_熵_和_冗余_在广告中的运用研究_马亚琼

_熵_和_冗余_在广告中的运用研究_马亚琼
_熵_和_冗余_在广告中的运用研究_马亚琼

“熵”和“冗余”在广告中的运用研究

马亚琼,刘一夫

(南阳师范学院,河南南阳473061)

[摘要]“熵”和“冗余”是经典信息论中的两个重要概念,它们密切相关,但含义相反。在广告传播中,如何把握广告信息中的熵和冗余会对传播效果产生重要的影响。熵值的高低决定着受众对广告内容的关注程度,而冗余的多少又影响着消费者对广告信息记忆的长短。本文从广告活动传播效果入手,着重分析熵和冗余在广告信息传播中的合理运用与平衡把握。

[关键词]熵;冗余;广告传播

[中图分类号]G122[文献标志码]A[文章编号]1008-5823(2015)09-0034-02[收稿日期]2015-05-22

广告传播是一种信息处理、传播和接收的活动,信息是内容,广告是形式。信息内容、信息量、信息创新度、信息关注度等要素都会直接影响广告传播效果。熵和冗余是经典信息论的两个重要概念,它们密切相关,但含义相反,能否把握信息传播中的熵和冗余的关系,对广告活动的成功与否有着重要影响。

一、“熵”和“冗余”概念的提出

1850年,现代热力学奠基人克劳修斯提出了“熵”的概念。在热力学理论中,熵是对不能再被转化为功的能量总和的测定单位,是指物质与能量的消耗。克劳修斯将其总结为“一种系统混乱和无序的状态”。从这个意义出发,经典信息论创始人申农将熵的概念引入信息论当中,并将其表述为是对信源状态不确定性的计量。这种不确定性和无序性的变化可以为信息传播过程指引方向。熵的大小,与事件或信息的概率相关。熵与概率成反比,与信息量成正比。概率越小的事件或消息,熵越大。同时,熵的大小也影响着交流文本的信息量,熵越大,即信息包含的不确定性越大,信息量也就越大。冗余,是与熵密切相关但含义相反的一个重要概念。冗余是对信源或消息符码确定性、有序性和可预见程度的计量。冗余与信息量成反比,冗余的信息越多,信息量越小。

二、熵与广告传播

如今形形色色的广告铺天盖地,同类产品的广告表现、广告诉求点都大同小异,同质化现象严重。广告作品要想脱颖而出,吸引大众的眼球,就要在广告创作过程的信息处理环节有所创新。而提高广告信息含量,就要适当提高广告信息熵值。

(一)信息熵理论在广告信息处理中的运用

广告创意是广告作品的灵魂。构思广告创意是一个复杂的思维过程,需要将各种信息进行分析、处理、加工、变换。而这个过程对于创作者而言,需要在大量信息源中寻找具有高熵值的内容。广告的原创性、创新性就是信息熵。熵的变化决定着广告创意的发展。如果因循守旧,不挖掘新的信息,那么在创作过程中,熵就不断减弱,意味着信息量的不断减少,其结果是各种类型广告的创意趋于模式化或雷同化。在广告主所提供的产品信息中,如何提炼出高熵值的信息是考验传者编码能力的重要方面。高熵值的广告可以是为受众传递产品的相关信息和新知识的广告,可以是提出某种新概念、新文化、新动向的广告,亦可以是为受众带来赏心悦目的新形式的广告。例如,大众“甲壳虫”汽车刚问世时,广告大师伯恩·巴克为其设计的营销案例颇具创意。在那个追求“大”的时代,人们常常青睐“大”的事物,“甲壳虫”汽车与其他汽车相比又丑又小,如何才能出奇制胜,脱颖而出?伯恩巴克仔细分析了产品的信息,他没有去隐瞒“甲壳虫”的“小”,也没有去夸大“甲壳虫”的性能或工艺,而是真诚的发出了“想想小的好处”的倡议。于是,停车方便、省油、节省维修费用、节省保险费用等诸多特点被放大出来,因此,成就了一段营销传奇,“甲壳虫”也成为一代名车。

就当时的市场行情来看,伯恩巴克提出“小”的概念绝对是个创举,他抛弃以往的广告诉求方式,从停车方便、省油、节省维修费用、节省保险费用等特点中提炼出了“小”这个高熵值的信息,克服了同类广告的“噪音”,在同类品牌汽车的竞争中拔得头筹。“想想小的好处”这个广告词成为广告界的经典案例。

当然,好的广告并不是熵值越高越好,广告商如果提出大量关于产品的专业、学术概念,没有相关知识背景的受众是难以消化的。在现实生活中,这些高熵值的“迷雾广告”并不少见。有些表现在抽象的广告文案中,有的则体现在概念性的广告创意里。比如,在太极急支糖浆的电视广告中,一只奔跑的猎豹

第31卷第9期Vol.31No.9

2015年9月

Sept.2015本文摘自山东农业工程学院学报https://www.360docs.net/doc/bd17523860.html,

[作者简介]马亚琼(1986-),女,南阳师范学院助教,硕士,主要从事传播学教学与研究。

在追赶一个白衣女子,女子在逃跑的时候问“为什么追我”,猎豹回答“我要急支糖浆”。这个广告让很多观众看得云里雾里。其实,广告创意来自于广告大师奥格威提出的经典创意原则“3B”理论,也就是Beauty (美女)、Beast(动物)、Baby(婴儿)。以这三个方面为切入点表现人类对生活美好事物的关注。但是这则广告生硬地把“3B”理论中美女和野兽的两原则拼接起来,就造成了高熵值的信息与创作者和观众之间产生交流的障碍,导致传播、接收和解读无法进行。

(二)熵与选择性注意

如今广告充斥着我们的生活,且同类产品广告创意相似,卖点相同,作品趋同现象严重。因此,眼球经济、注意力经济成了广告创作的热门词汇。消费者的注意力成为一种稀缺资源,谁能获得这种资源,就能赢得市场和商机。从传播学理论出发,注意力吸引是完成传播过程的首要条件。在广告传播过程中,创意、构思、制作、发布等所有环节都应当重视消费者的注意力。而这种选择性注意的取得,本质上来源于信息传播所能引起的消费者的好奇心理。从信息熵的角度解释,就是含有适当熵值的信息,引起了受众对于产品性能和特点的不确定性理解,从而主动地选择接触这些信息,消除这种不确定性。因此,一个合适熵值的消息,往往能够引起人们对消息本身的选择性注意。有的商家在打广告时,就充分利用人们的好奇心做文章,以引起大众的注意。有这样一个酒的广告。在一家酒店门前,店主放着一个木桶,旁边写着字样“请勿往里看”。当然,一个普通的木桶不足以引起大家注意,但由于大众的好奇心理和逆反心理起作用,不让看的东西偏偏好奇,想探个究竟。于是,路过这家酒店的路人都忍不住往桶里看,结果桶里竟然是关于酒店推广一种新酒的广告。虽然这则广告把群众逗了一把,但着实起到了引起注意力的作用,让路人都注意到了酒的广告。

(三)熵与接收效果

好的广告不仅要引起受众注意,还要让受众在心理上认可接受它。广告除了内容新颖外,如果能用幽默、愉悦、温馨的形式加以表现,就更易被受众接受。近期一个黄金酒的电视广告就很新颖有趣。广告画面是两位两个老人家品酒斗嘴,它的广告词是这样的:“入口柔,一线喉,洋参、鹿茸5种粮食6味补品,好喝又大补。谢谢了!哎,女儿送我的要喝让你儿子买去。满上满上满上”,广告末尾打出了“送长辈,黄金酒”的品牌主张。广告画面简单家常,但不乏温馨幽默,两位老人的对话让受众了解了产品口感好、有营养、大补的卖点。而从广告口号来看,广告的诉求点是把酒作为礼品赠送给老人,与创造惊人销售量的脑白金、黄金搭档诉求方式如出一辙,是史玉柱的又一广告力作。国内的酒产品广告一般都是以健康、好喝、地位、商务、礼品等几方面为单一卖点,但黄金酒的广告则把保健酒和礼品酒的卖点结合起来,在国内还数首例,是高熵值的新信息。广告内容真实轻松诙谐,受众易于记忆和接受,达到了很好的接收效果。

三、冗余与广告传播

冗余信息的概念出现在香农和韦弗所提出的传播模式中,在这个模式里,他们首次提出了传播过程“噪音”的概念,它是影响传播效果的主要干扰。为了克服这种干扰,保证传播效果,就需要对某些信息进行重复,而这些重复的信息就是冗余信息。当一个新事物、新信息出现时,是具有高熵值的,但一当这个事物或信息被普通大众所了解所熟知,那么它就可能变成了冗余信息。但是在香浓韦弗看来,冗余信息并非是无效信息或垃圾信息,它是保证信息传播效果的重要辅助手段。在这个概念的基础上,我们才可以把冗余信息分为必要和非必要两种。必要的冗余信息可以弱化传播噪音对信息的消耗,减少信息接受的阻力。但如果重复叙述或传播一些与主题不相关的内容,就是一种非必要的冗余。会对传播效果起到负面作用。我们不能把冗余视为低信息量,轻视它在信息传播中的作用。实际上,消息中一定程度的冗余对交流传播非常有必要。作为一种广告表现的技术手段,冗余有助于提高编码的精确度,为我们识别并排除编码错误,也有助于克服噪音。如我们熟知的恒源祥早期广告:“恒源祥———羊羊羊,恒源祥———羊羊羊,恒源祥———羊羊羊”。广告词一连重复三遍,开创了5秒广告重复的先河。这样同样的广告画面,同样的广告词重复的在电视上播三遍,产生的结果是恒源祥品牌红遍全国,大家耳熟能详。此后,不少广告作品竞相模仿。这种将产品名称和冗余信息融合在一起的广告,其效果是非常明显的。但冗余信息的使用需要有度的把握,冗余过多就成为一种非必要信息,只能引起受众的反感,导致信息熵值弱化甚至反作用于传播效果。典型案例也出自恒源祥,08、09年他们的电视广告就以十二生肖为主题,毫无意义地把十二生肖叫了个遍。其单调的创意和高密集度的播出遭到观众的炮轰。

四、广告中冗余与熵的艺术平衡

熵和冗余是一对密切关联的概念,在广告的运用中,孰多孰少是一个重要问题。笔者认为,成功的广告传播是熵和冗余的艺术平衡,也就是高熵值的信息加上适当的冗余才是最佳方案。片面或过度运用熵和冗余,只会起到适得其反的效果。如何在制作广告时控制熵和冗余的比例,达到最佳的(下转第37页)

第9期山东农业工程学院学报投稿邮箱ngyxb1119@https://www.360docs.net/doc/bd17523860.html,

二、“贝”地位下降及审美变化

上文已说,《说文》对贝的释义已经为我们勾画了一幅上古到三代时期钱币的变迁史。随着生产力的发展、大一统封建王朝的建立,“贝”的货币功能逐渐退出历史舞台。司马迁《史记·平准书》:“农工商交易之路通,而龟贝金钱刀布之币兴焉。司马贞《索隐》注曰:‘刀者,钱也。以其形如刀,故曰刀。’”[7]1442-1443“钱”,《说文》曰:“铫也。古田器。从金戋声。《诗》曰:‘庤乃钱鎛。’即浅切。”[1]296很明显,这是一种农业工具,逐渐成为一种货币的名称。“币”,《说文》曰:“帛也。从巾敝声。”[1]158本义是古人用作礼物的丝织品。《汉书·食货志下》:“于是乎量资币,权轻重以救民。颜师古注:‘凡言币者,皆所以通货物,具有无也。故金之与钱,皆名为币也。’”[8]1151这时作为一般物品的“币”才演进为钱币的专用名称。司马迁在《史记·平准书》里有这样一段话表述了货币兴起的时间:“所从来久远,自高辛氏之前尚矣,靡得而记云。故《书》道唐虞之际,《诗》述殷周之世……”[7]1442由此可知,中国的货币历史伴随华夏文明的进程历经四、五千年之久。经过早期的物物交换,“贝”作为最早的商品交换的媒介,再到随着社会经济发展,以生产用具为原型的金属制币全面取代“贝”币。由此也引发了人们审美的变化,中原地区,或者说当时政治、经济、文化的中心地域基本不再把“贝”当作饰品佩戴,这种风俗可能还保留在落后的蛮荒地带,他们将贝穿起作“缨络”。我们可以在徐锴《系传》一书找到佐证:“蛮夷连贝为缨络,是也。”[4]127中原地区以珠玉等作为颈饰,其词为“璎珞”。玉是大自然的馈赠,很早的时候就和华夏先民联系在了一起。人工的雕琢和人文精神的渲染让玉有了丰富的内涵,儒家学说兴起后,儒家玉文化更加深入人心。由于儒家提倡德治,因此玉也被赋予了很多美德。《说文》曰:“石之美。有五德:润泽以温,仁之方也;理自外,可以知中,义之方也;其声舒扬,尃以远闻,智之方也;不桡而折,勇之方也;锐廉而不技,絜之方也。象三玉之连。丨,其贯也。凡玉之属皆从玉。”[1]10所以后来“璎珞”逐步取代“婴络”“婴珞”“賏珞”等词,成为比较固定的颈饰的专用语,“缨络”同“璎珞”。然而我们不得不去考量一下,“璎珞”二字的流行除了“贝”地位下降导致的审美的改变以及玉文化的深入人心,还有其他因素吗?通过检索“璎珞”“璎”“珞”等,我们发现可能与佛教的传入也有着千丝万缕的联系。

三、佛教传入对汉语词汇的影响

关于佛教何时传入中土,学术界虽然有争议,但是东汉明帝以来影响逐渐扩大,却是毋庸置疑的。佛教传入后首先在贵族阶级开始传播,后来逐渐世俗化,成为影响中国文化的另一个大宗,其中一个影响就是对汉语词汇的影响。

“璎”,最早出现在康僧铠译的《大无量寿经·佛说无量寿经》中:“现处宫中色味之间,见老病死悟世非常,弃国财位,入山学道;服、乘、白马、宝冠、璎珞,遣之令还,舍珍妙衣而着法服,剃除须发,端坐树下,勤苦六年,行如所应。”[9]851和《三国志·魏书·乌丸鲜卑东夷传》:“以璎珠为财宝。或以缀衣为饰,或以悬颈垂耳,不以金银锦绣为珍。”[10]221前者与佛教传入无异是有关的,后者也证明了“璎”最早不是中土词汇。“珞”,最早出现在《老子·三十九章》:“是故不欲琭琭如玉,珞珞如石。”[11]“珞”,形容石块的坚实。然而我们不得不承认,“璎珞”二字最早一起出现时,就是在佛教书籍中,上文已引。由此我们更有理由相信:佛教的传入对汉语词汇的发展产生了一定影响。

加之华夏民族对玉的喜爱和玉文化的影响,“璎珞”二字逐渐成了我们最喜欢用的一个表示颈饰的词汇。这仅仅是佛教进入中土对汉语词汇影响的一个很小的方面,论述不够严谨,请方家指正。

[参考文献]

[1]许慎.说文解字[M].北京:中华书局,1963.

[2]段玉裁.《说文解字》注[M].上海:上海古籍出版社,1988.[3]王筠.说文释例[M].武汉:武汉市古籍书店影印,1983.[4]徐锴.《说文解字》系传[M].北京:中华书局,1987.

[5]张舜徽.《说文解字》约注[M].武汉:华中师范大学出版社,2009.

[6]顾野王.宋本玉篇[M].北京:中国书店,1983.

[7]司马迁.史记[M].北京:中华书局,1959.

[8]班固.汉书[M].北京:中华书局,1962.

[9]康僧铠.佛说无量寿经[M].北京:国家图书馆出版社,2005.

[10]陈寿.三国志[M].陈乃乾,校点.北京:中华书局,1959.[11]陈鼓应.《老子》今注今译[M].北京:中华书局,2009.

[责任编辑:白彩霞

檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿檿

](上接第35页)

广告效果,就需要广告人仔细琢磨,巧妙把握。

[参考文献]

[1]金旭东.传播需要适当冗余[J].新闻记者,2003,(2).[2]于馨燕.信息熵理论在广告活动中的应用研究[J].企业经济,2007,(3).

[3]李娟.冗余多余吗———对信息论中冗余的理解[J].湖北经济学院学报,2006,(1).[责任编辑:白彩霞]

73

第9期

信息熵理论

信息熵理论 在通信系统中,信息从发送到接收的传输过程是一个有干扰的信息复制过程。 对每一个具体的应用而言,传输的信息是确定的,有明确的应用目的。 对一个通信系统而言主,不同的用户要传送的具体的信息内容是不同的,则如何从这些繁杂的具体信息中提炼出它们的共同特征,并可进行量化估计是shannon 信息论研究的基础。 所谓量化估计就是用提炼的共同特征估计与某些具体内容所对应的需要传输的信息量大小。 信息量定义的另一个重要特征是它能保证信息量值的大小与具体的信息内容无关。 1.定义信息熵: 设X 是一个离散的随机变量,其定义空间为一个字符集E 。 ()()E x x X P x p ∈==,,表示相应的概率分布函数,则 ()()()()x p x p X H x log ∑-=称为离散随机变量的熵。 有时记()()()()(){}X p E x p x p p H p x log log -=-=∑ {}p E 表示以概率分布()x p 对某随机变量或随机函数求概率平均。 2.定义联合熵: 设X ﹑Y 是丙个离散的随机变量,(X,Y )的联合概率分布函数为()()y Y x X P y x p ===,,,则 ()()()y x p y x P Y X H x y ,log ,,∑∑-= 称为离散随机变量X 与Y 的联合熵。 有时记为: ()()()(){}Y X p E y x p y x p Y X H p x y ,log ,log ,,-=-=∑∑ 3.定义条件熵: 如果()(),,~,y x p Y X 则条件熵()X Y H /定义为 ()()() ∑=-=x x X Y H x p X Y H // ()()()∑∑- =x y x y p x y p x p /log / ()()∑∑-=x y x y p y x p /log , (){}X Y p E /log -= 条件熵等于零的条件为()1==Y X p 事实上,对任意的y x ,都有()()0/log /=x y p x y p ,从而得()()1/0/==x y p x y p 或,又因为X 与Y 是取值空间完全相同的随机变量,所以有()1/=X Y p

信息熵.doc

一些信息熵的含义 (1) 信息熵的定义:假设X是一个离散随即变量,即它的取值范围R={x1,x2...}是有限可数的。设p i=P{X=x i},X的熵定义为: (a) 若(a)式中,对数的底为2,则熵表示为H2(x),此时以2为基底的熵单位是bits,即位。若某一项p i=0,则定义该项的p i logp i-1为0。 (2) 设R={0,1},并定义P{X=0}=p,P{X=1}=1-p。则此时的H(X)=-plogp-(1-p)log(1-p)。该H(x)非常重要,称为熵函数。熵函数的的曲线如下图表示: 再者,定义对于任意的x∈R,I(x)=-logP{X =x}。则H(X)就是I(x)的平均值。此时的I(x)可视为x所提供的信息量。I(x)的曲线如下: (3) H(X)的最大值。若X在定义域R={x1,x2,...x r},则0<=H(X)<=logr。 (4) 条件熵:定义

推导:H(X|Y=y)= ∑p(x|y)log{1/p(x,y)} H(X|Y)=∑p(y)H(X|Y=y)= ∑p(y)*∑p(x|y)log{1/p(x/y)} H(X|Y)表示得到Y后,X的平均信息量,即平均不确定度。 (5) Fano不等式:设X和Y都是离散随机变量,都取值于集合{x1,x2,...x r}。则 H(X|Y)<=H(Pe)+Pe*log(r-1) 其中Pe=P{X≠Y}。Fano表示在已经知道Y后,仍然需要通过检测X才能获得的信息量。检测X的一个方法是先确定X=Y。若X=Y,就知道X;若X≠Y,那么还有r-1个可能。 (6) 互信息量:I(X;Y)=H(X)-H(X|Y)。I(X;Y)可以理解成知道了Y后对于减少X的不确定性的贡献。 I(X;Y)的公式: I(X;Y)=∑(x,y)p(x,y)log{p(y|x)/p(y)} (7)联合熵定义为两个元素同时发生的不确定度。 联合熵H(X,Y)= ∑(x,y)p(x,y)logp(x,y)=H(X)+H(Y|X) (8)信道中互信息的含义 互信息的定义得: I(X,Y)=H(X)-H(X|Y)= I(Y,X)=H(Y)-H(Y|X) 若信道输入为H(X),输出为H(Y),则条件熵H(X|Y)可以看成由于信道上存在干扰和噪声而损失掉的平均信息量。条件熵H(X|Y)又可以看成由于信道上的干扰和噪声的缘故,接收端获得Y后还剩余的对符号X的平均不确定度,故称为疑义度。 条件熵H(Y|X)可以看作唯一地确定信道噪声所需要的平均信息量,故称为噪声熵或者散布度。 (9)I(X,Y)的重要结论

熵增加原理

熵增加原理 热力学第一定律是能量的定律,热力学第二定律是熵的法则.相对于“能量”,“熵”的概念比较抽象.但随着科学的发展,“熵”的意义愈来愈重要.本文从简述热力学第二定律的建立过程着手,从各个侧面讨论“熵”的物理本质、科学内涵,以加深对它的理解. “熵”是德国物理学家克劳修斯在1865年创造的一个物理学名词,其德语为entropie,简单地说,熵表示了热量与温度的比值,具有商的意义.1923年5月25日,普朗克在南京的东南大学作“热力学第二定律及熵之观念”的学术报告时,为其作现场翻译的我国著名物理学家胡刚复根据entropie的物理意义,创造了“熵”这个字,在“商”旁加火字表示这个热学量. 一、热力学第二定律 1.热力学第二定律的表述 19世纪中叶,克劳修斯(R.E.Clausius,德,1822—1888)和开尔文(KelvinLord即W.Thomson,英1824—1907)分别在证明卡诺定理时,指出还需要一个新的原理,从而发现了热力学第二定律. 克劳修斯1850年的表述为,不可能把热量从低温物体传到高温物体而不引起其他变化.1865年,克劳修斯得出了热力学第二定律的普遍形式:在孤立系统中,实际发生的过程总是使整个系统的熵值增加,所以热力学第二定律又称“熵增加原理”.其数学表示为 SB-SA= , 或 dS≥dQ/T(无穷小过程). 式中等号适用于可逆过程. 开尔文1951年的表述为,不可能从单一热源吸热使之完全变成有用的功而不引起其他变化,开氏表述也可以称为,第二类永动机是不可能造成的.所谓第二类永动机是指能从单一热源吸热,使之完全变成有用的功而不产生其他影响的机器,该机不违反热力学第一定律,它能从大气或海洋这类单一热源吸取热量而做功. 2.热力学第二定律的基本含义 热力学第二定律的克氏表述和开氏表述具有等效性,设想系统经历一个卡诺循环,可以证明,若克氏表述不成立,则开氏表述也不成立;反之,亦能设想系统完成一个逆卡诺循环,如果开氏表述不成立,则克氏表述也不成立. 克氏表述和开氏表述直接指出,第一,摩擦生热和热传导的逆过程不可能自动发生,也就是说摩擦生热和热传导过程具有方向性;第二,这两个过程一经发生,就在自然界留下它的后果,无论用怎样曲折复杂的方法,都不可能将它留下的后果完全消除,使一切恢复原状.只有无摩擦的准静态过程被认为是可逆过程.

实验一-信息熵与图像熵计算-正确

实验一信息熵与图像熵计算(2 学时) 一、实验目的 1.复习MATLAB的基本命令,熟悉MATLAB下的基本函数; 2.复习信息熵基本定义,能够自学图像熵定义和基本概念。 二、实验内容 1.能够写出MATLAB源代码,求信源的信息熵; 2.根据图像熵基本知识,综合设计出MATLAB程序,求出给定图像的图像熵。 三、实验仪器、设备 1.计算机-系统最低配置256M内存、P4 CPU; 2.MATLAB编程软件。 四实验流程图 五实验数据及结果分析

四、实验原理 1.MATLAB中数据类型、矩阵运算、图像文件输入与输出知识复习。 2.利用信息论中信息熵概念,求出任意一个离散信源的熵(平均自信息量)。自信息是一个随机变量,它是指某一信源发出某一消息所含有的信息量。所发出的消息不同,它们所含有的信息量也就不同。任何一个消息的自信息量都代表不了信源所包含的平均自信息量。不能作为整个信源的信息测度,因此定义自信息量的数学期望为信源的平均自信息量: 1( ) 1 ( ) [log ] ( ) log ( ) i n i i p a i H E p a p a X 信息熵的意义:信源的信息熵H是从整个信源的统计特性来考虑的。它是从平均意

义上来表征信源的总体特性的。对于某特定的信源,其信息熵只有一个。不同的信源因统计特性不同,其熵也不同。 3.学习图像熵基本概念,能够求出图像一维熵和二维熵。 图像熵是一种特征的统计形式,它反映了图像中平均信息量的多少。图像的一维熵表示图像中灰度分布的聚集特征所包含的信息量,令Pi表示图像中灰度值为i的像素所占的比例,则定义灰度图像的一元灰度熵为: 2550 log i i i p p H 图像的一维熵可以表示图像灰度分布的聚集特征,却不能反映图像灰度分布的空间特征,为了表征这种空间特征,可以在一维熵的基础上引入能够反映灰度分布空间特征的特征量来组成图像的二维熵。选择图像的邻域灰度均值作为灰度2

信息熵理论的应用研究

信息熵理论的应用研究 [摘要] 广告活动是信息的活动,信息熵是信息活动的度量标准。本文利用信息熵理论对广告活动中的信息处理、广告传播、广告效果测定和广告受众进行了论证,指出了广告信息活动的规律。 [关键词] 信息熵;负熵;广告活动;广告受众 广告是一种非人际的信息传播,是信息交流的工具。广告系统实质上是信息系统,它具备了信息传播的五要素:谁——通过什么媒介——对谁——说了什么——取得了什么效果。广告的信息传播包括:广告发布者(包括广告主、广告制作者和传播者,即信息源)、广告信息内容、广告媒介、广告受众、广告效果等要素。信息熵理论是描述信息系统发展的基本理论,利用信息熵从信息的角度分析广告行为、预判广告活动的发展趋势,是研究广告活动的一种新方法。 一、熵、信息熵与广告活动的理论分析 熵是一个重要的物理概念,热力学中的熵通常被用于表征一个物理系统的无序程度。随着科学综合化的发展,熵又远远超出物理学范围。1948年,香农(shannon)第一次将熵这一概念引入到信息论中,从此,熵这一概念被广泛用于信息的度量,在自然科学和社会科学众多领域中得到广泛应用,并成为一些新学科的理论基础,由狭义熵发展为广义熵。正如爱因斯坦的评价那样:“熵理论对于整个科学来说是第一法则”。熵表示的是系统固有的、规律性的本质。在没有外界作用下,一个系统的熵越增,不可用能就越大,动力越小;换言之,一个系统的熵不相同时,对于相等的进程,它们的利用价值可以大不相同。一个孤立系统的熵永不减少,这叫做熵增原理。根据这一原理,以熵变为判据,不仅可以判断过程进行的方向,而且还能给出孤立系统达到平衡的条件。熵增原理揭示了一切自发过程都是不可逆的这一共同本质。为了打破平衡,必须与外部系统交换熵,从外部系统得到的熵称为负熵,目的是使本系统的熵值减少,更具有活力。

【关于生命系统熵势函数的建立及应用】生命是熵减

【关于生命系统熵势函数的建立及应用】生命是熵减 摘要:依据非平衡非线性系统理论的广义势函数,建立了可描述生命系统的熵势及其表达式,作为应用,分析了生命系统的相变和生命机体内部的熵力。关键词:生命系统;熵势;非平衡相变;熵力 :Q111;0415.3 :A :1007-7847(xx)01-0016-05 自然界的实际系统千差万别,它们可以是物理系统、化学系统、生物系统等,它们在平衡态和近平衡态已归入一个广泛的统计热力学的理论体系.这个理论的普遍性的一个重要原因是存在着广泛定义的势函数,如平衡系统的熵、自由能或线性非平衡系统的熵产生、超熵等等,生命系统是个远离平衡的非线性系统,非平衡理论告诉我们,远离平衡的非线性系统中存在一个广义势函数.这个势函数是个Lyapunov函数,满足Lvapunov稳定性准则,因此生命系统是个相对稳定的系统,本文依据非平衡系统理论的广义势函数,建立了可以描

述生命演化的势函数――熵势,经过对生命系统的分析,发现有一个尖拐型突变函数正好对应于熵势,并把它作为生命系统的特性函数加以应用,即用熵势来研究生命系统的相变特点和生命机体内部的作用力,得出了有意义的结论,为从整体上认识生命系统提供一种较科学的方法。 1 生命系统的特性函数――熵势 生命系统是远离平衡的非线性系统,其熵势可以通过非平衡系 统理论的广义势函数建立起来,非平衡系统既可用确定性演化方程描述也可用随机性演化方程描述,下面首先从随机层次建立广义势函数,再推广到生命系统的熵势,并根据生命系统的特点寻找能描述生命进化的熵势表达式。 1.1 非平衡系统的广义势函数

非线性科学和统计物理的研究告诉我们,一个小的随机力不仅仅对原有的确定性方程的结果产生微小的变化,它还能出乎意料的产生重要得多的影响,在一定的非线性条件下它能对系统演化起决定性作用,甚至 __改变宏观系统的命运,另一方面,这种无规的随机干扰并不总是对宏观秩序其消极破坏作用,在一定条件下它的相干运动可能在建立系统的“序”上起到十分积极的创造性作用。 描述远离平衡的非线性复杂系统的这种随机性常用含多变量的郎之万方程(LE),即 (6)中的首项不仅在弱噪声情况下确定了FPE的定态性质,而且支配相应的确定性系统的Lyapunov性质,称其为非平衡系统的广义势函数, 1.2 生命系统熵势的建立 爱因斯坦关系为:

信息熵

信息熵在遥感影像中的应用 所谓信息熵,是一个数学上颇为抽象的概念,我们不妨把信息熵理解成某种特定信息的出现概率。信源各个离散消息的自信息量得数学期望(即概率加权的统计平均值)为信源的平均信息量,一般称为信息源,也叫信源熵或香农熵,有时称为无条件熵或熵函数,简称熵。 一般而言,当一种信息出现概率更高的时候,表明它被传播得更广泛,或者说,被引用的程度更高。我们可以认为,从信息传播的角度来看,信息熵可以表示信息的价值。这样子我们就有一个衡量信息价值高低的标准,可以做出关于知识流通问题的更多推论。 利用信息论中的熵模型,计算信息量是一种经典的方法,广泛应用于土地管理,城市扩张以及其他领域。熵值可以定量的反应信息的分散程度,将其应用于遥感图像的解译中可以定量的描述影像包含的信息量,从而为基于影像的研究提供科学的依据。利用信息熵方法对遥感影像的光谱特征进行离散化,根据信息熵的准则函数,寻找断点,对属性进行区间分割,以提高数据处理效率。 遥感影像熵值计算大致流程为:遥感影像数据经过图像预处理之后,进行一系列图像配准、校正,图像增强,去除噪声、条带后,进行图像的分类,然后根据研究区域进行数据的提取,结合一些辅助数据对图像进行监督分类后生成新的图像,将新的图像与研究区边界图和方格图生成的熵单元图进行进一步的融合便可得到熵分值图。 1.获得研究区遥感影像 以研究区南京市的2009 年6 月的中巴资源二号卫星分辨率20 米得影像为例,影像是有三幅拼接完成。通过ArGIS9.2 中的选择工具从全国的行政区域图中提取边界矢量图,再通过掩膜工具获得研究区的影像。分辨率的为90 米得DEM 图有两副影像拼接而得,操作的步骤与获取影像一致,为开展目视解译工作提供参考。然后依照相关学者的相关研究以及城市建设中的一些法律法规,参照分类标准,开展影像解译工作,对于中巴资源二号影像开展监督分类,以及开展目视解译工作。 2.二值图像的建立 将两种解译所得的图像按照一定的标准转化为城镇用地和非城镇用地两种,进一步计算二值图像的熵值。 3.熵值单元图 根据一些学者对城市边缘带的研究,其划分的熵值单元为 1 km ×1 km,针对样 区的具体情况,采用500 m ×500 m 的熵值单元。在ERDAS 软件和

信息熵在图像处理中的应用

信息熵在图像处理中的应用 摘要:为了寻找快速有效的图像处理方法,信息理论越来越多地渗透到图像处理技术中。文章介绍了信息熵在图像处理中的应用,总 结了一些基于熵的图像处理特别是图像分割技术的方法,及其在这一领域内的应用现状和前景 同时介绍了熵在织物疵点检测中的应用。 Application of Information Entropy on Image Analysis Abstract :In order to find fast and efficient methods of image analysis ,information theory is used more and more in image analysis .The paper introduces the application of information entropy on the image analysis ,and summarizes some methods of image analysis based on information entropy ,especially the image segmentation method .At the same time ,the methods and application of fabric defect inspection based on information entropy ale introduced . 信息论是人们在长期通信实践活动中,由通信技术与概率论、随机过程、数理统计等学科相结合而逐步发展起来的一门新兴交叉学科。而熵是信息论中事件出现概率的不确定性的量度,能有效反映事件包含的信息。随着科学技术,特别是信息技术的迅猛发展,信息理论在通信领域中发挥了越来越重要的作用,由于信息理论解决问题的思路和方法独特、新颖和有效,信息论已渗透到其他科学领域。随着计算机技术和数学理论的不断发展,人工智能、神经网络、遗传算法、模糊理论的不断完善,信息理论的应用越来越广泛。在图像处理研究中,信息熵也越来越受到关注。 1 信息熵 1948年,美国科学家香农(C .E .Shannon)发表了一篇著名的论文《通信的数学理论》 。他从研究通信系统传输的实质出发,对信息做了科学的定义,并进行了定性和定量的描述。 他指出,信息是事物运动状态或存在方式的不确定性的描述。其通信系统的模型如下所示: 图1 信息的传播 信息的基本作用就是消除人们对事物的不确定性。信息熵是信息论中用于度量信息量的一个概念。假定X 是随机变量χ的集合,p (x )表示其概率密度,计算此随机变量的信息熵H (x )的公式是 P (x ,y )表示一对随机变量的联合密度函数,他们的联合熵H (x ,y )可以表示为 信息熵描述的是信源的不确定性,是信源中所有目标的平均信息量。信息量是信息论的中心概念,将熵作为一个随机事件的不确定性或信息量的量度,它奠定了现代信息论的科学理论基础,大大地促进了信息论的发展。设信源X 发符号a i ,的概率为Pi ,其中i=1,2,…,r ,P i >O ,要∑=r i Pi 1=1,则信息熵的代数定义形式为:

熵与人体

熵与人体 摘要:熵是一个古老而又年轻的概念,虽然教材上内容不多,但它有极强的生命力及非常广的应用。本文首先补充了如耗散结构、负熵等关于熵的一些热力学概念以及从热力学第二定律推导出的应用于生 物体的两个公式,然后对熵与人的疾病(如感冒、肿瘤)、衰老、生、死等现象的关系做出了一些浅显的说明。 关键字:熵人体熵变 1864年,根据热力学第二定律,法国物理学家克劳修斯在《热之唯动说》一书中,首次提出一个物理量和新的态函数——熵。1877年玻耳兹曼从现微观角度对熵做出了统计解释,首次提出了熵公式 S=klnΩ, 1943年,薛定谔在《生命是什么》一书中首先提出了负熵的概念,指出有机体是依赖负熵为生。从此,生命与熵进入了众多科学家研究的视野。 一.熵变概念的拓展: ①耗散结构:对于一个热力学过程,其熵变为dS=dQ/T.如果过程是不可逆的,则dS>0. 在如何阐明生命有机体自身的进化过程时提出了耗散结构的概念。耗散结构是指当体系处于非平衡时,通过体系与外界交换能量和物质而形成和维持的一种稳定化了的宏观体系结构。它突破了热力学定律只适用孤立系统的限制,将其运用到开放系统。一个正常的生命体现可视为一个处于非平衡的开放系统,即是一个耗散结构。在开放系统中, 普利高津(Pringogine)将熵变写成

dS=diS+deS(1) diS表示系统内不可逆过程导致的熵产生,deS表示熵流。热力学第二定律指出,diS恒为正,是熵变的正增量。deS可为正,也可为负。对于孤立系统,des=0,热力学第二定律可写成dS=diS≥0;对于开放系统,当deS为负值(负熵流)且|deS|>|diS|时,则有 dS=diS+deS≤0,即负熵流可使总熵减少,由相对无序状态向相对有序状态发展;若dS=0,有diS=-deS,系统处于有结构的平衡状态。 ②负熵:Ω是无序的度量,它的倒数1/Ω可以作为有序的一个直接度量,玻尔兹曼的方程式还可以写成这样:-S=kln(1/Ω),即负熵。负熵的来源有两类:一类是“有序来自无序”即有机体吸收外界无序经过加工变为自身有序,这就是所谓“加工成序”,如氧气。另一类是“有序来自有序”即将从外界获得的秩序进行同化变成自身的秩序,这就是所谓“同化成序”,如,碳水化合物、液态水等。有机体生成过程就是从外界吸收这些低熵物质并消耗以满足正常生命活动和脑 力活动需要,同时产生大量废渣等高熵物质,如CO2:、尿、汗及其他排泄物,以此来与熵增作斗争。 ③熵具体应用于生物体根据开放系统的热力学理论可以算出,其 熵变ΔS=ΔQ/T- μjΔeNj/T- μjΔiNj/T(2).式中,ΔQ代表生命系统与外界环境交换的总热量,ΔeNj代表生命系统与外界所交换的第j种组元物质的摩尔数,ΔiNj代表生命系统内部各种生化反应所引起的第j种组元物质摩尔数的增加,μj为第j种组元物质的化学势,T为生命系统(人)的温度。如果我们用ΔQ吸表示生命系统从外界吸收的热量,用ΔQ放表示生命系统向外界放出的热量;用S0表示生

熵的定义

热力学第二定律和熵 专业:能源与动力工程 班级:能源14-3班 姓名:王鑫 学号:1462162330

熵的表述 在经典热力学中,可用增量定义为 式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量,下标“可逆”表示加热过程所引起的变化过程是可逆的。若过程是不可逆的,则dS>(dQ/T)不可逆。单位质量物质的熵称为比熵,记为S。熵最初是根据热力学第二定律引出的一个反映自发过程不可逆性的物质状态参量。热力学第二定律是根据大量观察结果总结出来的规律,有下述表述方式:①热量总是从高温物体传到低温物体,不可能作相反的传递而不引起其他的变化;②功可以全部转化为热,但任何热机不能全部地,连续不断地把所接受的热量转变为功(即无法制造第二类永动机);③在孤立系统中,实际发生过程,总使整个系统的熵值增大,此即熵增原理。摩擦使一部分机械能不可逆地转变为热,使熵增加。热量dQ由高温(T1)物体传至低温(T2)物体,高温物体的熵减少dS1=dQ/T1,低温物体的熵增加dS2=dQ/T2,把两个物体合起来当成一个系统来看,熵的变化是dS=dS2-dS1>0,即熵是增加的。 熵的相关定义 1.比熵:在工程热力学中,单位质量工质的熵,称为比熵。表达式为δq=Tds,s称为比熵,单位为J/ (kg·K) 或kJ/ (kg·K)。 2.熵流:系统与外界发生热交换,由热量流进流出引起的熵变。熵流可正可负,视热流方向而定。 3.熵产:纯粹由不可逆因素引起的熵的增加。熵产永远为正,其大小由过程不可逆性的大小决定,熵产为零时该过程为可逆过程。熵产是不可逆程度的度量。 熵增原理 孤立系统的熵永不自动减少,熵在可逆过程中不变,在不可逆过程中增加。 熵增加原理是热力学第二定律的又一种表述,它比开尔文、克劳修斯表述更为概括地指出了不可逆过程的进行方向;同时,更深刻地指出了热力学第二定律是大量分子无规则运动所具有的统计规律,因此只适用于大量分子构成的系统,不适用于单个分子或少量分子构成的系统 实质:熵增原理指出:凡事是孤立系统总熵减小的过程都是不可能发生的,理想可逆的情况也只能实现总熵不变,实际过程都不可逆,所以实际热力过程总是朝着使孤立系统总熵增大的方向进行,dS>0。熵增原理阐明了过程进行的方向。 熵增原理给出了系统达到平衡状态的判据。孤立系统内部存在不平衡势差是过程自发进行的推动力。随着过程进行,孤立系统内部由不平衡向平衡发展,总熵增大,当孤立系统总熵达到最大值时,过程停止进行,系统达到相应的平衡状态,这时的dS=0即为平衡判据。因而,熵增原理指出了热过程进行的限度。 熵增原理还指出如果某一过程的进行,会导致孤立系中各物体的熵同时减小,虽然或者各有增减但其中总和使系统的熵减小,则这种过程,不能单独进行除非有熵增大的过程,作为补

人生与熵(究竟的开始)

人生与熵(究竟的开始) 物理学有一个高度概括的定律,就是关于熵的定理,大意是这样的:任何物体(物质)在没有吸收外界能量的条件下,总是朝熵增加的方向变化。所谓熵,指的就是无序的程度。无序的程度越高,熵值越大。这个熵的定律通俗地解读,就是说,任何物体想提高其有序性,必须吸收更多的能量。之所以说这是一个高度概括的定律,是因为这个定律反映了宇宙界的一个普遍的现象,适合于有机界、无机界,适合于自然界,也适合于社会,适合于生命物质,也适合于非生命物质。与“物质是运动的”,“物质运动具有波动性”诸如此类的哲学例题有点类似,具有高度的概括性和普适性。所以,把关于熵的定律提高到哲学定律的高度也未尝不可。 将这个定律换一种说法,就是你想把某个东西变得更高级(更好,更有序),你得对它做功!更为通俗的说法还有:天上不会掉馅饼下来;世上没有免费的午餐;想要收获,必须有付出;天道酬勤;等等。 反过来说,你不想对它做功,它会自然向熵增大的方向发展。 所以,自然界就存在下面司空见惯的现象: 打碎一只碗比烧制一只碗容易得多; 把一堆码好的积木踢散比收拢它们并码放整齐容易得多; 一个人死去并腐烂只要几天时间,但长成人却要几十年时间;

学好三年,学坏三天; 建好一幢大厦要几年,烂毁它只要几秒; 搞好一个企业要数十年持之以恒,但搞垮它也许只要几十天。 事实上,世界的物质存在两种变化,一种是向有序方向发展,另一种相反。两种变化相互转化。打一个比方:一粒种子可以发芽生长成一棵大树,这是朝着熵变小的方向发展,但有一天开始,这棵树开始枯萎,最后死亡,腐烂成泥,这是朝熵增大的方向发展。这种相互之间的变化周而复始,构成了一个基本的运动周期。 那么为什么有的时候或有的物质能够向有序化发展,而有的时候或其它物质却相反呢?物理学家发现,要想使物质朝有序化方向发展,这个物质必须具备一种特殊的结构,即耗散结构:即具备能够吸收外界能量并实现能量有效转化的结构。一个最为简单的耗散结构包括以下几个基本组成部分:入口结点、能量转化功能、出口结点。打一个比方,健康的人个体就是一个耗散结构:嘴为能量入口,体内器官为能量转化功能器,肛门等排泄器官则为出口。一个耗散结构能够实现吸收外界能量,将一部分转化为提高自身能级的能量留在体内,剩余的能量则通过出口排出体外。 所以,从熵的定律及耗散结构理论角度来说,生命的本质就是耗散结构。如果耗散结构遭到了破坏,个体无法实吸收外界能量的功能,则意味着生命的终结!

指标权重确定方法之熵权法计算方法参考

指标权重确定方法之熵权法 一、熵权法介绍 熵最先由申农引入信息论,目前已经在工程技术、社会经济等领域得到了非常广泛的应用。 熵权法的基本思路是根据指标变异性的大小来确定客观权重。 一般来说,若某个指标的信息熵越小,表明指标值得变异程度越大,提供的信息量越多,在综合评价中所能起到的作用也越大,其权重也就越大。相反,某个指标的信息熵越大,表明指标值得变异程度越小,提供的信息量也越少,在综合评价中所起到的作用也越小,其权重也就越小。 二、熵权法赋权步骤 1.数据标准化 将各个指标的数据进行标准化处理。 假设给定了k个指标,其中。假设对各指标数据标准化后的值为,那么。 2.求各指标的信息熵 根据信息论中信息熵的定义,一组数据的信息熵。其中,如果,则定义。 3.确定各指标权重 根据信息熵的计算公式,计算出各个指标的信息熵为。通过信息熵计算各指标的权重:。

三、熵权法赋权实例 1.背景介绍 某医院为了提高自身的护理水平,对拥有的11个科室进行了考核,考核标准包括9项整体护理,并对护理水平较好的科室进行奖励。下表是对各个科室指标考核后的评分结果。 但是由于各项护理的难易程度不同,因此需要对9项护理进行赋权,以便能够更加合理的对各个科室的护理水平进行评价。 2.熵权法进行赋权 1)数据标准化 根据原始评分表,对数据进行标准化后可以得到下列数据标准化表 表2 11个科室9项整体护理评价指标得分表标准化表 科室X1X2X3X4X5X6X7X8X9 A B C D

E F G H I J K 2)求各指标的信息熵 根据信息熵的计算公式,可以计算出9项护理指标各自的信息熵如下: 表3 9项指标信息熵表 X1X2X3X4X5X6X7X8X9 信息熵 3)计算各指标的权重 根据指标权重的计算公式,可以得到各个指标的权重如下表所示: 表4 9项指标权重表 W1W2W3W4W5W6W7W8W9权重 3.对各个科室进行评分 根据计算出的指标权重,以及对11个科室9项护理水平的评分。设Z l为第l个科室的最终得分,则,各个科室最终得分如下表所示 表5 11个科室最终得分表 科室A B C D E F G H I J K 得分

信息熵与图像熵计算

p (a i ) ∑ n 《信息论与编码》课程实验报告 班级:通信162 姓名:李浩坤 学号:163977 实验一 信息熵与图像熵计算 实验日期:2018.5.31 一、实验目的 1. 复习 MATLAB 的基本命令,熟悉 MATLAB 下的基本函数。 2. 复习信息熵基本定义, 能够自学图像熵定义和基本概念。 二、实验原理及内容 1.能够写出 MATLAB 源代码,求信源的信息熵。 2.根据图像熵基本知识,综合设计出 MATLAB 程序,求出给定图像的图像熵。 1.MATLAB 中数据类型、矩阵运算、图像文件输入与输出知识复习。 2.利用信息论中信息熵概念,求出任意一个离散信源的熵(平均自信息量)。自信息是一个随机变量,它是指某一信源发出某一消息所含有的信息量。所发出 的消息不同,它们所含有的信息量也就不同。任何一个消息的自信息量都代表不了信源所包含的平均自信息量。不能作为整个信源的信息测度,因此定义自信息量的数学期望为信源的平均自信息量: H (X ) = E [ log 1 ] = -∑ p (a i ) log p (a i ) i =1 信息熵的意义:信源的信息熵H 是从整个信源的统计特性来考虑的。它是从平均意义上来表征信源的总体特性的。对于某特定的信源,其信息熵只有一个。不同的信源因统计特性不同,其熵也不同。 1. 学习图像熵基本概念,能够求出图像一维熵和二维熵。 图像熵是一种特征的统计形式,它反映了图像中平均信息量的多少。图像的一维熵表示图像中灰度分布的聚集特征所包含的信息量,令 P i 表示图像中灰度值为 i 的像素所占的比例,则定义灰度图像的一元灰度熵为: 255 H = p i log p i i =0

生命过程与生物熵

生命过程与生物熵 作者:马远新安虎雁毛莉萍 【摘要】利用耗散结构理论通过生物熵在生命过程的变化分析,建立了正常生命过程的生物熵变数学模型,并对模型的数值变化进行了分析,探讨了生命过程中负熵流与熵增的变化趋势以及原因。 【关键词】生物熵;耗散结构;生命过程 1864年法国物理学家克牢修斯提出了一个物理量和新函数——熵,熵是热力学系统的态函数,在绝热系统中熵变永远不会为负。统计物理学研究表明,熵就是混乱度的量度。20 世纪60 年代,比利时普利高津提出了耗散结构理论(把那些在非平衡和开放条件下通过体系内部耗散能量的不可逆过程产生和维持的时-空有序结构称为耗散结构),将熵推广到了与外界有能量交换的非平衡态热力学体系。熵的内涵不断扩大,逐渐形成了热力学熵,黑洞熵、信息熵等概念[1]。这种广义熵的提出, 阐明了非平衡态与平衡态热力学体系熵的本质是一致的,均受熵定律支配,从而也揭示了物理系统与生命系统的统一性[2]。 各生命体的生命活动过程是具有耗散结构特征的、开放的非平衡系统, 生命现象也与熵有着密切关系, 生命体和一切无机物的一个根本区别是它具有高度有序性。根据这一特点用“熵”来描述生命是较

为恰当的。引入广义熵的概念来度量生命活动过程的质量, 称为生物熵。本研究将耗散结构理论用于生命过程的研究,建立了生物熵随年龄正常变化的宏观数学模型, 用以描述生命过程的熵变。 1 生命的自组织过程中的公式模拟 一个无序的世界是不可能产生生命的,有生命的世界必然是有序的。生物进化是由单细胞向多细胞、从简单到复杂、从低级向高级进化,也就是说向着更为有序、更为精确的方向进化,这是一个熵减的方向,与孤立系统向熵增大的方向恰好相反,可以说生物进化是熵变为负的过程,即负熵是在生命过程中产生的。但是生命体是"耗散结构",耗散结构认为一个远离平衡态的开放体系,通过与外界交换物质和能量,在一定条件下,可能从原来的无序状态转变为一种在时间、空间或功能上有序的状态,这个新的有序结构是靠不断耗散物质和能量来维持的。生命体通过不断与外界交换物质、能量、信息和负熵,可使生命系统的总熵值减小,从而有序度不断提高,生命体系才得以动态地发展。生物进化是个熵变为负的过程,即负熵是在生命过程中产生的。 一个系统由无序变为有序的自然现象称为自组织现象。自组织现象可以通过下面过程说明:

信息论在图像处理中的应用

信息论在图像处理中的应用 摘要:把信息论的基本原理应用到图像处理中具有十分重要的价值。本文主要从评估图像捕捉部分性能的评估、图像分割算法这两个个方面阐述信息论在图像处理中的应用。 通过理论分析来说明使用信息论的基本理论对图像处理的价值。 关键字:信息论;图像捕捉;图像分割 第1章 引言 随着科学技术的不断发展,人们对图形图像认识越来越广泛,图形图像处理的应用领域也将随之不断扩大。为了寻找快速有效的图像处理方法,信息理论越来越多地渗透到图像处理技术中。文章介绍了信息论基本理论在图像处理中的应用,并通过理论分析说明其价值。把通信系统的基本理论信息论应用于采样成像系统,对系统作端到端的系统性能评价,从而优化采样成像系统的设计,是当前采样成像系统研究的分支之一。有些图像很繁杂,而我们只需要其中有意义的一部分,图像分割就是将图像分为一些有意义的区域,然后对这些区域进行描述,就相当于提取出某些目标区域图像的特征,随后判断这些图像中是否有感兴趣的目标。 第2章 图像捕捉部分性能评估 2.1 图像捕捉的数学模型 图像捕捉过程如图1所示。G 为系统的稳态增益,),(y x p 是图像捕捉设备的空间响应 函数,),(y x n p 是光电探索的噪声。),(y x comb 代表采样网格函数,),(),,(y x s y x o 分别为输入、输出信号。 在这种模型下的输出信号 ),(),()],(),([),(y x n y x comb y x p y x Go y x s p +*= 其中,∑--= n m n y m x y x comb ,),(),(δ,代表在直角坐标系下,具有单位采样间隔的采样设备的采样函数。 输出信号的傅立叶变换为: ),(),(),(),(v u N v u P v u GO v u S += 其中:),(v u O 是输入信号的傅立叶变换,),(v u N 是欠采样噪声和光电探测器噪声和,

熵增加原理

熵增加原理:在孤立系统中,一切不可逆过程必然朝着熵的不断增加的方向进行,这就是熵增加原理(principleof entropy increase)。 熵增加原理是热力学第二定律的又一种表述,它比开尔文、克劳修斯表述更为概括地指出了不可逆过程的进行方向;同时,更深刻地指出了热力学第二定律是大量分子无规则运动所具有的统计规律,因此只适用于大量分子构成的系统,不适用于单个分子或少量分子构成的系统。 编辑本段正文 利用绝热过程中的熵是不变还是增加来判断过程是可逆还是不可逆的基本原理。利用克劳修斯等式与不等式及熵的定义可知,在任一微小变化过程中恒有,其中不等号适于不可逆过程,等号适于可逆过程。对于绝热系统,则上式又可表为dS≥0。这表示绝热系统的熵绝不减少。可逆绝热过程熵不变,不可逆绝热过程熵增加,这称为熵增加原理。利用熵增加原理可对热力学第二定律理解得更深刻: ⑴不可逆过程中的时间之矢。根据熵增加原理可知:不可逆绝热过程总是向熵增加的方向变化,可逆绝热过程总是沿等熵线变化。一个热孤立系中的熵永不减少,在孤立系内部自发进行的涉及与热相联系的过程必然向熵增加的方向变化。另外,对于一个绝热的不可逆过程,其按相反次序重复的过程不可能发生,因为这种情况下的熵将变小。“不能按相反次序重复”这一点正说明了:不可逆过程相对于时间坐标轴肯定不对称。但是经典力学相对于时间的两个方向是完全对称的。若以-t代替t,力学方程式不变。也就是说,如果这些方程式允许某一种运动,则也同样允许正好完全相反的运动。这说明力学过程是可逆的。所以“可逆不可逆”的问题实际上就是相对于时间坐标轴的对称不对称的问题。 ⑵能量退降。由于任何不可逆过程发生必伴随“可用能”的浪费(见“可用能”)。对于绝热不可逆过程,熵的增加ΔS必伴随有W贬的能量被贬值,或称能量退降了W贬。(说明:对于非绝热系统,则系统与媒质合在一起仍是绝热的,因而能量退降概念同样适用。)可以证明,对于与温度为T0的热源接触的系统,W贬=T0ΔS。由此可见,熵可以作为能量不可用程度的度量。换言之,一切实际过程中能量的总值虽然不变,但其可资利用的程度总随不可逆导致的熵的增加而降低,使能量“退化”。被“退化”了的能量的多少与不可逆过程引起的熵的增加成正比。这就是熵的宏观意义,也是认识第二定律的意义所在。我们在科学和生产实践中应尽量避免不可逆过程的发生,以减少“可用能”被浪费,提高效率。 ⑶最大功原理、最小功。既然只有可逆过程才能使能量丝毫未退化,效率最高,所以在高低温热源温度及所吸热量给定情况下,只有可逆热机对外作的功最大,这称为最大功原理。与此类似,在相同高低温热源及吸放热量相等的情况下,外界对可逆制冷机作的功最小,这样的功称为“最

最新信息熵的matlab程序实例资料

求一维序列的信息熵(香浓熵)的matlab程序实例 对于一个二维信号,比如灰度图像,灰度值的范围是0-255,因此只要根据像素灰度值(0-255)出现的概率,就可以计算出信息熵。 但是,对于一个一维信号,比如说心电信号,数据值的范围并不是确定的,不会是(0-255)这么确定,如果进行域值变换,使其转换到一个整数范围的话,就会丢失数据,请高手指点,怎么计算。 比如数字信号是x(n),n=1~N (1)先用Hist函数对x(n)的赋值范围进行分块,比如赋值范围在0~10的对应第 一块,10~20的第二块,以此类推。这之前需要对x(n)做一些归一化处理 (2)统计每一块的数据个数,并求出相应的概率 (3)用信息熵公式求解 以上求解方法获得的虽然是近似的信息熵,但是一般认为,这么做是没有问题的 求一维序列的信息熵的matlab程序代码如下:(已写成调用的函数形式) 测试程序: fs=12000; N=12000; T=1/fs; t=(0:N-1)*T; ff=104; sig=0.5*(1+sin(2*pi*ff*t)).*sin(2*pi*3000*t)+rand(1,length(t)); Hx=yyshang(sig,10) %———————求一维离散序列信息熵matlab代码 function Hx=yyshang(y,duan) %不以原信号为参考的时间域的信号熵 %输入:maxf:原信号的能量谱中能量最大的点 %y:待求信息熵的序列 %duan:待求信息熵的序列要被分块的块数 %Hx:y的信息熵 %duan=10;%将序列按duan数等分,如果duan=10,就将序列分为10等份 x_min=min(y); x_max=max(y); maxf(1)=abs(x_max-x_min); maxf(2)=x_min; duan_t=1.0/duan; jiange=maxf(1)*duan_t; % for i=1:10 % pnum(i)=length(find((y_p>=(i-1)*jiange)&(y_p

第5讲信息熵课件

1 第5讲 随机变量的信息熵 在概率论和统计学中,随机变量表示随机试验结果的观测值。随机变量的取值是不确定的,但是服从一定的概率分布。因此,每个取值都有自己的信息量。平均每个取值的信息量称为该随机变量的信息熵。 信息熵这个名称是冯诺依曼向香农推荐的。在物理学中,熵是物理系统的状态函数,用于度量一个物理系统内部状态和运动的无序性。物理学中的熵也称为热熵。信息熵的表达式与热熵的表达式类似,可以视为热熵的推广。香农用信息熵度量一个物理系统内部状态和运动的不确定性。 信息熵是信息论的核心和基础概念,具有多种物理意义。香农所创立的信息论是从定义和研究信息熵开始的。这一讲我们学习信息熵的定义和性质。 1. 信息熵 我们这里考虑离散型随机变量的信息熵,连续型随机变量的信息熵以后有时间再讨论,读者也可以看课本上的定义,先简单地了解一下。 定义1.1 设离散型随机变量X 的概率空间为 1 21 2 ......n n x x x X p p p P ?? ??=???????? 我们把X 的所有取值的自信息的期望称为X 的平均自信息量,通常称为信息熵,简称熵(entropy ),记为H(X),即 1 1 ()[()]log n i i i H X E I X p p === ∑ (比特) 信息熵也称为香农熵。 注意,熵H (X )是X 的概率分布P 的函数,因此也记为H (P )。 定义1.2 信息熵表达式中的对数底可取任何大于等于2的整数r ,所得结果称为r-进制熵,记为H r (X ),其单位为“r-进制单位”。 我们有

2 ()() log r X H H r X = 注意,在关于熵的表达式中,我们仍然约定 0log 00 0log 00 x ==, 信息熵的物理意义: 信息熵可从多种不同角度来理解。 (1) H(X)是随机变量X 的取值所能提供的平均信息量。 (2) 统计学中用H(X)表征随机变量X 的不确定性,也就是随机性的大小。 例如,假设有甲乙两只箱子,每个箱子里都存放着100个球。甲里面有红蓝色球各50个,乙里面红、蓝色的球分别为99个和1个。显然,甲里面球的颜色更具有不确定性。从两个箱子各摸出一个球,甲里面摸出的球更不好猜。 (3) 若离散无记忆信源的符号概率分布为P ,则H(P)是该信源的所有无损编码的“平均 码长”的极限。 令X 是离散无记忆信源的符号集,所有长度为n 的消息集合为 {1,2, ,}n M X = 每个消息i 在某个无损编码下的码字为w i ,码字长为l i 比特。假设各消息i 出现的概率为p i ,则该每条消息的平均码长为 1 M n i i i L p l ==∑ 因此,平均每个信源符号的码长为 1 1M n i i i L p l n n ==∑ 这个平均每个信源符号的码长称为该编码的平均码长,其量纲为(码元/信源)。 我们有 () lim () n n n L L H X H X n n →∞≥=且 这是信源编码定理的推论。

相关文档
最新文档