马氏体的回火程度和残余奥氏体对性能的影响

马氏体的回火程度和残余奥氏体对性能的影响
马氏体的回火程度和残余奥氏体对性能的影响

回火工艺基础知识大全

1.回火的定义与目的 回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。 钢件在淬火状态下有以下三个主要特征。 (1)组织特征 根据钢件尺寸、加热温度、时间、转变特征及利用的冷却方式,钢件淬火后的组织主要由马氏体或马氏体+残余奧氏体组成,此外,还可能存在一些未溶碳化物。马氏体和残余奥氏体在室温下都处于亚稳定状态,它们都有向铁衆体加渗碳体的稳定状态转化的趋势。 (2)硬度特征 由碳原子引起的点阵畸变通过硬度表示出来,它随过饱和度(即含碳量)的增加而增加。淬火组织硬度、强度高,塑性、韧性低。 (3)应力特征 包括微观应力和宏现应力,前者与碳原子引起的点阵畸变有关,尤其是与髙碳马氏体达到最大值有关,说明淬火时马氏体处于紧张受力状态之中;后者是由于淬火时横截面上形成的温差而产生的,工件表面或心部所处的应力状态是不同的,有拉应力或压应力,在工件内部保持平衡。如不及时消除淬火钢件的内应力,会引起零件的进一步变形乃至开裂。

综上所述,淬火工件虽有髙硬度与髙强度,但跪性大,组织不稳定,且存在较大的淬火内应力,因此必须经过回火处理才能使用。一般来说,回火工艺是钢件淬火后必不可少的后续工艺,它也是热处理过程的最后一道工序,它賦予工件最后所需要的性能。 回火是将淬火钢加热到Ac1以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。它的主要目的为: (1)合理地调整钢的硬度和强度,提高钢的韧性,使工件满足使用要求; (2)稳定组织,使工件在长期使用过程中不发生组织转变,从而稳定工件的形状与尺寸; (3) 降低或消除工件的淬火内应力,以减少工件的变形,并防止开裂。 2.淬火钢回火时的组织转变 淬火钢件回火时,按回火温度的髙低和组织转变的特征,可将钢的回火过程分为以下5个阶段。 (1)马氏体中碳原子的偏聚 马氏体是C在α-Fe中的过饱和间隙固溶体,C原子分布在体心立方的扁八面体间隙之中,造成了很大的弹性畸变,因此升高了马氏体的能量,使之处于不稳定的状态。在100℃以下回火时,C、N等间隙原子只能短距离扩散迁移,在晶体内部重新分布形成偏聚状态,以降低弹性应变能。对于板条马氏体,因有大量位错,C原子便偏聚于位错线附近,所以淬火钢在室温附近放置时,碳原子向位错线附近偏聚。对于片状马氏体,C原子则偏聚在一定晶面上,形成薄片状偏聚区。这些偏聚区的含碳量高于马氏体的平均含碳量,为碳化物的析出创造了条件。

回火问题基础知识

回火问题基础知识 奥氏体回火处理 奥氏体回火处理是一种较?特殊的热处理方法,主要程序是将钢材淬入温度介於S曲线鼻部与Ar’’(Ms点)温度之间的热浴,直到过冷奥氏体完全变态成变韧体才取出空冷的一种热处理方法,亦称?变韧淬火,它不需要再行回火处理。奥氏回火的最大特色是可得高硬度、高韧性兼具的材质,一般而言,转变温度愈高,强硬度愈低,但可增进低温韧性;转变温度愈接近Ms温度,所得之强度、硬度皆大增,且伸长率及断面收缩率亦大增,颇适合小型工件之大量生?。 马氏体回火处理 马氏体回火处理是将钢材淬入Ms与Mf温度范围之间的热浴,经过长时间持温后,使过冷合金奥氏体体一部分变态成马氏体,一部分变态成下贝氏体。此种热处理后,可不必再行回火处理,且可降低一般淬火回火之急剧程度;其最终组织为回火马氏体及贝氏体之混合,因此拥有高硬度和高韧性的组合。主要的缺点是需要保持?温的时间甚久,在工业应用上较不经济。 回火的种类及应用 根据工件性能要求的不同,按其回火温度的不同,可将回火分为以下几种: (一)低温回火(150-250度) 低温回火所得组织为回火马氏体。其目的是在保持淬火钢的高硬度和高耐磨性的前提下,降低其淬火内应力和脆性,以免使用时崩裂或过早损坏。它主要用于各种高碳的切削刃具,量具,冷冲模具,滚动轴承以及渗碳件等,回火后硬度一般为HRC58-64。 (二)中温回火(350-500度) 中温回火所得组织为回火屈氏体。其目的是获得高的屈服强度,弹性极限和较高的韧性。因此,它主要用于各种弹簧和热作模具的处理,回火后硬度一般为HRC35-50。 (三)高温回火(500-650度) 高温回火所得组织为回火索氏体。习惯上将淬火加高温回火相结合的热处理称为调质处理,其目的是获得强度,硬度和塑性,韧性都较好的综合机械性能。因此,广泛用于汽车,拖拉机,机床等的重要结构零件,如连杆,螺栓,齿轮及轴类。回火后硬度一般为HB200-330。 回火脆性处理 回火处理要避开几个会?生回火脆性的温度范围,这些脆化温度范围视钢材种类而有所不同,包括:(1)270℃至350℃脆化(又称低温回火脆性或A脆性),大多数的碳钢及低合金钢,都在此温度范围内发生脆化现象; (2)400℃至550℃脆化,通常构造用合金钢在此温度范围内会?生脆化现象; (3)475℃脆化(特别指Cr含量超过13%的肥粒体系不湫钢); (4)500℃至570℃脆化,针对工具钢或高速钢在此温度范围加热,会析出分?均匀的碳化物,?生二次硬化效果,但也易导致脆性。 钢回火的目的 淬火钢回火时,随着回火温度的升高,通常其强度,硬度降低,而塑性,韧性提高。但在某些温度范围内回火时,钢的冲击韧性不仅没有提高,反而显著降低,这种脆化现象称为回火脆性。因此,一般不在 250-350度进行回火,这就是因为淬火钢在这个温度范围内回火时要发生回火脆性。这种回火脆性称为低温回火脆性或第一类回火脆性。产生低温回火脆

钢的回火知识

钢的回火知识 1.回火的定义与目的 钢件在淬火状态下有以下三个主要特征。 (1)组织特征 根据钢件尺寸、加热温度、时间、转变特征及利用的冷却方式,钢件淬火后的组织主要由马氏体或马氏体+残余奧氏体组成,此外,还可能存在一些未溶碳化物。马氏体和残余奥氏体在室温下都处于亚稳定状态,它们都有向铁衆体加渗碳体的稳定状态转化的趋势。 (2)硬度特征 由碳原子引起的点阵畸变通过硬度表示出来,它随过饱和度(即含碳量)的增加而增加。淬火组织硬度、强度高,塑性、韧性低。 (3)应力特征 包括微观应力和宏现应力,前者与碳原子引起的点阵畸变有关,尤其是与髙碳马氏体达到最大值有关,说明淬火时马氏体处于紧张受力状态之中;后者是由于淬火时横截面上形成的温差而产生的,工件表面或心部所处的应力状态是不同的,有拉应力或压应力,在工件内部保持平衡。如不及时消除淬火钢件的内应力,会引起零件的进一步变形乃至开裂。 综上所述,淬火工件虽有髙硬度与髙强度,但跪性大,组织不稳定,且存在较大的淬火内应力,因此必须经过回火处理才能使用。一般来说,回火工艺是钢件淬火后必不可少的后续工艺,它也是热处理过程的最后一道工序,它賦予工件最后所需要的性能。 回火是将淬火钢加热到Ac1以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。它的主要目的为: ?(1)合理地调整钢的硬度和强度,提高钢的韧性,使工件满足使用要求; ?(2)稳定组织,使工件在长期使用过程中不发生组织转变,从而稳定工件的形状与尺寸; (3) 降低或消除工件的淬火内应力,以减少工件的变形,并防止开裂。 2.淬火钢回火时的组织转变 淬火钢件回火时,按回火温度的髙低和组织转变的特征,可将钢的回火过程分为以下5个阶段。 (1)马氏体中碳原子的偏聚 马氏体是C在α-Fe中的过饱和间隙固溶体,C原子分布在体心立方的扁八面体间隙 之中,造成了很大的弹性畸变,因此升高了马氏体的能量,使之处于不稳定的状态。 在100℃以下回火时,C、N等间隙原子只能短距离扩散迁移,在晶体内部重新分布 形成偏聚状态,以降低弹性应变能。对于板条马氏体,因有大量位错,C原子便偏聚于位错线附近,所以淬火钢在室温附近放置时,碳原子向位错线附近偏聚。对于片状马氏体,C原子则偏聚在一定晶面上,形成薄片状偏聚区。这些偏聚区的含碳量高于马氏体的平均含碳量,为碳化物的析出创造了条件。

回火马氏体

回火马氏体 片装马氏体经低温回火(150-250摄氏度)后,得到回火马氏体。他具有针状特征。 低温回火(150-250℃) 所得到的组织是回火马氏体,其性能是:具有高的硬度(HRC58-64)和高的耐磨性,因内应力有所降低,故韧性有所提高.这种回火方法主要用于刃具,量具,拉丝模以及其它要求硬而耐磨的零件. 钢淬火后的组织是马氏体及少量残余奥氏体,它们都是不稳定的组织,都有向稳定的组织(铁素体和渗碳体两相混合物)转变的倾向.但在室温下,原子活动能力很差,这种转变速度极慢.随着回火温度的升高,原子活动能力加强,组织转变便以较快的速度进行.由于组织的变化,钢的性能也发生相应的变化. 按回火温度的不同,回火时淬火钢的组织转变可分为四个阶段. 1. 80-200℃马氏体分解,当钢加热到约80℃时,其内部原子活动能力有所增加,马氏体中的过饱和碳开始逐步以碳化物的形式析出,马氏体中碳的过饱和程度不断降低,同时,晶格畸变程度也减弱,内应力有所降低. 这种出过饱和程度较低的马氏体和极细的碳化物所组成的组织,称为回火马氏体. 2. 200-300℃残余奥氏体分解,当钢加热温度超过200℃时,马氏体继续分解,同时,残余奥氏体也开始分解,转变为下贝氏体或回火马氏体,到300℃时,残余奥氏体的分解基本结束. 3. 300-400℃渗碳体的形成,钢在回火的这一阶段,从过饱和固溶体中析出的碳化物转变为颗粒状的渗碳体(Fe3C).当温度达到400℃时,α固溶体中过饱和的碳已基本完全析出,α-Fe晶格恢复正常,由过饱和固溶体转变为铁素体.钢的内应力基本清除. 4. 400℃以上渗碳体的聚集长大,在第三阶段结束时,钢内形成了细粒状渗碳体均匀分布在铁素体基体上的两相混合物,随着回火温度的升高,渗碳体颗粒不断聚集而长大.根据混合物中渗碳体颗粒大小,可将回火组织分为二种:400-500℃内形成的组织, 渗碳体颗粒很细小,称为回火屈氏体.温度升高到500-600℃时,得到细小的粒状渗碳体和铁素体的机械混合物,称为回火索氏体. 回火索氏体 回火索氏体的定义及组织特征。回火索氏体(tempered martensite)是马氏体于回火时形成的,在在光学金相显微镜下放大500~600倍以上才能分辨出来,其为铁素体基体内分布着碳化物(包括渗碳体)球粒的复合组织。它也是马氏体的一种回火组

常规马氏体淬回火工艺

常规马氏体淬回火工艺 常规高碳铬轴承钢马氏体淬回火为:把轴承零件加热到830~860℃保温后,在油中进行淬火,之后进行低温回火。淬回火后的力学性能除淬前的原始组织、淬火工艺有关外,还很大程度上取决于回火温度及时间。随回火温度升高和保温时间的延长,硬度下降,强度和韧性提高。可根据零件的工作要求选择合适的回火工艺:GCr15钢制轴承零件:150~180℃;GCr15SiMn钢制轴承零件:170~190℃。对有特殊要求的零件或采用较高温度回火以提高轴承的使用温度,或在淬火与回火之间进行-50~-78℃的冷处理以提高轴承的尺寸稳定性,或进行马氏体分级淬火以稳定残余奥氏体获得高的尺寸稳定性和较高的韧性。 不少学者对加热过程中的转变进行了研究,如奥氏体的形成、奥氏体的再结晶、残留碳化物的分布及使用非球化组织作为原始组织等。 G. Lowisch等两次奥氏体化后淬火的轴承钢100Cr6的机械性能进行了研究:首先,进行1050℃奥氏体化并快冷至550℃保温后空冷,得到均匀的细片状珠光体,随后进行850℃二次奥氏体化、淬油,其淬后组织中马氏体及碳化物的尺寸细小、马氏体基体的碳含量及残余奥氏体含量较高,通过较高温度的回火使奥氏体分解,马氏体中析出大量的微细碳化物,降低淬火应力,提高硬度、强韧性和轴承的承载能力。在接触应力的作用下,其性能如何,需进行进一步的研究,但可推测:其接触疲劳性能应优于常规淬火。 酒井久裕等对循环热处理后的SUJ2轴承钢的显微组织及机械性能进行了研究:先加热到1000℃保温0.5h使球状碳化物固溶,然后,预冷至850℃淬油。接着重复1~10次由快速加热到750℃、保温1min后油冷至室温的热循环,最后快速加热到680℃保温5min油冷。此时组织为超细铁素体加细密的碳化物(铁素体晶粒度小于2μm、碳化物小于0.2μm),在710℃下出现超塑性(断裂延伸率可到500%),可利用材料的这一特性进行轴承零件的温加工成型。最后,加热到800℃保温淬油并进行160℃回火。经这种处理后,接触疲劳寿命L10比常规处理大幅度提高,其失效形式由常规处理的早期失效型变为磨损失效型。

马氏体

马氏体(用M表示) 马氏体 1、马氏体通常是指碳在a-Fe中的过饱和固溶体。 2、钢中马氏体的硬度随碳含量的增加而提高。高碳马氏体硬度高而脆,低碳马氏体则有较高的韧性。马氏体在奥氏体转变产物中硬度最高。理论上来说,马氏体是通过钢进行淬火而直接形成的,含碳量越低,所需的过冷度就越大。所以当含碳量低到一定程度后,就不能够形成马氏体了。马氏体的正常显微状态是呈针状的。马氏体的特点是硬度高,韧性差。它也是钢材淬火后的基本组织,通过对马氏体进行回火,可得到其他不同的金相组织。所以马氏体在热处理中是极为重要的一章。 高碳马氏体硬而脆,韧性很低。硬度HB600-700。组织很不稳定,硬度很高,脆性很大,延伸率和断面收缩率几乎为零。板条马氏体(低碳马氏体)有较高的强度和良好的塑性、韧性,抗拉强度1200-1600MPa,延伸率10%,断面收缩率40%,冲击功为600KPa?m(可能为60J,需进一步验证) 钢中马氏体的形态很多,淬火钢中形成的马氏体形态主要与钢的含碳量有关.,但就其单元的形态特征和亚结构的特点来看有五种,即:板条马氏体、片状马氏体、蝶状马氏体、薄片状马氏体、薄板状马氏体。其中主要有两种类型,即板条状马氏体和片状马氏体最为常见。 4、钢的马氏体转变 当奥氏体的冷却速度大于VK,并过冷到MS以下时,就开始发生马氏体转变.。由于马氏体转变温度极低,过冷度很大,而且形成的速度很快,使奥氏体向马氏体的转变只发生r-Fe向 a-Fe的晶格改组,而没有铁,碳原子的扩散.所以马氏体的含碳量就是转变前奥氏体的含碳量,由于a-Fe中最大溶碳量为0.0218%,所以马氏体是碳在a-Fe中的过饱和间隙固溶体.。 : 马氏体转变温度: 马氏体转变温度 以下不在转变。。 内完成转变。。在低于Mz以下不在转变Ms-Mz(Ms=230°C,Mz=-50°C)内完成转变 板条马氏体:低碳钢中的马氏体组织是由许多成群的、相互平行排列的板条所组成,故5、板条马氏体 称为板条马氏体。板条状马氏体是低碳钢,马氏体时效钢,不锈钢等铁系合金形成的一种典型的马氏体组织,因其单元立体形状为板条状,故称板条状马氏体.。 板条马氏体的亚结构主要为高密度的位错,故又称为位错马氏体和低碳马氏体 板条马氏体(位错马氏体、低碳马氏体): 1)形成板条马氏体的钢和合金:出现于低、中碳钢中,WC<0.3%;

马氏体与贝氏体的判别

马氏体与贝氏体的判别 1 马氏体组织形态 是一种非扩散型相变,是提高钢的硬度、强度的主要途径。 1.1 板条状马氏体(低碳马氏体): 是低、中碳钢,马氏体时效钢,不锈钢等铁系合金中形成的一种典型组织。亚结构是位错(又称位错马氏体),其形态特征见表1。

1.2 片状马氏体(针状马氏体或高碳马氏体): 常见淬火高、中碳钢,高镍的Fe-Ni 合金中。亚结构是孪晶,其形态特征见表1。 表 1 铁碳合金马氏体类型及其特征 1.3 其它马氏体形态: 1.3.1 蝶状马氏体:在Fe-Ni 合金中当马氏体在某一温度范围内形成时会出现,形状为细长杆状,断面呈蝴蝶形,亚结构为高密度位错,看不到孪晶。

1.3.2 薄片状马氏体:是在Ms 点极低的Fe-Ni-C 合金中发现的。呈非常细的带状,带互相交叉、呈现曲折、分叉等特异形态,由孪晶组成的孪晶型马氏体。 1.3.3 ε 马氏体:在Fe-Mn 合金中,当Mn 超过15%时,淬火后形成ε 马氏体,它是密排六方结构。金相形态呈极薄的片状。

2 贝氏体组织形态 贝氏体是过饱和铁素体和渗碳体组成的两相混合物。 2.1 上贝氏体(B 上):是成束的大致平行的条状铁素体和间夹有相平行的渗碳体所组成的非层状组织。亚结构是位错。形成温度在贝氏体转变区的上部。

中、高碳钢350~550℃,低碳钢温度要高些。 光学显微镜下:看到成束的自晶界向晶内生长的铁素体条,整体看呈羽毛状,分辨不清条间的渗碳体粒子。低碳钢(0.1%C):铁素体条略宽,渗碳体呈细条状。中、高碳钢:形态由粒状、链珠状而出现长杆状。高碳钢(1.0%C 以上):组织似雪花状,基体上由短条铁素体和短杆渗碳体所组成。随含碳量增加,渗碳体可分布于铁素体之间,也可分布于各个铁素体板条内部。 电镜下观察:看到铁素体和渗碳体两个相。铁素体之间成小角度晶界(6°~18°),渗碳体沿条的长轴方向排列成行。大片铁素体板条群之间成大角度晶界。 2.2 下贝氏体(B 下):是片状铁素体与内部沉淀的碳化物的两相组织。亚结构为位错。 中、高碳钢形成温度与约350℃~Ms 点之间。

马氏体

组成铁碳合金的铁具有两种晶格结构:910℃以下为具有体心立方晶格结构的α——铁,910℃以上为具有面心立方晶格结构的Υ——铁。如果碳原子挤到铁的晶格中去,而又不破坏铁所具有的晶格结构,这样的物质称为固溶体。碳溶解到α——铁中形成的固溶体称铁素体。而碳溶解到Υ——铁中形成的固溶体则称奥氏体。奥氏体是铁碳合金的高温相。 钢在高温时所形成的奥氏体,过冷到727℃以下时变成不稳定的过冷奥氏体。如以极大的冷却速度过冷到230℃以下,这时奥氏体中的碳原子已无扩散的可能,奥氏体将直接转变成一种含碳过饱和的α固溶体,称为马氏体。由于含碳量过饱和,引起马氏体强度和硬度提高、塑性降低,脆性增大。 马氏体(martensite)是黑色金属材料的一种组织名称。马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能使钢变硬、增强的一种淬火组织。马氏体的三维组织形态通常有片状(plate)或者板条状(lath)。 马氏体经低温回火(150-250摄氏度)后,得到回火马氏体,具有针状特征。 低温回火(150-250℃) 所得到的组织是回火马氏体,其性能是:具有高的硬度(HRC58-64)和高的耐磨性,因内应力有所降低,故韧性有所提高。这种回火方法主要用于刃具,量具,拉丝模以及其它要求硬而耐磨的零件。 钢淬火后的组织是马氏体及少量残余奥氏体,它们都是不稳定的组织,都有向稳定的组织(铁素体和渗碳体两相混合物)转变的倾向。但在室温下,原子活动能力很差,这种转变速度极慢。随着回火温度的升高,原子活动能力加强,组织转变便以较快的速度进行。由于组织的变化,钢的性能也发生相应的变化。 按回火温度的不同,回火时淬火钢的组织转变可分为四个阶段。 1。80-200℃马氏体分解,当钢加热到约80℃时,其内部原子活动能力有所增加,马氏体中的过饱和碳开始逐步以碳化物的形式析出,马氏体中碳的过饱和程度不断降低,同时,晶格畸变程度也减弱,内应力有所降低。 这种出过饱和程度较低的马氏体和极细的碳化物所组成的组织,称为回火马氏体。 2。200-300℃残余奥氏体分解,当钢加热温度超过200℃时,马氏体继续分解,同时,残余奥氏体也开始分解,转变为下贝氏体或回火马氏体,到300℃时,残余奥氏体的分解基本结束。 3。300-400℃渗碳体的形成,钢在回火的这一阶段,从过饱和固溶体中析出的碳化物转变为颗粒状的渗碳体(Fe3C)。当温度达到400℃时,α固溶体中过饱和的碳已基本完全析出,α-Fe晶格恢复正常,由过饱和固溶体转变为铁素体。钢的内应力基本清除。 4。400℃以上渗碳体的聚集长大,在第三阶段结束时,钢内形成了细粒状渗碳体均匀分布在铁素体基体上的两相混合物,随着回火温度的升高,渗碳体颗粒不断聚集而长大。根据混合物中渗碳体颗粒大小,可将回火组织分为二种:400-500℃内形成

相关文档
最新文档