第一章 天然气性质

燃气的分类及基本性质.

第一部分燃气的分类及基本性质 一、燃气的分类 (一)天然气 1、常规天然气 (1)、气田气:是指产自天然气气藏的纯天然气,主要组分是甲烷。(2)、石油伴生气:是指与石油共生的、伴随石油一起开采出来的天然气,其主要组分是甲烷、乙烷、丙烷和丁烷。(3)、凝析气田气:是指从深层气田开采的含石油轻质馏分的天然气。主要组分是甲烷、2%-5%戊烷及戊烷以上的碳氢化合物。 2、非常规天然气:是指受目前技术经济条件的限制尚未投入工业开采及制取的天然气资源,包括天然气水合物、煤层气、页岩气、煤制天然气等。 (1)、天然气水合物俗称可燃冰:是天然气与水在一定条件下形成的类冰固态化合物。主要组分为甲烷。 (2)、煤层气:是煤层形成过程中经过生物化学和变质作用以吸附或游离状态存在于煤层及固岩中的自储式天然气。 (3)、页岩气:是以吸附或游离状态存在于暗色泥页岩或高碳泥页岩中的天然气。 (4)、煤制天然气:是指煤经过气化产生的合成气,再经过甲烷化处理,生产代用天然气(SNG)。 (二)、人工燃气 1、固体燃料干馏煤气:利用焦炉等对煤进行干馏所获得的煤气。

2、固体燃料气化煤气:是指以煤作为原料采用纯氧和水蒸气作为气化剂,获得的煤气。如:水煤气、发生炉煤气等。 2、油制气;是指利用重油(炼油厂提取汽油、煤油、柴油之后剩余的油品)制取城市燃气。 3、高炉煤气:是冶金工厂炼铁时的副产气,主要组分是一氧化碳和氮气。 (三)、液化石油气:是指在天然气及石油开采或炼制石油过程中,作为副产品而获得的。 (四)、生物气:各种有机物质在隔绝空气的条件下发酵,并在微生物的作用下产生的可燃气体,也叫做沼气。 二、燃气的基本性质 1、热值:单位体积的燃气完全燃烧所产生的热量。 2、热值单位的换算关系:1千卡=4.187千焦;1千焦=0.239千卡:1千瓦小时=3600千焦=859.8千卡 3、常用燃气的热值:

天然气常见知识

天然气基本性质 主要成分:甲烷%、已烷+丙烷%、其它% 理化性质:无色、无味、无毒、易燃 状态:常温为气态,超低温加压为液态 平均密度:Nm3 相对密度: LNG密度: Kg/Nm3 沸点:-162℃ 自燃点:540℃ 爆炸极限:5%~15% 天然气低热值: Nm3 灭火剂:干粉、雾状水、泡沫、二氧化碳 主要物料危险性分析 1)易燃性,天然气属甲类火灾危险性物质,易燃。 2)化学性爆炸,天然气易爆,爆炸极限为5%-15%。与空气或氧气混合,能形成爆炸性混合物,在爆炸极限范围内遇着火源就会发生爆炸。3)物理性爆炸,储罐、管线超过承受的压力;安全附件(安全阀)不能按规定启跳;设备设施存在缺陷或受到外力作用等情况都有可能使天然气产生物理性爆炸。 4)低温:液化天然气体蒸发时会从环境中吸取大量热量,使环境温度急剧降低,如果发生泄漏可能使接触的人冻伤。 5)窒息:在大气中,天然气通常会冲淡氧气的浓度,如果发生大量

泄漏,可能造成人员窒息。 生产过程的危险危害因素分析 泄漏 燃气泄漏主要可能有几个方面: 1、管道或者是设备设施腐蚀穿孔,引起燃气泄漏; 2、管线及设备的易损件老化失效等引起密封连接处漏气; 3、误操作、设备本身损坏或者自动控制系统失效而发生泄漏; 4、管道受应力开裂或者焊缝处发生泄漏; 5、管道被第三方施工破坏导致燃气泄漏。 目前,地下中压燃气管网已串联成网,管道局部泄漏不会造成大范围用户停气,且公司已配置了不停输设备和应急气化撬等应急设备和机具,停气风险相对较低,但城市管网的停气对于企业的声誉和社会影响相对较大。高/次高压管网是配气的主动脉,其停气可能会影响到一个乃至多个行政区域的正常供气,风险相对较高。 场站内的燃气泄漏,如导致场站直接停用的,则会影响到下游用户的正常用气;特别是求雨岭门站停气会直接影响到电厂等工业用户的用气,风险很高。 爆炸、爆燃 公司潜在的爆炸类型有化学性爆炸、物理性爆炸、冷爆炸、电气爆炸、爆燃、闪燃等多种类型,爆炸同时可能引发火灾等次生灾害。 1、化学性爆炸: 燃气泄漏并达到爆炸极限后,获得点火能量,既能迅速发生放热反应,

最新燃气输配知识点总结

第一章城镇燃气的分类及其性质 1.燃气的分类:天然气,人工燃气,液化石油气,生物气(即沼气)。(城镇燃气主要包括哪几种) 2.沼气的定义:各种有机物质,在隔绝空气的条件下发酵,在微生物的作用下产生的可燃气体。沼气组成:60%的甲烷,35%的二氧化碳,少量氢和一氧化碳。 3.天然气的分类方法很多:按其勘探,开采技术可分为常规天然气和非常规天然气两大类。常规天然气按照其矿藏特点可分为:气田气,石油伴生气,凝析气田气。 4.液化石油气的主要杂质:液化石油气得主要杂质有:硫分,水分,二烯烃,乙烷和乙烯,残液。液化石油气组成丙烷,丙烯,丁烷,丁烯。 5.人工煤气分为干馏煤气,气化煤气,油制气,高炉煤气。 6.生物气:各种有机物质在隔绝空气的条件下发酵,在微生物的作用下产生的可燃气体。 7.临界温度:温度不超过某一数值,对气体加压,可以使气体液化,而在该温度以上,无论压力多大,都不能液化,该温度叫做该气体的临界温度,对应的压力叫临界压力。 8.相平衡常数:表示在一定温度下,一定组成的气液平衡系统中某一组分在该温度下的饱和蒸气压与混合液体蒸气压的比值,是一常数。用k表示。 9.液体的饱和蒸汽压:在一定温度下密闭容中的纯液体及其蒸气处于动态平衡时蒸气所表示的绝对压力。温度升高,蒸汽压升高。 10露点:饱和蒸汽经冷却或加压,立即处于过饱和状态,当遇到接触面或凝结核便液化成露,这时的温度称为露点。 11.气化潜热:单位质量的液体变成与其处于平衡状态的蒸气所吸收的热量。 12.水化物及其生成条件:在湿气中形成水化物的主要条件是压力及温度。 13.防止水化物的形成或分解已形成的水化物的方法:1)采用降低压力、升高温度、加入可以使水化物分解的反应剂(防冻剂)。2)脱水,使气体中水分含量降低到不致形成水化物的程度。 14.爆炸极限:可燃气体和空气的混合物遇明火而引起爆炸时的可燃气体浓度范围。 15.人工燃气及天然气中的主要杂质:1、焦油与灰尘<10mg2、萘冬<50mg夏<100mg3、硫化物<20mg4、氨<50mg5、一氧化碳<10%6、氧化氮7、水 16.城市燃气加臭原因:城市燃气时具有一定毒性的爆炸性气体,又是在压力下输送和使用的。由于管道及设备材质和施工方面存在的问题和使用不当,容易造成漏气,有引起爆炸、着火和人身中毒的危险。因此,当发生漏气时能及时被人们发觉继而消除漏气是很必要的。要求对没有臭味的燃气加臭。 第二章城镇燃气需用量及供需平衡 1.供气对象:居民生活用气,商业用气,工业企业生产用气,采暖制冷用气,燃气汽车用气 2.民用用气供气原则:1、优先满足城镇居民炊事和生活用热水的用气2、尽量满足托幼、医院、学校、旅馆、食堂和科研等公共建筑的用气3、人工煤气一般不供应采暖锅炉用气 3.月不均匀系数Km=该月平均日用气量/全年平均日用气量 日不均匀系数Km=该月中某日用气量/该月平均日用气量 小时不均匀系数Kh=该日某小时用气量/该日平均小时用气量 4.季节性供需平衡方法:地下储气(地下储气库储气量大,造价和运行费用省,可用来平衡季节不均匀用气);液态储存 5.日供需平衡方法:管道储气;储气罐储气(只能用来平衡日不均匀用气及小时不均匀用气,投资及运营费用较大)

燃气事故的分类和级别的划分

编号:SY-AQ-06614 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 燃气事故的分类和级别的划分 Classification and classification of gas accidents

燃气事故的分类和级别的划分 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 一、燃气事故分类和分级目的和指导思想 为加强我国对突发燃气事故的有效控制,快速、高效、科学处 置可能发生的各类燃气事故,确保我国燃气企业将应急状态下应急 措施落实到位,最大限度地避免和减少人员伤亡、财产损失,确保 人民群众的生命财产安全,维护社会稳定. 二、燃气事故分类和级别划分的重要性 根据我国的国情,提出制定划定燃气事故的等级、及分类,对 指导全国各地政府和燃气企业对燃气事故的应急抢修工作提供参 照,明确燃气事故的分类和级别划分,对事故风险程度的判别,进 行量化管理,使其更具有可操作性,对事故管理尤为重要。 做好分类和级别的判定,是突发事故应急预案中的一个重要组 成部分,他可以有效、合理地利用资源,便于及时对事故采取不同 级别的应急响应,明确各级应急人员的职责范围及工作职责,发挥

各级组织的主观能动性,积极地做好应急处置,不扯皮、不推委,果断处理事故险情,防止事态扩大有着重要的意义。 其次,便于根据事故类别、等级,在规定的时间内向有关上级部门报告,使信息传递、发布能够及时、准确、客观、全面。 再者,便于及时对事故的统计与调查,及时进行归类归档,积累事故案例素材,对事故案例的剖析,找出主要事故频发、高发的原因,制定有效防范措施,警示和教育后者,保护燃气运行安全,有着积极的作用。 三、燃气事故的分类 按照事故的后果进行分类: 按程度分:轻微、一般、重大、特大。 按性质分:火灾、爆炸、爆燃、中毒、泄漏、停气、设备故障。 按企业管理分:场站(存在重大危险源,在企业圈定的围墙里,有较好的控制能力)、管网(遍布整个城市地下,不宜控制,可加强巡查进行弥补)、客户(在私人的私密空间,较难控制)。 l、由于非正常原因引致生产事故而造成停产或减产。

天然气物理化学性质资料

海底天然气物理化学性质 第一节海底天然气组成表示法 一、海底天然气组成 海底天然气是由多种可燃和不可燃的气体组成的混合气体。以低分子饱和烃类气体为主,并含有少量非烃类气体。在烃类气体中,甲烷(CH 4 )占绝大部分, 乙烷(C 2H 6 )、丙烷(C 3 H 8 )、丁烷(C 4 H 10 )和戊烷(C 5 H 12 )含量不多,庚烷以上 (C 5+)烷烃含量极少。另外,所含的少量非烃类气体一般有氮气(N 2 )、二氧化 碳(CO 2)、氢气(H 2 )、硫化氢(H 2 S)和水汽(H 2 O)以及微量的惰性气体。 由于海底天然气是多种气态组分不同比例的混合物,所以也像石油那样,其物理性质变化很大,它的主要物理性质见下表。 海底天然气中主要成分的物理化学性质 名称分 子 式 相 对 分 子 质 量 密度 /Kg ·m-3 临界 温度 /℃ 临 界 压 力 /MP a 粘度 /KP a ·S 自 燃 点 / ℃ 可燃性 限 /% 热值 /KJ·m-3 (15.6℃, 常压) 气体 常数 / Kg· m· (Kg ·K)-1 低 限 高 限 全 热 值 净 热 值 甲烷CH 4 16. 043 0.71 6 -82. 5 4.6 4 0.01( 气) 6 4 5 5. 15. 372 62 334 94 52.8 4 乙烷C 2 H 6 30. 070 1.34 2 32.2 7 4.8 8 0.009( 气) 5 3 3. 2 12. 45 661 51 602 89 28.2 丙烷C 3 H 8 44. 097 1.96 7 96.8 1 4.2 6 0.125( 10℃) 5 1 2. 37 9.5 937 84 862 48 19.2 3 正丁烷n-C 4 H 10 58. 12 2.59 3 152. 01 3.8 0.174 4 9 1. 86 8.4 1 121 417 108 438 14.5 9 异丁烷i-C 4 H 10 58. 12 2.59 3 134. 98 3.6 5 0.194 1. 8 8.4 4 121 417 108 438 14.5 9 氨He 4.0 03 0.19 7 -267 .9 0.2 3 0.0184 211. 79 氮N 228. 02 1.25 -147 .13 3.3 9 0.017 30.2 6

燃气基本性质计算公式

计算公式 ※公式分类→ 燃气基本性质| ·华白数计算来源:《燃气燃烧与应 用》 2003-11-12 公式说明: 公式: 参数说明:W——华白数,或称热负荷指数; H——燃气热值(KJ/Nm3),按照各国习惯,有些取用高热值,有些取用低热值;S——燃气相对密度(设空气的S=1)。 ·含有氧气的混合气体 爆炸极限 来源:《燃气输配》中 国建筑工业出版社 2003-6-30 公式说明:

公式: 参数说明:L T——包含有空气的混合气体的整体爆炸极限(体积%);L nA——该混合气体的无空气基爆炸极限(体积%); y AiR——空气在该混合气体中的容积成分(%)。 ·含有惰性气体的混合 气体的爆炸极限 来源:《燃气输配》中 国建筑工业出版社 2003-6-30 公式说明: 公式: 参数说明:L——含有惰性气体的可燃气体的爆炸极限(体积%); L c——该燃气的可燃基(扣除了惰性气体含量后、重新调整计算出的各燃气容积成分)的爆炸极限值(体 积%); y N——含有惰性气体的燃气中,惰性气体的容积成分(%)。

·只含有可燃气体的混 合气体的爆炸极限 来源:《燃气输配》中 国建筑工业出版社 2003-6-30 公式说明: 公式: 参数说明:L——混合气体的爆炸(下上)限(体积%); L1、L2……L n——混合气体中各可燃气体的爆炸下(上)限(体积%); y1、y2……y n——混合气体中各可燃气体的容积成分(%)。 ·液态碳氢化合物的容 积膨胀 来源:《燃气输配》中 国建筑工业出版社 2003-6-30 公式说明: 公式:

参数说明:(1)、对于单一液体v1——温度为t1(℃)的液体体积; v2——温度为t2(℃)的液体体积; β——t1至t2温度范围内的容积膨胀系数平均值。(2)、对于混合液体v’11、v’2——温度为t1、t2时混合液体的体积; k1、k2……k n——温度为t1时混合液体各组分的容积成分; β1、β2……βn——各组分由t1至t2温度范围内容积膨胀系数平均值。 ·液化石油气的气相和 液相组成之间的换算 来源:《燃气输配》中 国建筑工业出版社 2003-6-30 公式说明: 公式:

煤气的特性

一.煤气的基本特性 二.煤气管道及附属设备 三.煤气管网的操作与检修 四.煤气管网生产前言 五.故障及处理 六.煤气事故及处理 一、前言煤气是一种易燃易爆易中毒的危险化学品。在煤气生产、净化、储存、输配、使用的各个环节,均有发生煤气事故的可能,因此要做好煤气的安全使用煤气在冶金企业中具有非常重要的地位,是节能降耗的关键环节。只有了解煤气,掌握煤气的安全知识,才能合理有效利用煤气,遏制事故的发生。 (一)副产煤气在钢铁企业能源平衡中的重要性及其用途煤气在钢铁企业的副产品,它主要用于各种炉窑的加热、余压发电。 (二)副产煤气的种类及其性质 1、钢铁企业副产煤气有三种:高炉煤气,焦炉煤气,转炉煤气,各种煤气的理化性质及其危险特性如下: ⑴高炉煤气:无色、无味,易燃、易爆、易中毒的气体,会致人喘息和窒息。 ⑵焦炉煤气:净化后的焦炉煤气是无色、有臭味、有毒的易燃易爆气体,焦炉煤气中的CO含量较高炉煤气少,但也会造成中毒事故。 ⑶转炉煤气:转炉煤气的成分,在吹炼周期内,不同时期有所不同,而且与回收设备及回收时的操作条件有关。转炉煤气是无色、无味、有毒的易燃易爆气体,极易造成人员中毒。 二、煤气的基本特性 (一)煤气的腐蚀性与毒性 1、副产煤气中具有腐蚀性的成分主要有硫化氢,二氧化硫,二氧化碳等。这些气体只有在有水时才具有腐蚀性。 2、具有毒性的煤气成分(有的副产煤气中无其中的一些成分)有:硫化氢,氨气,苯等,这些充分主要存在于焦炉煤气中。 (二)煤气质量的要求 1、高炉煤气 (1)含尘量:高炉净煤气含尘量小于10毫克/标米 (2)含湿量,高炉煤气的含湿量为煤气中饱和水含量和机械水含量的总和。 2.焦炉煤气:由焦炉出来的煤气因含有焦油、萘蒸汽,一般叫做荒焦炉煤气。荒 焦炉煤气中含有水、焦油及其他可作化工原料的气态化合物;必须 将荒焦炉煤气进行加工处理,使其中的焦油蒸汽和水蒸气冷凝下来, 并将有关的化工原料回收,净化然后才送入煤气管网作燃料使用。 这时的焦炉煤气就清洁了。净化后的焦炉煤气焦油应低于50毫克/ 标米3 、萘含量应低于350毫克/标米 3.转炉煤气: (1)含尘量,应不大于本企业高炉煤气的含尘量。一般含尘量低于20毫克/ 标米 (2)含氧量,要求不大于1% (三)煤气发热量煤气发热量,是指完全燃烧一标准立方米煤气时所释放出的热量。 发热量有高发热量和低发热量之分。根据各种用户热值要求不同,选用的煤气种

天然气的性质和特点

天然气的性质和特点 1、天然气是一种易燃易爆气体,和空气混合后,温度只要达到550℃就燃烧。在空气中,天然气的浓度只要达到5-15%就会爆炸。 2、天然气无色,比空气轻,不溶于水。一立方米气田天然气的重量只有同体积空气的55%左右,一立方米油田伴生气的重量,只有同体积空气的75%左右。 3、天然气的主要成分是甲烷,本身无毒,但如果含较多硫化氢,则对人有毒害作用。如果天然气燃烧不完全,也会产生一氧化碳等有毒气体。 4、天然气的热值较高,一立方米天然气燃烧后发出的热量是同体积的人工煤气(如焦炉煤气)的两倍多,即35.6-41.9兆焦/立方米(约合8500-10000千卡/立方米)。 5、天然气可液化,液化后其体积将缩小为气态的六百分之一。每立方米天然气完全燃烧需要大约十立方米空气助燃。 6、一般油田伴生气略带汽油味,含有硫化氢的天然气略带臭鸡蛋味。天然气的主要成分是甲烷,甲烷本身是无毒的,但空气中的甲烷含量达到10%以上时,人就会因氧气不足而呼吸困难,眩晕虚弱而失去知觉、昏迷甚至死亡。

天然气中如含有一定量的硫化氢时,也具有毒性。硫化氢是一种具有强烈臭鸡蛋味的无色气味,当空气中的硫化氢浓度达到0.31毫克/ 升时,人的眼、口、鼻就会受到强烈的刺激而造成流泪、怕光、头痛、呕吐;当空气中的硫化氢含量达到1.54毫克/升时,人就会死亡。因此,国家规定:对供应城市民用的天然气,每立方米中硫化氢含量要控制在20毫克以下 天然气的化学组成 天然气是指烃类气体。地壳中,天然气就其产状分析,有游离态、溶解态(溶于原油和水中)、吸附态和固态气水合物四种类型。从分布特点又可分为聚集型和分散型两类。气藏气、气顶气、凝析气、油溶气属聚集型,也称为常规型天然气;水溶气、煤层气、固态气水合物则属分散型,也称为非常规型天然气。从与油藏的关系划分,气顶气、油溶气以及油藏之间或油藏上方的、在成因上与成油过程相伴的气藏气,均归于伴生气;与油没有明显联系的或仅含有极少量原油的气藏气,成因上与煤系有机质或未成熟的有机质有关而生成的天然气称之为非伴生气。 在我国,常规的天然气贮存形式是普遍存在的,包括气层气、溶解气、水溶气、凝析气。一般说,“气层气”是指在原始储层条件下,天然气以自由气相贮集于储层内。“溶解气”指原始储层条件下,天然气以溶解状态存于储层内的原油中。“水溶气”指在原始储层条件下,

天然气的危险、有害特性表

天然气的危险、有害特性表表3-2 标识中文名:天然气、油田气、液化天然气英文名:Natural Gas,LNG 分子式:分子量:16.04 UN编号:1971、1927 危规号:21007、21008 UN编号:1971、1972 CAS号:74—82—8 理化性质性状:无色、无臭气体(液)体。主要成分为含 83%~99%甲烷、1%~13%乙烷、0.1%~3%丙烷、 0.2%~1.0%丁烷。 危险性类别:第2.1类易燃气体 熔点(℃):-182.5 溶解性:溶于水、溶于醇、乙醚沸点(℃):-160 相对密度(水= 1):0.42(-164℃)饱和蒸气压(KPa):53.32(-168.8℃)相对密度(空气= 1):0.55 临界温度(℃):-82.6 燃烧热(KJ/mol):48624 临界压力(MPa):4.59 自燃温度(℃):无资料 燃烧爆炸危险性燃烧性:易燃,具窒息性燃烧分解产物:一氧化碳、二氧化碳 闪点(℃):聚合危害:不聚合 爆炸极限(V%):5.3~15 稳定性:稳定 引燃温度(℃):538 禁忌物:强氧化剂 危险特性:与空气混合能形成爆炸性混合物,遇热源和明火极易燃烧爆炸。与氟、氯等接触会发生剧烈的化学反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火引着回燃,若遇高热,容器内压增大,有开裂和爆炸危险 灭火方法:泄漏出的液体如未燃着,可用水喷淋驱散气体,防止引燃着火,最好用水喷淋泄漏液体迅速蒸发,川碳酸氢钠、碳酸氢钾、磷酸二氢铵等化学干粉,二氧化碳或卤代烃等灭火 毒性及健康危 害接触限值:中国:未制订标准。 急性中毒时,可有头昏、头痛、呕吐、乏力甚至昏迷病程中尚可出现精神症状,步态不稳,昏迷过程久者,醒后可有运动性失语及偏瘫,L期接触天然气者,可出现神经衰弱综合症 急救吸入:脱离有毒环境,至空气新鲜处,给氧,对症治疗 防护眼睛防护:一般不需特殊防护,高浓度接触时可戴化学安全防护眼镜 防护服:穿防静电工作服 手防护:必要时戴防护手套 其它:工作现场严禁吸烟,避免高浓度吸入,进入罐或其它高浓度作业区,须有人监护 泄漏处理迅速撤离泄露污染区人员至上风处,并进行隔离,严格限制出入。切断火源。建议应急处理人员带自给正压式呼吸器,穿防静电工作服。不要直接接触泄露物,尽可能切断泄漏源。合理通风,加速扩散。泄露的液体如未燃着,可用水喷淋使泄露的液体蒸发、溶解,但蒸发速度要加以控制,不可将固体冰晶射至液体徳天然气上。构筑围低或挖坑收容产生的大量废水。如有可能,将漏出气用排风机送至空旷地方或者装设适当碰头烧掉。也可以将漏气徳容器移至空旷处,注意通风。漏气容器要妥善处理,修复、检验后再用。如果液化天然气已经被引燃,灭火方法参照氢气。 储运储存于阴凉、通风的库房。远离火源、热源。库温不宜超过30℃。应与氧化剂、氯气分开放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花徳机械设备和工具。在传送过程中,钢瓶的容器必须接地和跨接,防止产生静电。搬运时轻装轻卸,防止钢瓶及附件破损。储区应备有防泄漏的专门仪器和应急处理设备。配备相应品种和数量徳消防器材。罐储时要有防火防爆技术措施。灌装时应注意流速(不超过3m/s),且又接地装置,防止静电积聚。搬运时要轻装轻卸,防止包装及容器损坏。

天然气及其组分的物理化学性质(一)

天然气及其组分的物理化学性质(一) 天然气的主要成分为甲烷,此外还含有乙烷、丙烷、丁烷等烃类气体,氮、CO2、H2S及微量氢、氦、氩等非烃类气体,一般气藏天然气的甲烷含量在90%以上。油田伴生气中甲烷含量占65%~80%,此外还含有相当数量的乙烷、丙烷、丁烷等烃类气体。 一、天然气主要组分的物理化学性质天然气主要组分的物理化学性质见表1-3-1。表1-3-1天然气主要组分在标准状态下的物理化学性质 名称分子式相对分子质量摩尔体积Vm/(m3/kmol)气体常数R(J/kg·K)密度ρ/(kg/m3)临界温度Tc/K临界压力Pc/MPa高热值Hh/(MJ/m3)高热值Hh/(MJ/kg)低热值H1/(MJ/m3)甲烷CH416.04322.362518.750.7174190.584.54439.84235.906乙烷C2H630.0722.187276.641.3553305.424.81670.35155.36764.397丙烷C3H844.09721.936188.652.0102369.824.194101.26651.90893.240正丁烷n-C4H1058.12421.504143.1302.703425.183.747133.88650.376123.649异丁烷i-C4H1058.12421.598143.132.6912408.143.600133.04849.532122.853正戊烷C15H1272.15120.891115.273.453746.9653.325169.37749.438156.733氢H22.01622.427412.67O.089833.251.28012.74549.04210.786氧O231.99922.392259.971.4289154.334.971—141.926—氮N223.01322.403296.951.2507125.973.349——氦

燃气的基本性质

第二节 燃气的基本性质 一、燃气的物理化学性质 (一)燃气的组成 (1)混合气体的组分表示法 容积成分yi:混合气体中各组分的分容积与混合气体的总容积之比,混合气体的总容积等于各组分的分容积之和。 质量成分gi:混合气体中各组分的质量与混合气体的总质量之比。混合气体的总质量等于各组分的质量之和。 分子成分xi :混合气体中各组分的摩尔数与混合气体的摩尔数之比。 同温同压下,1摩尔任何气体的容积大致相等,因此气体的分子成分在数值上近似等于其容积成分。混合气体的总摩尔数等于各组分的摩尔数之和。即 混合液体的组分的表示方法与混合气体相同 (二)平均分子量:燃气的总质量与燃气的摩尔数之比。 (1)混合气体的平均分子量 m 1m12m2n mn 1V (y V +y V +y V )100 =????+1122n n 1M (y M +y M +y M )100 =????+

(2)混合液体的平均分子量 (三)燃气的平均密度和相对密度 (1)平均密度:单位体积的燃气所具有的质量,Kg/m3 混合气体的平均密度 湿燃气的密度 气体的密度随温度和压力的变化而变化:压力升高,体积减小;温度升高,体积增大。 (2)相对密度 :气体的密度与相同状态的空气密度的比值 混合气体的相对密度 混合液体的平均密度 1122n n 1 M (x M +x M +x M ) 100=????+i i 1 y 100ρρ=∑w 0.833 (d)0.833d ρρ=+?+s 1.293 ρ=i i 1 y 100ρρ=∑

(4)液体的相对密度指液体的密度与水的密度的比值。因为4℃时水的密度为1Kg/L,所以液体的相对密度和平均密度在数值上相等。 常温下,液态液化石油气的平均密度是0.5~0.6Kg/L,相对密度为0.5~0.6,约为水的一半。 天然气和焦炉煤气都比空气 轻,而气态液化石油气约比空气重一倍。 (四)临界参数即实际气体状态方程 (1)临界参数 温度不超过某一数值,对气体进行加压,可以使气体液化,而在该温度以上,无论加多大压力都不能使气体液化,这个温度就叫该气体的临界温度,在临界温度下,使气体液化所必须的压力叫做临界压力。见图1-1。 图1-1所示为在不同温度下对气体压缩时,其压力和体积的变化情况。 气体的临界温度越高,越易液化。天然气主要成分是甲烷,它的临界温度低,故较难液化,而组成液化石油气的碳氢化合物的临界温度较高,故较易液化。几种气体的液态-气态平衡曲线见图1-2。图中曲线是蒸气和液体的分界线,曲线左侧为液态,右侧为气态。由图知,气体温度比临界温度越低,则液化所需压力越小。 (2)实际气体状态方程 当燃气压力低于1Mpa和温度在10~20℃时,在工程上

天然气基础知识

天然气基础知识 第一部分 天然气基本性质 一、概述 天然气是从地下开采出来的一种可燃性气体,它是埋藏在地壳下面的生物有机体,经过漫长的地质年代和复杂的转化过程而形成的。 我国利用天然气有着悠久的历史,它是气体燃料中出类拔萃的新秀,具有清洁、无毒、热值高、使用调节方便等优点,广泛用于各行各业,如熬盐、化工、化肥、冶炼、碳黑生产,CNG汽车和城市民用等。 随着城市建设发展,城市天然气事业迅速壮大,公用、民用气用户大量增加,为减轻环境污染,天然气在各行各业不断受到重视,它是二十一世纪一种清洁、高效、优质的环保能源。 二、天然气的种类 1、气田气热值一般为34.69MJ/Nm3(8300KCAL/Nm3) 2、油田伴生气热值一般为45.47MJ/Nm3(10878KCAL/Nm3) 3、凝析气田气热值一般为48.36MJ/Nm3(11569KCAL/Nm3) 4、煤层气热值一般为36.37MJ/Nm3(8700KCAL/Nm3) 5、矿井气热值一般为18.84MJ/Nm3(4500KCAL/Nm3) 三、主要成分 天然气的典型组分(体积%)

注:其它稀有组分未列出。西气东输的气体密度约为0.6982kg/m3,忠武线气体密度约为0.75kg/m3 四、主要参数 1、主要成分: CH4(甲烷),另外含有少量的其他烷烃以及氮、二氧化碳、硫化氢、水份等。 2、临界温度:-82.3℃,临界压力 4.58MPa。 3、沸点:-162 ℃(1atm),着火点:650 ℃ 4、低热值:8800Kcal/Nm3(36.96MJ/Nm3) 5、高热值:9700Kcal/Nm3(40.98MJ/Nm3) 6、爆炸范围:下限为5%,上限为15% 7、气态密度:0.75Kg/Nm3,为空气的0.58倍。 8、华白指数:44.94MJ/Nm3 9、燃烧势:45.18 以上数据按CH4含量约为97%的天然气参数,为近似值。 五、天然气的类别

燃气的分类和基本性质

燃气的分类和基本性质 概述:燃气的种类主要有人工煤气、天然气、液化石油气、和沼气。目前,我国城市燃气的气源类型主要有焦炉煤气、直立炉煤气、重油裂解气、水煤气、天然气、油田伴生气、矿井气及液化石油气等;也有一些城镇采用化肥厂合成系统放空气、驰放气掺混半水煤气以供民用;还有用酒糟发酵生产沼气供给民用的燃气。 (一)人工煤气: 主要分为固体燃料干馏煤气、固体燃料气化煤气、油制气和高炉煤气四种。 1、固体燃料干馏煤气:就是利用焦炉、连续式直立炭化炉和立箱炉等对煤进行干馏所获得的煤气,这是最早开始的城市燃气气源,也是我国目前城市燃气的重要气源之一。 它在标准状态(即在T=273K,P=101325Pa时气体的状态)下的参数如下:热值在16.7MJ/Nm3左右,密度约为0.5Kg/Nm3,相对密度(又叫比重)为0.4,爆炸极限一般在4.5%~36%之间,容易形成爆炸气体,临界温度为-168℃,临界压力2.6Mpa。 这里解释一下临界温度和临界压力的概念。临界温度:当温度不超过某一数值时,对气体进行加压,可以使气体液化,而在该温度以上,无论加多大的压力都不能使气体液化,这个温度就叫做临界温度。在临界温度下使气体液化所必须的压力叫做临界压力。 2、固体燃料气化煤气:就是一般说的水煤气、发生炉煤气,它的热值低(在5.4MJ/Nm3~10.5MJ/Nm3左右),毒性大,即CO含量高,一般不作为城市燃气的气源,主要用的工业上和工业区的居民用户。 3、油制气:利用重油裂解制取燃气,它分为热裂解和催化裂解两种方法,热裂解就是用加热的办法让重油裂解产生可燃气体,而催化裂解就是用催化剂让重油裂解产生燃气。热裂解的热值在41.9MJ/Nm3左右,催化裂解的热值在20MJ/Nm3左右。重油裂解制取燃气具有设备简单、投资省、占地少、建设速度快、管理人员少、启动停炉灵活等优点,缺点是原材料紧张,价格较贵,因为重油也是重要的化工原材料。很多城市将其作为城市燃气的调峰气源。 4、高炉煤气:是炼铁时的副产品,热值低(在4MJ/Nm3左右),毒性大,主要用在工业上。 (二)液化石油气(LPG): 液化石油气是在开采和炼制石油过程中,作为副产品而获得的一部分碳氢化

天然气的性质

第二章天然气基础知识 第一节天然气的用途 随着天然气资源的不断发现和开采,天然气的利用范围正逐步扩大,主要表现在如下几方面: 1.天然气是重要的能源,是优质燃料。天然气具有热值高、运输和使用方便、燃烧完全、干净、无烟无渣、价格便宜等优点。因此,天然气广泛用于交通、冶金、电力、轻工、化工等行业的内燃机、炼钢、热处理、发电、工业锅炉、加热炉、印染、纺织、制盐等诸多方面;同时作为生活燃料大量供应给居民。在世界的燃料消费结构中,天然气已超过20%,并在继续增长。 2.天然气是宝贵的化工原料。与其它固体或液体化工原料相比,它具有含水、含灰分极少,含硫化物等杂质极微,使用、处理方便等优点。因此,使用天然气作为化工原料,可使生产的产品成本降低,提高劳动生产率。用天然气作化工原料,可以生产近千种化工产品。目前国内外大规模生产的天然气化工产品有数十种,其中一部分是中间产品,主要有合成氨、甲醇、乙炔、甲烷氯化物、硝基甲烷、甲醛、氢氰酸、稀烃、芳烃、二硫化碳和碳黑等等。利用上述产品,可以进一步加工制造氮肥、有机玻璃、合成纤维、合成朔料、医药、溶剂、冷冻剂、灭火剂、电影胶片、炸药、高能燃料等等。而合成纤维、合成橡胶及塑料还可以进一步加工,制造出众多的工业、农业、军事和民用产品。 3.可从天然气中提炼宝贵的氦气和氩气,用于航天和电气工程;回收单质硫以制造硫酸、农药及其它硫化物产品。利用天然气可以生产出石油蛋白,作为饲料代替粮食喂养家禽、家畜和鱼类,效果很好。 总之,天然气不仅在工业、农业、国防等国民经济的各个方面发挥着重要作用,而且天然气及其产品,已广泛地应用于人们生活的各个领域之中。 第二节天然气的组分

燃气事故的分类和级别的划分

燃气事故的分类和级别的划 一、燃气事故分类和分级目的和指导思想 为加强我国对突发燃气事故的有效控制,快速、高效、科学处置可能发生的各类燃气事故,确保我国燃气企业将应急状态下应急措施落实到位,最大限度地避免和减少人员伤亡、财产损失,确保人民群众的生命财产安全,维护社会稳定. 、燃气事故分类和级别划分的重要性 根据我国的国情,提岀制定划定燃气事故的等级、及分类,对指导全国各地政府和燃气企业对燃气事故的应急抢修工作提供参照,明确燃气事故的分类和级别划分,对事故风险程度的判别,进行量化管理,使其更具有可操作性,对事故管理尤为重要。 做好分类和级别的判定,是突发事故应急预案中的一个重要组成部分,他可以有效、合理地利用资源,便于及时对事故采取不同级别的应急响应,明确各级应急人员的职责范围及工作职责,发挥各级组织的主观能动性, 积极地做好应急处置,不扯皮、不推委,果断处理事故险情,防止事态扩大有着重要的意义。 其次,便于根据事故类别、等级,在规定的时间内向有关上级部门报告,使信息传递、发布能够及时、准确、客观、全面。 再者,便于及时对事故的统计与调查,及时进行归类归档,积累事故案例素材,对事故案例的剖析,找岀主要事故频发、高发的原因,制定有效防范措施,警示和教育后者,保护燃气运行安全,有着积极的作用。 三、燃气事故的分类 按照事故的后果进行分类: 按程度分:轻微、一般、重大、特大。 按性质分:火灾、爆炸、爆燃、中毒、泄漏、停气、设备故障。

按企业管理分:场站(存在重大危险源,在企业圈定的围墙里,有较好的控制能力)、管网(遍布整个城市地下,不宜控制,可加强巡查进行弥补)、客户(在私人的私密空间,较难控制)。 I、由于非正常原因引致生产事故而造成停产或减产。 2、职工在劳动过程中发生与工作有关的人身伤亡。 3、燃气客户或其他人员因燃气公司突发事故引致的人身伤亡。 4、在生产、输气、运输及供气过程中引起的燃气泄漏、火灾或爆炸 5、由于非正常原因引致供气事故而造成大面积客户燃气供应中断。 6、化学品泄漏,危及员工及周围群众生命安全 7、引致公众恐慌的事故。 8 、炸弹恐吓、恐怖袭击 9 、其他 在做好分类工作的同时,应对相关名词定义进行解释

城市燃气的基本特性(新编版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 城市燃气的基本特性(新编版) Safety management is an important part of production management. Safety and production are in the implementation process

城市燃气的基本特性(新编版) 一、燃气的密度和相对密度 1.密度 燃气一般为混合气体,混合气体密度可按下式计算 式中ρm ——混合气体密度,kg/m3 ; ρi ——混合气体各组分的密度,kg/m3 ; Vi ——混合气体各体积组分,%。 2.相对密度 相对密度过去称比重,是指该物质的密度与标准物质的密度之

比。 对于气态燃气来说,相对密度是气态燃气密度与空气密度的比值(一般用S表示)。S>1表明该燃气比空气重,S<1表明该燃气比空气轻。 对于液态燃气来说,相对密度是液态燃气密度与纯水密度的比值(一般用D表示)。D>1表明该液态燃气比水重,D<1表明该液态燃气比水轻。几种常用燃气的密度和相对密度见表1-2。 表1-2几种常用燃气的密度和相对密度 燃气种类 密度/(kg/m3 ) 相对密度 天然气 0.75~0.8 0.58~0.62 焦炉煤气

0.4~0.5 0.3~0.4 液化石油气(气态) 1.9~ 2.5 1.5~ 2.0 沼气 0.85~1.1 0.66~0.85 轻烃气 3.0~3.6 2.3~2.8 二甲醚 2.0~2.2 1.55~1.7 二、燃气的含湿置 在燃气储存、输送等过程中,湿燃气中水蒸气的含量将发生变

天然气性质

LNG所具有的“高效、环保、清洁、价廉”优点决定了其在城镇燃气中的应用前景广阔,而LNG气化凭借其建设周期短、能方便及时地满足市场用气需求的特点,成为工业用户永久供气设施或城镇管输天然气到达前的过渡供气设施。 样的,取中间值,那么1吨LNG就可以气化:1000/0.7=1428.6Nm3。 燃煤锅炉、燃生物质锅炉、天然气锅炉的燃料优劣势 优势:煤:燃料供给有保障,技术成熟,司炉人员熟悉,使用成本低。 生物质:符合国家可再生能源政策及减排政策,具有广阔的推广前景和显著的社会意义。 天然气:清洁环保,锅炉占地小,故障率低,可显著改善使用单位现场环境,在供应充足且价格较低,环保要求要高地区成本等各项相对优势明显。

劣势:煤:环保和减排的压力,包括PM2.5的开测,将迫使中小型工业锅炉快速退出以煤和煤基(含水煤浆等)等化石燃料为主的状况;城区和生态保护区将逐步禁止煤及“三废”的运输、排放或“三废”的处理成本大幅度增加;锅炉房及附属设施、能源储存等占用场地大。 生物质:1、受供给半径(超过50Km半径生物质原料的收集运输成本将大增)及季节、一家一户农户生产等因素影响,燃料供给有限,价格浮动的可能性也跟着增大,另外生物质缺氧裂解气化技术受设备投入巨大和产量限制无法满足大中型锅炉的应用; 2、生物质燃料对储存场地要求大,防火等级要求高。由于颗料状生物质燃料密度普遍为0.7-1.2,按正常使用7-10天的储量计算,在较大吨位锅炉使用上其要求的储存场地和防火要求使单位无法接受; 3、生物质锅炉低温结渣、积灰导致运行效率低下的问题世界范围内尚无较好办法解决,中小型工业锅炉基本只能靠人工定期清理,生物质燃料由于燃点低,停炉后缺氧自行燃烧导致可燃气体积聚从而引起炉膛爆炸的问题应引起高度重视;; 4、锅炉本体结构、司炉操作、烟气处理等方面技术仍不成熟。烟气处理需消耗大量水电资源,处理不当其pm2.5的排放将极大的影响空气环境。

天然气危险特性及安全性能

天然气危险特性及安全性能 加气站所储存的危险化学品主要是压缩天然气,其理化性质及危险特性。1、液化天然气主要成分:甲烷分子式:CH4 理化性质:无色无味的气体,能被液化和固化。能溶于乙醇、乙醚,微溶于水。易燃,燃烧时呈青白火焰,火焰温度约1930℃。1立方米天然气爆炸相当于7~14公斤TNT炸药。相对密度:0.5548 凝固点:-183.2℃沸点:-162℃闪点:-190℃自燃点:340℃爆炸极限:5%~15% 最易引燃浓度:7.3% 产生最大爆炸压力的浓度:9.8% 最大爆炸压力:7Kg/平方厘米最小引燃能量:0.28毫焦燃烧热值:8300千卡/立方米灭火剂:干粉、雾状水、泡沫、CO2 2、天然气安全性天然气的燃点为650℃,比汽柴油、液化石油气的燃点高,点火性能也高于汽柴油和LPG。天然气的爆炸极限为4.6~14.57%,且密度很低,只有空气的一半左右,稍有泄漏即挥发扩散;而LPG的爆炸极限为2.4~9.5%,燃点为466℃,且气化后密度大于空气,泄漏后不易挥发;汽油爆炸极限为1.0~7.6%,燃点为427℃;柴油爆炸极限为0.5~4.1%,燃点为260℃。由此可见,在某种意义上天然气比LPG、汽油、柴油更安全。3、重大危险源辨识结果本站储存区的天然气为易燃气体,危险源是能量/危险物质集中的核心,是能量传出来或爆发的地方。通常危险源拥有的能量或物质越多,则事故时可能意外释放的量也多,亦是可能导致事故发生的潜在的不安全因素。根据《危险化学品重大危险源辨识》GB18218-2009中的规定,对于某种或某类危险物质规定的数量,若单元中的物质数量等于或超过该数量,则该单元定为重大危险源。根据《危险化学品重大危险源辨识》GB18218-2009中易燃物质名称及临界量的规定,压缩天然气的临界量是50吨。本项目危险化学品重大危险源辨识,CNG储气井总储气量3000 m3,则CNG储气井的最大储存量1.66吨,气化、加气系统内的天然气忽略不计,则加气站天然气的最大储存量为1.66吨,未达到重大危险源临界点。承庆源加气站未构成危险化学品重大危险源。

天然气的运输方式及其特点

天然气从油气田井口到终端用户的全过程称为 天然气供应链,这条供应链所涉及的所有设施构成 的系统称为天然气供气系统。一个完整的天然气供 气系统通常主要由油气田矿场集输管网、长距离输 气管道或管网、城市输配气管网、天然气净化处理厂、储气库(地下储气库或地面储罐) 等几个子系统 构成,在某些情况下还包括天然气的非管道运输系 统。这些子系统既各有分工又相互连接成一个统一 的一体化系统,其总目标是尽可能保证按质、按量、 按时向用户供气,同时做到安全、可靠、高效、经济运行,以获得最佳经济与社会效益。如果将天然气的 勘探开发、储运和销售分别看成是天然气供气系统 甚至整个天然气工业的上、中、下游的话,则可以说, 天然气供气系统或天然气工业是上、中、下游一体化的,其中任何一个环节出现问题都将影响一个国家 或地区的天然气供气系统甚至整个天然气工业的正 常运行和发展。由此可见,一个供气系统的规划、建 设和运行管理是一项巨大的系统工程,必须对其上、中、下游的各个环节统筹兼顾、统一规划、统一调度、统一管理,才能获得良好的经济和社会效益。 天然气供气系统的一个突出特点是用气量的时 间不均衡,由此产生了该系统固有的一个关键问题

———供气调峰,所谓供气调峰是指采取适当的措施使天然气的供气量和用气量随时保持动态平衡。根据调峰周期的长短,可以将调峰分为季调峰、日调峰、小时调峰等几种类型。为了解决调峰问题并提高供气的可靠性,现代大型天然气供气系统一般都 设有地下储气库或其它设施作为调峰与应急供气的手段。 天然气矿场集输管网输送的介质是未经净化处 理的油气井产物,甚至有可能是直接从油井中产出 的油、气、水的多相混合物。天然气矿场集输管道(包括油气水混输管道) 具有输送距离短、管径小、在运行寿命期内压力变化大等特点。长距离输气管道的任务是将净化处理后的天然气输送到城市门站或大型工业用户。天然气城市输配管网的任务是将来自长输管道或其它气源的天然气输送、分配到每个用户。大城市的输配气管网的规模可能相当大,以 至于其建设工程量和投资可能会超过为它供气的长输管道。这类管道的压力等级和管径范围均较宽, 超高压配气干线的压力可达4 MPa ,而入户管道的 压力不超过5 kPa ;配气干线的直径可达1 m 以上, 而入户管道的直径一般只有20 mm〔1〕。 虽然矿场集输和城市输配也属于天然气运输的

相关文档
最新文档