二元一次方程组。更一般地说,如果两个一次方程合起来共有两个未知数,那么它们组成一 个二元一次方程组。特别地,x 2x y 4=??+=?,和x 1y 2=??=?这样的方程组也是二元一次方程组。 满足方程①,且符合实际的意义的x,y 的值有那些?把它们填入表中。 下表中哪对x,y 的值还满足方程②? 设计这个探究的目的是,让学生通过对具体数值代人方程的过程,感受到满足一个二元一次方程的未知数的值有许多对。由于要考虑实际意义,所以满足方程①的未知数的值有23对(未知数为0~22的整数)。 注意:二元一次方程的解是满足方程的一对数值,即 y b ?? =?,一个二元 一次方程有无数对解,但是并不是说任意一对数值都是它的解。 我们还发现,x=18,y=4既满足方程①,又满足方程②,也就是说它们是方程①与方程②的公共解。 我们把x =18,y=4叫做二元一次方程组

圆锥曲线与方程 知识点详细

椭圆 1、椭圆的第一定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。 a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值围是)10(<>),且已知椭 圆的准线方程为2 a x c =±,试推导出下列式子:(提示:用三角 函数假设P 点的坐标e PM PF PM PF == 2 21 1

曲线与方程(轨迹方程)

高二数学第二章曲线与方程学案 学习目标: 1、理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 2、掌握求曲线的方程的方法及一般步骤; 学习重点:理解曲线和方程的概念,掌握求曲线的方程的方法及一般步骤; 学习难点:曲线和方程概念的理解; 学习过程: 完成教学目标1:理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 新授知识:曲线的方程与方程的曲线的概念 一般地,在直角坐标系中,如果其曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点; 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 例1、判断下列结论的正误并说明理由 (1)过点A (3,0)且垂直于x 轴的直线为x=3 ; (2)到x 轴距离为2的点的轨迹方程为y=2 ; (3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=1 ; 练习:1、到两坐标轴距离相等的点组成的直线方程是0=-y x 吗? 2、已知等腰三角形三个顶点的坐标是)3,0(A ,)0,2(-B ,)0,2(C ,中线O AO (为原点)的 方程是0=x 吗?为什么? 3、若曲线C 上的点的坐标满足方程(,)0f x y =,则下列说法正确的是( ) A.曲线C 的方程是(,)0f x y = B.方程(,)0f x y =的曲线是C C.坐标不满足方程(,)0f x y =的点都不在曲线C 上 D.坐标满足方程(,)0f x y =的点都在曲线C 上 例2、已知方程252 2=+by ax 的曲线经过点)3 5,0(A 和点)1,1(B ,求a 、b 的值。 练习:已知方程 2 2 25x y +=表示的曲线C 经过点)A m ,求m 的值。 完成教学目标2:掌握求曲线的方程的方法及一般步骤; 类型一:待定系数法求轨迹方程(设出标准方程,根据题意求出a ,b ,p ) 例1:已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O , 且0=?,||2||=,求椭圆的方程。 练习:已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.求椭圆C 的标准方程; 类型二:直接法求轨迹方程(根据题目条件,直译为关于动点的几何关系,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。注意:是否应该建立适当的坐标系) 例2:已知点F(1,0),直线l:x =-1,P为平面上的动点,过点P作直线l的垂线,垂 足为点Q,且FQ FP QF QP ?=?,求动点P的轨迹C的方程; **练习:已知动点M 到定点A (1,0)与到定直线l :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线?

(完整版)二元一次方程组知识点整理

第五章 二元一次方程组 知识点整理 知识点1:二元一次方程(组)的定义 1、二元一次方程的概念 含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程 注意:1、(1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数. (2)含有未知数的项的次数都是1. (3)二元一次方程的左右两边都必须是等式. (三个条件完全满足的就是二元一次方程) 2.含有未知数的项的系数不等于零,且两未知数的次数为1。 即若ax m +by n =c 是二元一次方程,则a ≠0,b ≠0且m=1,n=1 例1:已知(a -2)x -by |a|-1 =5是关于x 、y 的二元一次方程,则a =______,b =_____. 例2:下列方程为二元一次方程的有_________ ①y x =-52,②14=-x ,③2=xy ,④3=+y x ,⑤22 =-y x ,⑥22=-+y x xy ,⑦71 =+y x ⑧y x 23+,⑨1=++c b a 【巩固练习】 下列方程中是二元一次方程的是( ) A .3x-y 2 =0 B .2x +1y =1 C .3x -5 2 y=6 D .4xy=3 2、二元一次方程组的概念 由两个二元一次方程所组成的方程组叫二元一次方程组 注意:①方程组中有且只有两个未知数。②方程组中含有未知数的项的次数为1。③方程组中每个方程均为整式方程。 例:下列方程组中,是二元一次方程组的是( ) A 、2284 23119 (23754624) x y x y a b x B C D x y b c y x x y +=+=-=??=??? ? ? ?+=-==-=???? 【巩固练习】1,已知下列方程组:(1)32x y y =??=-?,(2)324x y y z +=??-=?,(3)1310x y x y ?+=?? ??-=?? ,(4)30x y x y +=??-=?, 其中属于二元一次方程组的个数为( ) A .1 B. 2 C . 3 D . 4 1、 若75331 3=+--m n m y x 是关于x 、y 二元一次方程,则m =_________,n =_________。 知识点2:二元一次方程组的解定义

圆锥曲线与方程单元知识总结

圆锥曲线与方程单元知识总结、公式及规律 一、圆锥曲线 1.椭圆 (1)定义 定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 数=<<时,这个点的轨迹是椭圆. e (0e 1)c a (2)图形和标准方程 图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0) 821(a b 0) x a y b x b y a 222 2222 2 (3)几何性质

2.双曲线 (1)定义 定义1:平面内与两个定点F F2的距离的差的绝对值等于常数(小于|F1F2|)的点 1、

的轨迹叫做双曲线(这两个定点叫双曲线的焦点). 定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点). (2)图形和标准方程 图8-3的标准方程为: x a y b 2 2 2 2 -=>,> 1(a0b0) 图8-4的标准方程为: y a x b 2 2 2 2 -=>,> 1(a0b0) (3)几何性质

3.抛物线 (1)定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. (2)抛物线的标准方程,类型及几何性质,见下表: ①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离. ③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k |x x ||y y |2121-=-11 2+ k 焦点弦长公式:|AB|=p +x 1+x 2 4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义 缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程. A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.

曲线与方程的教学设计

曲线与方程的教学设计 上海曹杨二中桂思铭 一、内容和内容解析 曲线与方程为选修2-1的内容,它刻画了曲线(几何图形)和方程(代数算式)间的一一对应关系;同时,介绍了求解曲线方程的一般方法,并要求学生能通过方程来处理一些简单的几何问题,如根据已知条件确定方程中的参数,求动点的轨迹方程等问题. 学生在这本节内容学习之前,已经有了直线方程及圆方程的相关知识,在这里进一步研究曲线与方程的关系有着承上启下的作用,学生可以根据已经验通过教师的引导进行一般的归纳总结,用已有经验来加深对定义的认识,廓清曲线与方程之间的关系,进而能更深入理解解析几何的本质,同时也为后继圆锥曲线的学习奠定一个基础. 二.目标和目标解析 教学目标:理解曲线的方程、方程的曲线的概念;能根据给出的条件求曲线的方程;经历对曲线方程定义的归纳理解过程,体会数学思维的严谨,借助于技术强化数形结合的思想 方法. 上述教学目标具体体现在: (1)能辨析给出的方程是否是某个曲线的方程; (2)给出一些熟悉的曲线的部分图像后能确定变量的取值范围; (3)掌握求曲线方程的基本流程; (4)能利用曲线方程的定义求解轨迹方程; (5)能对照求曲线方程的步骤来反思自己的求解过程. 教学的重点和难点在于学生对曲线与方程的概念的理解和掌握. 三.教学问题诊断 新课标教材将这部分内容作为选修内容,之前的学习为学生提供了曲线与方程的具体事例(直线及圆),学生知道直线和圆的问题可以通过方程来研究处理,如判断两条直线的位置关系;求直线的交点;直线和圆的位置关系等,但可能经过了一个阶段学生记忆中留下的只是一些具体的解题的方法和知识,并不能自觉地通过已有的知识、记忆去发展和构建新的知识,这需要教师通过一些事例去激活学生的思维. 另外,在前面学习的直线和圆的过程中,学生遇到的问题往往是求得的直线或圆就是一条完整的直线或一个完整的圆,不需要去深究求得的方程是否会混入不在曲线上的点的问题,而进入到一般的曲线的研究过程,学生自然会在这方面出现这样或那样的问题,所以我们

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人教B版选修44

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人 教B 版选修44 学习目标:1.了解圆的渐开线和摆线的参数方程.(重点)2.了解渐开线与摆线的参数方程的推导过程.(难点) 1.摆线 (1)定义 一圆周沿一直线作无滑动滚动时,圆周上的一定点M 的轨迹称为摆线. (2)参数方程 ????? x =a (t -sin t )y =a (1-cos t ) (t 是参数). 2.圆的渐开线 (1)定义 把一条没有弹性的细绳绕在一个固定不动的圆盘的侧面上,把绳拉紧逐渐展开,绳的外端点随之移动,且绳的拉直部分始终和圆相切.绳的端点移动的轨迹就是一条圆的渐开线,固定的圆称为渐开线的基圆. (2)参数方程 ? ?? ?? x =a (cos t +t sin t )y =a (sin t -t cos t )(t 是参数). 思考:圆的渐开线和摆线的参数方程中,参数t 的几何意义是什么? [提示] 根据渐开线的定义和求解参数方程的过程,可知其中的字母a 是指基圆的半径,而参数t 是指绳子外端运动时绳子与基圆的切点B 转过的角度,如图,其中的∠AOB 即是角 t .显然点M 由参数t 惟一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐 标转化为与三角函数有关的问题,使求解过程更加简单. 同样,根据圆的摆线的定义和建立参数方程的过程,可知其中的字母a 是指定圆的半径,参数t 是指圆上定点相对于定直线与圆的切点所张开的角度.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.

1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线 B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形 C .正方形也可以有渐开线 D .对于同一个圆,如果建立的平面直角坐标系的位置不同,画出的渐开线形状就不同 [解析] 不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么地方建立平面直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同. [答案] C 2.半径为3的圆的摆线上某点的纵坐标为0,那么其横坐标可能是( ) A .π B .2π C .12π D .14π [解析] 根据条件可知圆的摆线的参数方程为? ?? ?? x =3t -3sin t y =3-3cos t (t 为参数),把y =0代 入可得cos t =1,所以t =2k π(k ∈Z ).而x =3t -3sin t =6k π(k ∈Z ).根据选项可知应选C. [答案] C 3.半径为4的圆的渐开线的参数方程是________. [解析] 将a =4代入圆的渐开线方程即可. [答案] ? ?? ?? x =4(cos t +t sin t ) y =4(sin t -t cos t ) 4.给出某渐开线的参数方程? ?? ?? x =3cos t +3t sin t y =3sin t -3t cos t (t 为参数),根据参数方程可以看 出该渐开线的基圆半径是______,当参数t 取π 2 时,对应的曲线上的点的坐标是________. [解析] 与渐开线的参数方程进行对照可知,a =3,即基圆半径是3,然后把t =π 2代入, 可得????? x =3π2,y =3. [答案] (3π 2 ,3)

二元一次方程组的相关概念基础知识讲解

二元一次方程(组)的相关概念(基础)知识讲解 【学习目标】 1.理解二元一次方程、二元一次方程组及它们的解的含义; 2.会检验一组数是不是某个二元一次方程(组)的解. 【要点梳理】 要点一、二元一次方程 含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 要点二、二元一次方程的解 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释: (1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这

个二元一次方程. 要点三、二元一次方程组 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如也是二元一次方程组. 要点四、二元一次方程组的解 一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释: (1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成的形式. (2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组的解有无数个. 【典型例题】 类型一、二元一次方程 1.已知下列方程,其中是二元一次方程的有. (1)25=y;(2)1=4;(3)=3;(4)=6;(5)24y=7; (6);(7);(8);(9);(10).【思路点拨】按二元一次方程满足的三个条件一一检验.

参数方程的概念(教学设计)

曲线的参数方程(孙雷) 教材人民教育出版社高中数学选修4-4第二讲第一节 授课教师孙雷 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中, 形成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 当两个齿轮接触时,蓝色齿轮会带动红色齿轮转动,当两个齿轮没有接触时,蓝齿轮要带动红色齿轮转动,有一种方法是加入一个新的齿轮,使之与红蓝两个齿轮同时接触。 (上述过程让学生感受中间变量的作用,为参数方程中的参变量的引出作铺垫。) 思考1: 若齿轮A、B、C的半径相等,他们转动时的角速度分别是x、y、t,方向忽略不计 (1) 第一组图中,A与B角速度之间的关系是_______________; (2) 第二组图中,A与C角速度之间的关系是_______________; B与C角速度之间的关系是________________; 思考2: 思考: 若齿轮A、B、C的半径分别为4、1、2,他们转动时的角速度分别是x、y、t,方向忽略不计 (1) 第一组图中,它们角速度之间的关系是_________________;

(2) 第二组图中,它们角速度之间的关系是_________________; 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 例1、圆的参数方程的推导 (1)一般的,设⊙O 的圆心为原点,半径为r ,0OP 所在 直线为x 轴,如图,以0OP 为始边绕着点O 按逆时针方向绕原 点以匀角速度ω作圆周运动,则质点P 的坐标与时刻t 的关系 该如何建立呢?(其中r 与ω为常数,t 为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈? ??==t t r y t r x ωω t 为参数 ① (2)点P 的角速度为ω,运动所用的时间为t ,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈? ??==θθθr y r x θ为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力) (3)方程①、②是否是圆心在原点,半径为r 的圆方程?为什么? 由上述推导过程可知:对于⊙O 上的每一个点),(y x P 都存在变数t (或θ)的值,使t r x ωcos =,t r y ωsin =(或θsin r y =,θcos r x =)都成立。 对于变数t (或θ)的每一个允许值,由方程组所确定的点),(y x P 都在圆上; (1、对曲线的方程以及方程的曲线的定义进行必要的复习;2、学生从曲线的方程以及方程的曲线的定义出发,可以说明以上由变数t (或θ)建立起来的方程是圆的方程;) (4)若要表示一个完整的圆,则t 与θ的最小的取值范围是什么呢? )2,0[s i n c o s ωπωω∈???==t t r y t r x , )2,0[s i n c o s πθθθ∈???==r y r x (5)圆的参数方程及参数的定义 我们把方程①(或②)叫做⊙O 的参数方程,变数t (或θ)叫做参数。 (6)圆的参数方程的理解与认识 (ⅰ)参数方程)2,0[sin 3cos 3πθθθ∈???==y x 与]2,0[sin 3cos 3πθθ θ∈???==y x 是否表示同一曲线?为什么? (ⅱ)根据下列要求,分别写出圆心在原点、半径为r 的圆的部分圆弧的参数方程: ①在y 轴左侧的半圆(不包括y 轴上的点);

曲线和方程典型例题

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而 在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三 例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例4 曲线4)1(2 2=-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分

相关文档
最新文档