2.4.3 基本不等式及其应用(含答案)

2.4.3 基本不等式及其应用(含答案)
2.4.3 基本不等式及其应用(含答案)

【课堂例题】

例1.用长为4a 的篱笆围成一个矩形菜园,怎样才能使所围矩形菜园的面积最大?

例2.用篱笆围一个面积为218m 的矩形菜园,如果一边借用已有的一堵墙,则篱笆至少要多少米?

例3.某新建居民小区欲建一面积为700平方米的矩形绿地,在绿地四周铺设人行道,设计要求绿地长边外人行道宽3米,短边外人行道宽4米,怎样设计绿地的长与宽,才能使人行道的占地面积最小?(结果精确到0.1米)

例4.某工厂建造一个无盖的长方体水池,其容积为34800m ,深度为3m ,如果池底每21m

的造价为150元,池壁每21m 的造价为120元,怎样设计水池能使总造价最低?最低总造价

为多少元?

43

绿地

【基础训练】

1.(1)把36写成两个正数的积,要求这两个正数的和最小,那么36= .

(2)把18写成两个正数的和,要求这两个正数的积最大,那么18= .

2.用一根长为L 的铁丝制成一个矩形框架,框架的面积最大值为 .

3.斜边长为10的直角三角形,面积最大值为 .

4.某种产品的生产者准备对该产品分两次提价,现在有三种提价方案:

方案甲:第一次提价%p ,第二次提价%q ;

方案乙:第一次提价%q ,第二次提价%p ; 方案丙:第一次提价

%2p q +,第二次提价%2

p q +. 其中0p q >>,则上述总提价从小到大排列正确的是( )

(A)甲<乙<丙; (B)甲=乙<丙; (C)丙<甲=乙; (D)由,p q 的具体数值确定.

5.某汽车公司购买了一批客车投入营运,每辆客车营运的总利润y (单位10万元)与营运年数x *()x N ∈为二次函数关系如图,则每辆客车营运( )年时,其营运的年平均利润最大. (A)3; (B)4; (C)5; (D)

6.

6.建造一个容积为8

造价每平方米分别为

7.如图,一份印刷品的排版面积(虚线矩形面积)为18,

它的两边都留有宽为1的空白,顶部和底部都留有宽为2的空白.

如何选择纸张的尺寸注,才能使纸的用量最少?

注:纸张的尺寸一般用m n 表示.

【巩固提高】

8.如图,制作一个木质窗框,如果可供使用的材料是l 米,

求该木质窗框的最大面积.(结果用l 表示,忽略木料本身宽度).

12

1

2

9.经过长期观察测得:在交通繁忙时期,某公段汽车的车流量y (千辆/时)

与汽车的平均速度v (千米/小时)之间的关系为2920(0)31600v y v v v =

>++ (1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少? (精确到0.1千辆/时)

(2)若要求该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内?

提示:分子分母同除以v 后再处理.

(选做)10.(1)用实验的方法比较三个正数,,a b c 的算术平均数3a b c

++和

(也可以证明)

(2)利用(1),尝试解决《数学》高一年级第一学期46P 课题一所提出的问题.

【温故知新】 11.4

{|,,0}A y y x x R x x ==+∈≠,则与A 相等的集合是( ).

(A) (,4][4,)-∞-+∞; (B) [4,)+∞; (C) (,2][2,)-∞-+∞; (D) [2,)+∞.

【课堂例题答案】

例1.围成正方形时面积最大.

例2.至少需要篱笆12米.

例3.绿地长与宽分别为30.6米与22.9米时,人行道所占没面积最小.

例4.底面为边长40米的正方形时,总造价最低,总造价为297600元.

【习题答案】

1.(1)66?; (2)99+.

2.2

16

L . 3.50.

4.B 提示:22(1%)(1%)%%(1%)(1%)(1%)(1%)[

](1)22p q p q p q q p ++++++=++<=+ 5.C 提示:2525()1210122(,5)y x x x x x x

=-++≤-+=== 6.1760元.

7.大小为105?规格. 8.2

48

l . 9.(1)当汽车的平均速度v 为40千米/时,车流量最大,最大车流量约为11.1千辆/时;

(2)汽车的平均速度应在(25,64)内.

10.(1),,,

3a b c a b c R +++∈≥,当且仅当a b c ==时等号成立 (2)227

提示:

3(4)(12)(12)2(1233

x x x x +-+--==

322(12)(12))327V x x x ∴=--≤= 11.A

基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2 y = 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y = 的最大值.;3.203x <<,求函数y =. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 . 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且 191x y +=,求x y +的最小值。 变式: (1)若+∈R y x ,且12=+ y x ,求y x 11+的最小值 (2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 技巧七、已知x ,y 为正实数,且x 2 +y 22 =1,求x 1+y 2 的最大值. 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

基本不等式的变形及应用

基本不等式ab b a 22 2≥+的变式及应用 不等式ab b a 222≥+是课本中的一个定理,它是重要的基本不等式之一,对于它及它各种变式的掌握与熟练运用是求解很多与不等式有关问题的重要方法,这里介绍它的几种常见的变式及应用 1、十种变式 ①222b a ab +≤; ②2 )2(b a ab +≤; ③2 )2(222b a b a +≤+ ; ④)(222b a b a +≤+ ⑤若0>b ,则b a b a -≥22 ; ⑥ ,,+∈R b a 则b a b a +≥+411 ⑦若ab b a R b a 4 )11(,,2≥ +∈+ ⑧若 ≠ab ,则 2 2 2)11(2111b a b a +≥+ 上述不等式中等号成立的充要条件均为: b a = ⑨若R b a R n m ∈∈+ ,,,,则n m b a n b m a ++≥+2 22)((当且仅当bm an =时 等号成立) ⑩)(3)(2222c b a c b a ++≤++(当且仅当c b a ==时等号成立) 2、应用 例1、若+∈R c b a ,,,且2=++c b a ,求证:4111<+++++c b a 证法一:由变式①得21 111++≤ +? a a 即12 1+≤+a a

同理:121+≤ +b b ,12 1+≤+c c 因此 12111+≤+++++a c b a 41212≤++++c b 由于三个不等式中的等号不能同时成立,故 4111<+++++c b a 评论:本解法应用“2 2 2b a ab +≤ ”观察其左右两端可以 发现,对于某一字母左边是一次式,而右边是二次式,显然,这个变式具有升幂与降幂功能,本解法应用的是升幂功能。 证法二:由变式④得)11(211+++≤+++b a b a 同理: )11(211++≤++c c ∴≤ ++++++1111c b a )4(2)2(2)2(2+++≤++++c b a c b a 512<= 故结论成立 评论:本解法应用“)(222b a b a +≤+” ,这个变式的功能是将“根式合并”,将“离散型”要根式转化为统一根式,显然,对问题的求解起到了十分重要的作用。 证法三:由变式⑩得 1(3)111(2+≤+++++a c b a 15)11=++++c b 故4111<+++++c b a 即得结论

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

一元一次不等式组的实际应用

一元一次不等式组的实际 应用 Prepared on 22 November 2020

一元一次不等式组的实际应用 1、某市召开的出租汽车价格听证会上,物价局拟定了两套客运出租汽车运价调整方案.方案一:起步价调至7元/2公里,而后每公里元;方案二:起步价调至8元/3公里,而后每公里元.若某乘客乘坐出租车(路程多于3公里)时用方案一比较合算,则该乘客乘坐出租车的路程________5公里(填大于或小于) 2、李明家距离学校,现在李明需要用不超过18min的时间从家出发到达学校,已知他步行的速度为90m/min,跑步的速度为210m/min,则李明至少需要跑________分钟. 3、某火车站购进一种溶质质量分数为20%的消毒液,准备对候车室进行喷洒消毒,而从科学的角度知用含的消毒液喷洒效果最好,那么工作人员把这种溶质质量分数为20%消毒液稀释时,兑水的比例为1:100行不行________(填“行”或“不行”) 4、用若干辆载重量为8t的汽车运一批货物支援汶川地震灾区,若每辆汽车只装4t,则剩下20t货物;若每辆汽车装8t,则最后一辆汽车不满也不空,请问:有________辆汽车 5、现用甲、乙两种保温车将1800箱抗甲流疫苗运往灾区,每辆甲运输车最多可载200箱,每辆乙运输车最多可载150箱,并且安排车辆不超过10辆,那么甲运输车至少应安排_______辆. 6、某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到江阴儿童福利院看望孤儿.如果分给每位儿童5盒牛奶,那么剩下18盒牛奶;如果分给每位儿童6盒牛奶,那么最后一位儿童分不到6盒,但至少能有3盒.则这个儿童福利院的儿童最少有________人,最多有________人.

基本不等式及其应用(优秀经典专题及答案详解)

专题7.3 基本不等式及其应用 学习目标 1.了解基本不等式的证明过程; 2.会用基本不等式解决简单的最大(小)值问题. 知识点一 基本不等式ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R);(4)????a +b 22≤a 2+b 2 2(a ,b ∈R); (5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2 ,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 知识点四 利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【特别提醒】 1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立. 2.连续使用基本不等式时,牢记等号要同时成立. 考点一 利用基本不等式求最值

【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5 的最大值为_______ 【答案】1 【解析】因为x <54 ,所以5-4x >0, 则f (x )=4x -2+ 14x -5=-????5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+ 14x -5 的最大值为1. 【方法技巧】 1.通过拼凑法利用基本不等式求最值的实质及关键点 拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键. 2.通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1; (3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. 【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【答案】6 【解析】由已知得x +3y =9-xy , 因为x >0,y >0,所以x +3y ≥23xy , 所以3xy ≤????x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 【方法技巧】通过消元法利用基本不等式求最值的策略 当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值. 考点二 利用基本不等式解决实际问题 【典例2】 【2019年高考北京卷理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果

基本不等式及其应用

基本不等式及其应用 一、教学分析设计 【教材分析】 人教版普通高中课程标准试验教科书分不同的章节处理不等式问题。在必修5的第三章中,首先介绍了不等关系与不等式;然后是一元二次不等式及其解法,二元一次不等式(组)与简单的线性规划问题;最后在第四节介绍基本不等式。在选修教材《不等式选讲》中对不等式与绝对值不等式、证明不等式的基本方法、柯西不等式与排序不等式、数学归纳法证明不等式作了更详细的介绍。并在书中还安排章节复习了基本不等式,并将其推广到三元的形式。基本不等式从数学上凸显了沟通基础数学知识间的内在联系的可行性。 基本不等式的课程标准内容为:探索并了解基本不等式的证明过程;会用基本不等式解决简单的最值问题。教学要求为:了解基本不等式的代数背景、几何背景以及它的证明过程;理解算数平均数、几何平均数的概念;会用基本不等式解决简单的最值问题;通过基本不等式的实际应用,感受数学的应用价值(说明:突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形)。《考试说明》中内容为:会用基本不等式解决简单的最值问题。通过对比分析,他们的共同都有“会用基本不等式解决简单的最值问题”。基本不等式与函数(包括三角函数)、数列、解析几何等内容均有丰富的联系,在《考试说明》中属于C及内容(含义:对该知识有实质性的理解并能与已有知识建立联系,掌握内容与形式的变化;相关技能已经形成,能用它来解决简单的相关问题)。 【学生分析】 从知识储备上看,高三学生已经基本掌握了不等式的简单性质和证明,并能用不等式及不等式组抽象出实际问题中的数学模型,也具备一定的几何知识。 从思维特点看,学生了解了不等关系的数学模型是解决实际问题的重要工具,具备一定的归纳、猜想、演绎证明和抽象思维的水平。 【目标分析】 结果性目标: 1、能在具体的问题情景中,通过抽象概括、数学建模以及逻辑推理获得基本不等式; 2、掌握基本不等式应用的条件“一正二定三相等”,和基本不等式的常见变形; 3、会用基本不等式解决一些简单的实际问题。 体验性目标: 1、在解决实际问题的过程中,体验基本不等式的本质是求二元的最值问题; 2、在解决实际问题中,体验“形”与“数”间的关联。 重点:创设基本不等式使用的条件。 难点:基本不等式的简单应用,以及使用过程中定值的取得。 【核心问题分析】 核心问题:在学校文化厘清过程中,拟对一块空地实行打造,现对其规划如下:将这块空地建成一个广场,在广场中间建一个长方形文化长廊,在其正中间造一个长方形景观池,并利用长廊内部左下角的那颗古树打造一条直线型景观带。请同学们按照以下要求实行数据设计: 问题1:文化长廊的周长为480米,要求文化长廊所围成的长方形面积最大,应怎样设计其长和宽? 问题2:已知景观池的容积为4800米,深为3米。已知景观池底每平米的造价是150元,池壁每平方米的造价是120元,问怎样设计,使造价最低,最低造价是多少? 问题3:设文化长廊为ABCD,现在长廊ABCD的左下角点E处有颗古树,且点E距左边AB和下边AD的D距离各为20米、10米,为保护古树,现经过古树E建造一直线型的景观带

不等式组的实际应用

七年级数学导学稿 一、课题一元一次不等式组的应用姓名:所属小组: 二、本课学习目标与任务:1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题; 2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力; 3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。 三、复习旧知,铺垫新知1、写出下列不等式组的解集。 ?? ? ? ? > > 2 1 2 x x ?? ? ? ? > - < 3 1 2 x x ? ? ? - < - < 3 1 x x ? ? ? < > 5 2 x x 记忆口诀: 四、自学任务与方法指导:探究1: 3个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务.每个小组原先每天生产多少件产品? 回答问题: (1)“不能完成任务”是什么意思? 按原先的生产速度,10天的产品数量_ 500 (2)“提前完成任务”是什么意思? 提高生产速度后,10天的产品数量____500 (3)根据以上不等关系,设未知数列不等式组并解不等式组: (4)根据实际意义确定问题的解,并回答问题: 2、解一元一次不等式组的应用题的步骤: (1)审题;(2)设未知数;(3)列不等式组;(4)解不等式组; (5)检验,确定实际问题的答案;(6)答 解一元一次不等式组的应用题的关键是找不等关系。(关键词有“不大于,至少,不超过”等)

3、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗? 步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表 设列解(结果)答 一元一次不等式组 个 未知数 找关系一个范围 根据题意写 出答案 二元一次不等式组 个未 知数 找关系一组数 五、小组合作探究问题与拓展:1、有若干男学生参加夏令营活动,晚上在一宾馆住宿时,如果每间住4人,那么还有20人住不下;相同的房间,如果每间住8人,那么还有一间住不满也不空,请问:这群男学生有多少人?有多少间房供他们住? 2、奖游戏规则:两小组比赛,各小组的小组长先确定一个糖果数量的数字(100以内)和小组的人数(10以内),然后与本小组成员讨论出一个要用到一元一次不等式组来解决的数学问题题目,并做出标准的解答,然后题目交给pk小组来解答,最快解答出对方小组的题目的小组就为胜方,胜方小组的每位成员就能从对方的糖果包中多得1颗的糖果奖励。 题目模板:把一些糖果分给某小组的成员,如果每人分()颗,那么余()颗;如果前面的每个人分()颗,那么最后1人能分到糖但分不到()颗糖果,问这些糖果有多少颗?这个小组有多少人? 当堂检测题 某校七年级(1)班计划把全班同学分成若干组开展数学探究活动。如果每个组3个人,则还剩10,如果每个组5人,则有一个组的学生数最多只有1个人,求该班在数学探究活动中计划分的组数和该班的学生数。

基本不等式及其应用-沪教版必修1教案

基本不等式是每年的高考热点,主要考察命题的判定,不等式的证明以及求 最值问题。特别是求最值问题往往在基本不等式的使用条件上设置一些问题。 考 察学生恒等变形的能力,运用基本不等式的和与积转化作用的能力。 教学目标 1. 知识与技能 理解基本不等式,了解变式结构;理解基本不等式的“和”、“积”放缩作用。 会运用基本不等式解决相关的问题。 2. 过程与方法 通过师生互动、学生主动的探究过程,让学生体会研究数学问题的基本思想 方法,学会学习,学会探究。 3. 情感态度与价值观 鼓励学生大胆探索,增强学生的信心,获得探索问题的成功情感体验。逐步 养成学生严谨的科学态度及良好的思维习惯。 重点:运用基本不等式求最值 难点:恰当变形转化,构建出满足运用基本不等式的条件 教学过程: 一、 要点梳理 1、基本不等式 若a 、b € R,则a 2+b 2> 2ab,当且仅当a=b 时取“=” b 2(a 、b 同号) a 3、求最大值、最小值问题 (1) __________________________________________________________ 如果x 、y € (0,+ g ),且xy=p(定值),那么当x=y 时,x+y 有 _______________ (2) __________________________________________________________ 如果x 、y € (0,+ g ),且x+y=s(定值),那么当x=y 时,xy 有 _______________ 例题精讲 例1、若正数a 、b 满足ab=a+b+3,求ab 的取值范围, 1 9 例2、已知x>0、y>0,且一 一 1,求x+y 的最小值 x y 2、 若 a 、b € R',则 常用变形形式: 宁,ab ,当且仅当a=b 时取 ■- ab 2 b 2 ——b a 0,b 0 ④ 2 b 2 2ab ab 2 a 2 b 2 2 概括为:

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

2020七年级数学下册试题 16.微专题:一元一次不等式(组)的实际应用

16.微专题:一元一次不等式(组)的实际应用 ◆类型一利用一元一次不等式(组)解决简单实际问题 1.某种商品的进价为160元,出售时的标价为240元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打() A.6折B.7折 C.8折D.9折 2.某工程队计划在10天修路6千米,施工前2天修完1.2千米,后来计划发生变化,准备提前2天完成修路任务,则以后几天内平均每天至少要修________千米. 3.在一次“人与自然”知识竞赛中,竞赛题共25道,答对得4分,不答或答错扣2分,得分不低于60分得奖,那么要得奖至少应答对________道题. 4.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,在每辆车都满载的情况下,甲种运输车需要安排________辆.5.(2017·邵阳中考)某校计划组织师生共300人参加一次大型公益活动,租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个. (1)求每辆大客车和每辆小客车的乘客座位数; (2)由于最后参加活动的人数增加了30人,学校决定调整租车方案.在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值. ◆类型二利用一元一次不等式(组)进行方案设计 6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,使第一种办法比第二种办法得到的优惠多,最少要购买记事本() A.5本B.6本C.7本D.8本 7.(2017·武汉中考)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元. (1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;

基本不等式及其应用

2 第二节基本不等式及其应用 考纲解读 a + b I — 了解基本不等式 ab (a ,b ?R )的证明过程. 2 会用基本不等式解决简单的最大(小)值问题 利用基本不等式证明不等式 . 命题趋势探究 基本不等式是不等式中的重要内容,也是历年高考重点考查的知识点之一,其应用范围涉及高中数学的很多 章节,且常考常新,但考查内容却无外乎大小判断、求最值和求最值范围等问题 预测2019年本专题在高考中主要考查基本不等式求最值、大小判断 ,求取值范围问题? 本专题知识的考查综合性较强 ,解答题一般为较难题目,每年分值为5 8分. 知识点精讲 1.几个重要的不等式 (1)a 2 启 0(a € R ),需 兰 0(a 兰 0), a 3 0(a w R ). ④重要不等式串:-ab < 1 1 2 -+- 厶 a b 调和平均值 乞几何平均值 乞算数平均值 乞平方平均值(注意等号成立的条件). 2?均值定理 已知 x ,y ?二 R X + V c s 2 (1)如果X y = S (定值),则xy 乞( )2 (当且仅当“ x = y ”时取“ 2 4 大值”. (2)如果xy = p (定值),则x ■ y _ 2、, xy 二2 p (当且仅当“ x = y ”时取“ =”)?即积为定值,和有最小值”. 题型归纳及思路提示 题型91 基本不等式及其应用 思路提示 熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证 . a 2 + b 2 1. 2 . (2)基本不等式:如果 a b a,b R ,则 2 ..ab (当且仅当“ a =b ”时取 ”). 1 特例:a 0,a 2; a (3)其他变形: a b 「 (a, b 同号). b a 2 2 (a +b ) 2 ①a b (沟通两和a b 与两平方和 2 2 (沟通两积ab 与两平方和a 2 b 2的不等关系式) ②ab 4 2 2 a - b 的不等关系式) 2 a + b ③ab 乞( )2 (沟通两积ab 与两和a b 的不等关系式) 2 2 (a ,b R )即 a 2 b ”).即“和为定值,积有最

不等式及不等式组的经典应用题

不等式与不等式组的实际应用 一、实际问题与一元一次不等式 学习要求 会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题. 利用不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际生活中的作用. 经典例题 【例1】6月1日起,某超市开始有偿 ..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他 们选购的3只环保购物袋至少 ..应付给超市______元. 【例2】九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有多少人? 【例3】某市出租车的收费标准是:起步价7元,超过3km时,每增加1km加收2.4元(不足1km按1km计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km,那么x的最大值是多少? 【例4】某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件. (1)若此车间每天所获利润为y(元),用x的代数式表示y.

(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件? 【例5】某公司因业务需要用车,但因资金问题暂时无法购买,想租用一辆卡车。个体出租司机小王提出的条件是:每月付给1000元的工资,另外每千米付给0.1元的里程费; 司机小赵提出的条件是:不需工资,只要每千米付给1.35千米的里程费。请问:该公司用谁的车更合算? 【例6】一个工程队原定在10天内至少要挖掘600m3的土方.在前两天共完成了120m3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方? 【例7】某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾? 【例8】某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元. (1)若学校单独租用这两种客车各需多少钱? (2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金, 请选择最节省的租车方案.

(全)基本不等式应用,利用基本不等式求最值的技巧,题型分析

基本不等式应用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2 ≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取 “=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a + ≥+ ≥+ ≤即 或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 ( 2 2 2 b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知54 x < ,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404 x x < ∴-> ,1 1425434554y x x x x ? ?∴=-+ =--+ + ?--? ? 231≤-+= 当且仅当15454x x -= -,即1x =时,上式等号成立,故当1x =时,m ax 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

基本不等式及其应用

基本不等式及其应用 1.ab ≤a +b 2 (1)基本不等式成立的条件:a ≥0,b ≥0; (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号). (3)ab ≤? ????a +b 22 (a ,b ∈R ); (4)a 2+b 22≥? ????a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数 (1)设a ≥0,b ≥0,则a ,b 的算术平均数为a +b 2,几何平均数为ab . (2)基本不等式可叙述为两个非负数的算术平均数不小于它们的几何平均数;也可以叙述为两个正数的等差中项不小于它们正的等比中项. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值s 2 4; (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p . 选择题: 设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 解析 ∵x >0,y >0,∴x +y 2≥xy ,即xy ≤(x +y 2)2=81,当且仅当x =y =9时,(xy )max =81 若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43 B.53 C .2 D.54 解析 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +

基本不等式及应用

基本不等式及应用 一、考纲要求: 1.了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题. 3.了解证明不等式的基本方法——综合法. (1)a 2+b 2≥2ab (a ,b ∈R) (2)ab ≤(a +b 2)2 (a ,b ∈R) (3)a 2+b 22≥(a +b 2)2(a ,b ∈R) (4)b a +a b ≥2(a ,b 同号且不为零) 上述四个不等式等号成立的条件都是a =b. 四、算术平均数与几何平均数 设a>0,b>0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的 算术平均数不小于它们的几何平均数. 四个“平均数”的大小关系;a ,b ∈R+ : 当且仅当a = b 时取等号. 五、利用基本不等式求最值:设x ,y 都是正数. (1)如果积xy 是定值P ,那么当x =y 时和x +y 有最小值2P. (2)如果和x +y 是定值S ,那么当x =y 时积xy 有最大值14 S 2 . 强调:1、在使用“和为常数,积有最大值”和“积为常数,和有最小值”这两个结论时,应把握三点:“一正、二定、三相等、四最值”.当条件不完全具备时,应创造条件. 正:两项必须都是正数; 定:求两项和的最小值,它们的积应为定值;求两项积的最大值,它们的和应为定值。 等:等号成立的条件必须存在. 2、当利用基本不等式求最大(小)值等号取不到时,如何处理?(若最值取不到可考虑函数的单调性.) 想一想:错在哪里? +≤≤2 a b ≤ +2ab a b 1.已知函数,求函数的 最小值和此时x 的取值.x x x f 1)(+=1:()22112. f x x x x x x =+≥===±解当且仅当即时函数取到最小值2.已知函数,求函数的最小值. )2(23)(>-+=x x x x f 3()222 3326f x x x x x x x =+≥->?? =?=?-?解:当且仅当即时,函数的最小值是

(word完整版)高中数学基本不等式及其应用教案

基本不等式及其应用教案 教学目的 (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式. (2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 教学过程 一、引入新课 师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么? 生:求差比较法,即 师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法. 如果a、b∈R,那么(a-b)2属于什么数集?为什么? 生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈ R+∪{0}. 师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法. 二、推导公式

1.奠基 师:如果a、b∈R,那么有 (a-b)2≥0. ① 把①左边展开,得 a2-2ab+b2≥0, ∴a2+b2≥2ab. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号). 以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索. 2.探索 师:公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有 a2+b2≥2ab; b2+c2≥2bc;

一元一次不等式组应用题及答案

一元一次不等式应用题 用一元一次不等式组解决实际问题的步骤: ⑴审题,找出不等关系; ⑵设未知数; ⑶列出不等式; ⑷求出不等式的解集; ⑸找出符合题意的值; ⑹作答。 一.分配问题: 1.把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,花生有多少颗? 2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。问这些书有多少本?学生有多少人? 3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。 4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。问有笼多少个?有鸡多少只?

5. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。请问:有多少辆汽车? 6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。 (1)如果有x间宿舍,那么可以列出关于x的不等式组: (2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗? 二速度、时间问题 1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长? 2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟? 3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?

用不等式和不等式组解决实际问题

用不等式和不等式组解决实际问题 河北王建立 近年各地中考及初中数学竞赛试卷中,出现了一些联系实际的不等式应用题.这类题型既检查了同学们的数学基础知识,又考察了运用数学知识解决实际问题的能力.下面举例加以说明. 例题 1.某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间? 解设底楼有x间客房,则二楼有(x+5)间客房,根据题意,得5x>48且4x<48,∴9<x<12。 依题意,又可得 3(x+5)<48,且4(x+5)>48, ∴ 7<x<11。 故 x=10。 答:底楼有10间客房。 例2.某园林的门票每张10元,一次性使用。考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年),年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再购门票;B类年票每张60元,持票者进入园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入园林时,需再购买门票,每次3元。 (1)若你只选择一种购买门票的方式,且你计划在一年中花在该园林的门票上80元,

试通过计算,找出可使进入该园林的次数最多的购票方式。 (2)求一年中进入该园林至少超过多少次时,购买A 类年票比较合算。 分析:(1)不可能选A 类年票。若选B 类年票,则102 6080=-(次)。 若选C 类年票,则311324080=-(次),若不购买年票则810 80=(次),故购买C 类年票进入园林的次数最多。 (2)设至少超过x 次,则得?????>>+>+120101************ x x 解之得???????>>>12 322630x x x 所以,一年中进入园林至少超过30次时,购买A 类年票比较合算。 例3. 某企业为了适应市场经济的需要,决定进行人员结构调整。该企业现有生产性行业人员100人,平均每人每年可创造产值a 元。现欲从中分流出x 人去从事服务性行业,假设分流后,继续从事生产性行业的人员平均每人每年创造产值可增加20%,而分流从事服务性行业的人员平均每人每年可创造产值a 5.3元。若要保证分流后该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业的全年总产值的一半,试确定分流后从事服务性行业的人数。 分析:设x 人分流出去从事服务性行业,则企业生产性行业人员还有()x -100人,由题意得 ()()??????≥≥-+a ax a x a 100215.3100100%201

相关文档
最新文档