第四章 飞行控制

第四章 飞行控制
第四章 飞行控制

第四章- 飞行控制

飞行器飞行控制系统费为主要飞行控制和辅助飞行控制。主要飞行控制系统包含那些飞行中要求的安全控制飞机,这些包含副翼,升降舵或者安定面,以及方向舵。辅助控制系统提升了飞机的性能特性,或者减轻了飞行员的过多控制力。辅助控制系统的例子有机翼襟翼和配平系统。

主要飞行控制

飞机控制系统被细心的设计为提供自然的感觉,同时,对控制输入有足够的响应度。低速时,控制通常感觉是偏软且反应缓慢的,飞机对施加控制的反应是慢慢的。在高速飞行时,控制感是偏硬的,反应也更快。

三个主要飞行控制面中任意一个的运动都会改变机翼上面和周围的气流以及压力分布。这些变化影响机翼和控制面结合而产生的升力和阻力,这样飞行员才能够操控飞机沿3个轴向的旋转。

设计特征限制了飞行控制面的偏转程度。例如,控制停止机制可能会结合到飞行控制中,或者控制杆的运动和/或方向脚舵可能受限。这些设计限制的目的是防止在正常机动时飞行员无意中的操纵过量或者飞机的过载。

良好设计的飞机应该是机动时稳定而容易控制的。控制面输入导致3个轴向旋转的运动。飞机表现出来的稳定性类型也和3个轴向的旋转有关。如图4-1。

(注:飞机控制,运动,旋转轴向,和稳定性类型)

副翼

副翼控制纵轴方向的侧滚。副翼安装在每一个机翼的后缘外侧,且运动方向彼此相反。副翼通过线缆,双臂曲柄,滑轮或推挽式管互相链接,然后相连到控制轮。

向右移动控制轮导致右侧副翼向上偏转,左侧副翼向下偏转。右侧副翼的向上偏转降低了机翼的拱形,使右侧机翼的升力降低。相应的左侧副翼的向下偏转增加了拱形幅度,使左侧机翼的升力增加。因此,左侧机翼的升力增加和右侧机翼的升力降低使飞机向右侧滚。

逆偏转

由于向下偏转的副翼产生更大的升力,它也会产生更大的阻力。这个增加的阻力试图使飞机头朝机翼上升的一侧偏转。这称为逆偏转。如图4-2。

方向舵用来克服逆偏转,在低速,大迎角和大的副翼偏转角时所需要的方向舵控制程度最大。然而,在较低速度时,垂直安定面和方向舵组合变得低效,扩大了和逆偏转有关的控制问题。所有转弯都是通过使用副翼,方向舵和升降舵来协调的。为使飞机达到所需要的倾斜角度必须要对副翼施加压力,而同时要施加方向舵压力来克服产生的逆偏转。转弯期间,必须施加

升降舵压力来增加迎角,因为转弯时所需要的升力比平直飞行时的升力大。转弯越急,升降舵就越需要往后压(即操纵杆往后拉)。

当需要的倾斜角之后稳定后,应该释放副翼和方向舵的压力。这将停止倾斜度的增加,因为副翼和方向舵控制面将会在它们的位置上呈中性的流线型。升降舵压力需要保持恒定以维持恒定高度。

转弯时的向外侧滑和向内侧滑是类似的,除非施加的飞行控制方向相反。副翼和方向舵的控制方向向外侧滑或者高机翼方向。当倾斜角增加时,为维持高度必须要释放升降舵的压力。差动副翼

对于差动副翼,在控制轮的给定运动下,一只副翼的上升距离比另一只副翼的下降距离大。下降的机翼产生的阻力增加。产生较大阻力的下降机翼侧副翼的上偏转角度比上升机翼侧的副翼向下偏转的角度大。虽然逆偏转被减轻了,但是它不会立即消除。如图4-3

弗利兹型副翼

就弗利兹型副翼而言,当控制轮上施加压力后,被升起的副翼在一个偏置的铰链上旋转。这就把副翼的前缘突出到气流中,因此产生了阻力。这有助于使另一侧机翼上放下的副翼产生的阻力得到均衡,从而减轻逆偏转。如图4-4

弗利兹型副翼也形成一个狭槽,因而气流平滑的通过放下的副翼,使得在大迎角时更有效。弗利兹型副翼也可能被设计成功能差动的。类似于差动副翼,弗利兹型副翼不能完全消除逆偏转。无论什么情况下使用了副翼都仍然需要协调运用方向舵。

耦合式副翼和方向舵

耦合副翼和方向舵的意思是这些控制被连接在一起。这是通过使用方向舵-副翼互连弹簧来完成的,它通过副翼偏转的同时自动地偏转方向舵来帮助纠正副翼阻力。例如,当移动操纵杆进行左侧滚时,互连的线缆和弹簧向前拉左侧的脚舵正好足够阻止飞机机头向右偏转。弹簧施加到方向舵上的力可以盈余,如果必须滑移飞机的话。如图4-5

升降舵

升降舵控制沿横轴的俯仰运动。类似小飞机上的副翼,升降舵通过一系列机械连杆机构连接到座舱中的控制杆。控制杆的向后移动使升降舵面的后缘向上偏转。这一般指上升降舵。如图4-6

升降舵是改变飞机俯仰姿态的主要控制手段。

上升降舵位置减弱了升降舵的拱形,产生了一个向下的空气动力,它比平直飞行时的正常尾部向下的力要大。总体效果是导致飞机的尾部向下移动,机头上仰。俯仰运动绕重心发生。

俯仰运动的强度由重心和水平尾翼面的距离和水平尾部翼面上气动力有效性决定。

向前移动控制杆有相反的效果。这种情况下,升降舵的拱形度增加,水平安定面或者安定面上产生的升力更多(尾部向下的力更小)。这就把尾部向上移动,使机头下俯。此外,俯仰运动还是绕飞机重心发生的。

正如前面稳定性讨论中提到的,功率,推力线,和尾翼上水平尾翼面的位置都是影响升降舵控制俯仰有效性的因素。例如,水平尾翼面可能安装在开进垂直安定面的较低位置,在中点,或者在高点的位置,就像T型尾翼的设计。

T型尾翼

在T型尾翼结构中,正常飞行条件下,升降舵在螺旋桨带来的气流和机身以及以及气流大部分影响范围之上。升降舵在这种未受扰动气流中的操作使得大多数飞行状态下的控制运动是一致的。T型尾翼设计在很多轻型飞机和大飞机上变的流行了,特别是那些机身尾部安装引擎的飞机,因为T型尾翼结构使得尾部翼面远离发动机排出的气流。水上飞机和水陆两用飞机经常有T型尾翼结构,目的是让水平尾翼面尽可能远离水面。另一个额外的好处是降低了振动和飞机内部的噪声。

低速飞行时,T型尾翼飞机的升降舵相比常规尾翼飞机的升降舵必须移动一个较大的角度来抬升机头到相同的角度。这是因为常规尾翼的飞机有来自螺旋桨的气流在尾翼上施加向下的力来辅助抬升机头。因为飞机的控制是这样的方式装备的,增加的控制行程要求控制力增加,抬升T型尾翼飞机的机头需要的力比抬升常规尾翼飞机机头需要的力大的多。两种类型尾翼的飞机平衡后的纵向稳定性是一样的,但是飞行员必须知道在起飞、着陆或者失速等低速飞行时,需要的控制力比同规格大小的常规尾翼飞机需要的力大的多。

T型尾翼飞机也需要额外的设计考虑来克服颤动问题。因为水平翼面的重量在垂直尾翼的顶部,产生的力臂在垂直尾翼上有很高载荷,会导致颤动。工程师必须通过增加垂直尾翼的刚度来补偿这个载荷,通常相比常规尾翼设计这带来了重量代价。

当以低速飞行在很高迎角,且重心偏后,T型尾翼飞机会容易发生深度失速。在深度失速状态,水平尾翼上的气流被来自机翼和机身的扰动气流覆盖。这种条件下,升降舵和全动水平尾翼控制会被削弱,使得难以从失速改出。应该注意到偏后的重心是这些意外事件的促进因素,因为重心偏后的常规尾翼飞机也会发现类似的改出问题。如图4-7。

因为高迎角低速和重心偏后的飞行可能危险,很多飞机有补偿这种状态的系统。这些系统从控停(control stop)到升降舵下拉弹簧。升降舵下拉弹簧帮助降低机头来比啊免由于重心偏后引起的失速。失速发生因为适当平衡的飞机其后缘的升降舵位于向下位置,迫使尾部抬升和机头下降。在这种不稳定状态,如果飞机遭遇紊流和速度进一步降低,配平片不能再使升降舵置于机头下降的位置。升降舵然后呈流线型,飞机机头开始向上仰。这就使情况恶化,可能导致一次失速。

升降舵下拉弹簧在升降舵上产生一个机械载荷,如果没有平衡的话会使它朝机头下降的位置移动。升降舵配平片平衡升降舵下拉弹簧,以设定升降舵位于配平平衡位置。当配平片开始失灵时,下拉弹簧驱动升降舵到机头下降位置。飞机机头降低,速度增加,失速就会避免。如图4-8。

在着陆拉平期间,升降舵也必须有足够的力量来保持机头抬起。既然这样,靠前的重心就会导致一个问题。在着陆拉平时,功率通常是降低了,这也使尾翼上的气流减弱。这和降低的着陆速度一起使得升降舵的有效性变差。

根据这些讨论,很明显飞行员必须理解和遵守适当的装载程序,特别要注意重心的位置。有关飞机载荷的更多信息以及重量和平衡在第八章讨论。

全动式水平尾翼

正如第一章提到的,全动式水平尾翼本质上是一片带有相同类型控制系统的水平安定面。因为全动式水平尾翼绕中心铰链点做回转运动,它们对控制输入和空气动力负载相当敏感。反作用伺服调整片(antiservo tab)安装在它的后缘以降低灵敏度。另外,在主翼梁的前面还有配有配重装置。配重可以设计到尾部或安装到全动式尾翼片的前部。如图4-9

当控制杆后拉时,它抬升了全动式水平尾翼面的后缘,使飞机旋转机头抬升。向前推控制杆,使水平尾翼的后缘放低,机头向下俯。如果没有抗随动片的话,飞机会由于飞行员的控制而倾向于舵面偏转过量。

鸭式机翼

术语鸭式机翼是指作为水平安定面的控制面却位于主机翼的前面。这个术语也被用来形容装配了鸭式机翼的飞机。从效果上讲,它是一种类似于常规后尾设计水平控制面的翼型。区别是实际上鸭式机翼产生升力,保持机头抬升,和后尾设计相反,后尾设计会在尾部施加向下的力来防止机头向下偏。如图4-10.

尽管莱特飞机有水平控制面在升力翼前面的鸭式机翼配置,直到最近鸭式配置才开始出现在较新的飞机上。鸭式设计包括两种类型:一种是水平控制面和正常的后尾设计有大约相同的尺寸,另外一种是差不多相同大小的控制面,但是翼型是被称为串联翼配置(tandem wing configuration)的后安装式机翼。理论上认为鸭式机翼更有效率,因为利用水平控制面来帮助抬升飞机的重量对于一定大小的升力来说应该导致阻力更少。

鸭式机翼的主要优势是在失速特性方面。适当设计的鸭式机翼或者串联翼将会在主机翼将要失速前的一个时刻失去进一步抬升机头的能力。这就使飞机具备抗失速能力,结果是可以通过增加马力来阻止飞机的速度。主机翼上的副翼在整个失速改出过程中仍然起作用。其他的鸭式结构也被设计出来,所以鸭翼比主机翼提前失速,能够自动的降低机头,改出飞机到一个安全的飞行速度。而且,副翼在失速中保持有效。

鸭式设计有几个限制。首先,鸭式设计的前部升力面比主翼提前失速是很重要的。如果主翼先失速,来自前面机翼或鸭式机翼的残余升力明显的在重心之前,飞机将不可控制的上仰。其次,当前部升力面先失速,或者鸭翼增加迎角的能力受限时,主翼将永远不能产生最大的升力,会浪费一些性能。第三,对于前部机翼或者鸭翼,主翼上襟翼的使用带来设计问题。当主翼通过伸出襟翼来增加升力时,鸭翼所需要的升力也增加。前向翼或者鸭翼必须足够的大才能适应襟翼的应用,但是又不能产生过大而产生比主翼多的升力。

最后,主翼和前部控制面的关系也不同了。当靠近垂直平面的状态时,来自前部机翼的下洗流会对主翼的升力有负作用。增加的垂直分量增加了设计效率。当两个控制面的大小增加到接近相等时,效率也会增加。

方向舵

方向舵控制飞机沿垂直轴的运动。这个运动称为偏航。和其他主要控制面类似,方向舵也是一个铰链到固定面的可运动面,在这里它是铰链到垂直安定面上。左右方向舵踏板的运动控制方向舵。当方向舵偏转到气流中时,会在相反的方向上施加水平方向的力。如图4-11

通过踩踏左踏板,方向舵向左移动。这就改变了垂直安定面/方向舵周围的气流,产生一个侧向里,把尾部向右移动,使得飞机头向左偏航。方向舵有效性随速度而增加,因此在低速飞行时的大角度偏转和高速飞行时的小角度偏转能够提供需要的反作用力。对于螺旋桨驱动的飞机,流过方向舵的任何滑流都会增加它的有效性。

V型尾翼

V型尾翼使用两个倾斜的尾部翼面来完成和常规升降舵及方向舵结构控制面相同的功能。固定的翼面既作为水平安定面也作为垂直安定面。如图4-12

可动的控制面通常称为“方向升降舵”,它们使用特殊铰链连接,使得控制轮能够同时移动两个控制面。另一方面,方向脚踏的移位能够方向相反的移动控制面,所以就提供了方向控制。当飞行员移动方向舵和升降舵控制时,一个控制混合机构会移动每个控制面适当的大小。V 型尾翼的控制系统比常规尾翼需要的要复杂的多。另外,V尾设计对荷兰轨滚趋势比常规尾翼更加敏感,唯一最小的是阻力的总减少量。

辅助飞行控制

辅助飞行控制系统由可包括襟翼,前缘装置,扰流板和配平(trim)装置。

襟翼

襟翼是几乎所有飞机都使用的最常见高升力装置。对任何设定的迎角,这些安装在机翼后缘的控制面既增加了升力又增加了诱导阻力。襟翼容许在高巡航速度和低着陆速度之间折衷,因为它可以在需要的时候伸出,不需要的时候收起到机翼结构里。有四种常见类型的襟翼:简单襟翼,分裂襟翼,开缝襟翼和福勒(Fowler)襟翼。如图4-13

简单襟翼是四种类型中最简单的。它增加翼面弯度,导致一定迎角时的升力系数明显增加。同时它也大大的增加了阻力,而且把机翼压力中心向后移动,导致机头下俯运动。

分裂襟翼从机翼的下表面分离出来,它比简单襟翼产生的升力有稍微的增加。但是,也由于在机翼后产生了紊乱的气流模式,所以产生的阻力更多。当完全伸出时,简单襟翼和分裂襟翼都产生高阻力,而升力增加不多。

现今飞机上最流行的襟翼是开缝襟翼。这种设计的变体既用于小型飞机也用于大型飞机。开缝襟翼比简单襟翼和分裂襟翼明显的增加升力系数。对于小型飞机,铰链位于襟翼的下表面下面,当襟翼放下时,它在机翼的襟翼槽和襟翼前缘之间形成一个导气槽。

当开缝襟翼放下时,来自下表面的高能量空气被输送到襟翼的上表面。来自导气槽的高能量空气加速了上表面边界层流,延迟了气流分离,提供了更高的升力系数。因此,开缝襟翼产生的最大升力系数(Clmax)比简单襟翼和分裂襟翼要增加很多。然而有很多中类型的开缝襟翼,大飞机通常有双开缝襟翼,甚至是三开缝襟翼。这些襟翼使阻力有最大增加而不会出现襟翼上的气流分离损害产生的升力。

福勒襟翼是开缝襟翼的一种类型。这个襟翼设计不仅改变了机翼的曲面弯度,它也增加了机翼的面积。福勒襟翼不是在铰链上向下旋转,而是沿导轨向后滑动。在伸长的第一部分中,它增加的阻力非常小,但是由于增加面积和弯度而增加了很多升力。随着继续伸长,襟翼向下偏转,在襟翼行程的最后一部分,它增加了阻力而额外增加的升力很少。

前缘装置

高升力装置也可以应用到翼型的前缘。最常规的类型是固定裂缝,可动缝翼,和前缘襟翼。如图4-14

固定裂缝把气流引导到机翼的上表面,延迟了大迎角时的气流分离。裂缝不增加机翼的弯度,但是让机翼获得更高的最大升力系数,因为在机翼到达一个更大的迎角之前失速被延迟了。可动缝翼由前缘拱形片组成,它在导轨上移动。在小迎角时,每一缝翼都被机翼前缘形成的高压保持在平齐的靠着机翼前缘。当迎角增加时,高压区域沿着机翼下表面向后移动,使得缝翼向前移动。然而,某些缝翼是由飞行员控制的,可以在任何迎角下伸出。打开缝翼会让机翼下方的空气流过机翼的上表面,延迟了气流分离。

前缘襟翼类似后缘襟翼,用来既增加最大升力系数有增加机翼的曲面弯度。这种类型的前缘装置经常和后缘襟翼结合使用,可以降低由于后者引起的机头下俯运动(前面说过襟翼的应用会导致升力中心后移,导致机头下俯)。相比后缘襟翼来说,前缘襟翼的一点增量会让升力比阻力增加多的多。随襟翼伸出的面积越大,阻力的增加比升力增加要快的多。

扰流板

在一些飞机上,称为扰流板的高阻力装置被安装在机翼上,以扰乱平滑的气流,降低升力和增加阻力。一些飞机上扰流板用于侧滚控制,一个好处是消除了逆偏转。例如要右转弯,右侧机翼上的扰流板抬起,损失了一些升力,在右边产生了更多的阻力。右边的机翼就下降,飞机就向右倾斜和偏航。两侧机翼同时使用扰流板使飞机下降而速度不增加。扰流板也用于帮助缩短着陆后的地面滑跑距离。通过损失升力,它们把重量转移到轮子上,改善了减速效力。如图4-15

配平系统

尽管飞机可以运行在很大范围的姿态,空速和功率设定,但是被设计成只在这些变量非常有限的组合内才能脱手飞行。因此,配平系统用来接替飞行员对控制面施加恒定压力的需要。配平系统通常有座舱控制和链接到一个或多个主飞行控制面后缘的小铰链装置组成。通过空气动力学地帮助飞行控制面运动和定位到它们所安装的位置,设计的配平系统能够使飞行员工作量降到最低。普通类型的配平系统包括配平调整片,平衡片,反作用伺服调整片,地面可调节调整片,和可调节稳定器。

配平调整片

小飞机上最常安装的是一个安装在升降舵后缘的单体配平调整片。大多数配平调整片是通过一个小的竖直安装的控制轮来手工操控的。然而,一些飞机上也能看到一个配平曲柄。座舱控制包括一个配平位置指示器。把配平控制放置在完全机头下俯(nose-down)位置会移动配平片到它的完全上升位置。随着配平片上升到气流中,水平尾翼面上的气流趋于迫使升降舵的后缘向下。这就导致飞机的尾部向上移动,进而引起一次机头下俯的俯仰变化。如图4-16

如果你设定配平调整片到完全的机头抬起(nose-up)位置,配平片会移动到它的完全下降位置。这种情况下,流经水平尾翼面下的空气冲击配平片,趋于迫使升降舵后缘升起,降低了升降舵的迎角。这就导致飞机的尾部下降运动和机头上仰的俯仰变化。

尽管配平片和升降舵的运动方向相反,配平片的控制对于飞行员来说还是自然的。如果你不得不在操纵杆上施加一个恒定的向后压力,就说明需要一个机头上仰的配平。正常的配平程序是持续配平,直到飞机平衡且飞机头重状态不明显。正常地飞行员首先要确立需要的功率,俯仰姿态,和配置,然后配平飞机来减轻那个飞行条件下可能存在的控制压力。在功率,俯仰姿态或者配置发生变化的任何时候,都必须要重新配平来消除新飞行条件下的控制压力。平衡调整片

在某些飞机上控制力可能过高,为了降低它们,制造商会使用平衡调整片。它们看起来象配平调整片,被铰链在和配平调整片大约相同的地方。两者之间的本质区别是平衡调整片和控制面连杆耦合,因此当主控制面朝任何方向运动,调整片自动的朝相反方向移动。按这种方式,气流冲击调整片,相对平衡的也有部分气压冲击主控制面,这就使飞行员更容易的移动和保持控制面的位置。

如果调整片和固定控制面之间的连杆机构是从座舱可调的话,调整片就成为配平片和平衡调整片的组合了,它可以调节到任何需要的偏转位置。控制面偏转的任何时候,调整片向相反方向运动,减轻了飞行员的负担。

反作用伺服调整片

除了降低全动式水平尾翼的灵敏度,反作用伺服调整片也作为减轻控制压力和保持全动式水平尾翼位于期望位置的配平装置。连杆机构的固定端在调整片反面的触角上,当全动平尾后缘向上移动时,连杆机构迫使调整片的后缘向上。当全动平尾向下移动时,调整片也朝下运动。这和升降舵上的配平调整片不同,它朝控制面的相反方向运动。如图4-17

这个调整片的工作方式和平衡调整片相同,除了它不是以相反方向运动外,它和全动平尾的后缘运动方向是相同的。例如,当全动平尾的后缘向上运动时,连杆机构迫使调整片的后缘向上。当全动平尾向下运动史,调整片也向下运动。

地面可调调整片

很多小飞机在方向舵上有一个不可动的金属配平调整片。这个调整片在地面时朝一个方向或另一个方向弯曲,目的是对方向舵施加配平力。正确的位移量是通过试错步骤来确定的。通常,在正常的巡航飞行期间需要小的调整,知道你对飞机不再左右滑移感到满意位置。如图4-18

可调节水平尾翼

宁可不使用升降舵后缘的可动调整片,一些飞机有一个可调节水平尾翼。就这种配置结构,连杆机构使水平尾翼绕它后面的翼梁转动。这是通过在水平尾翼的前缘安装一个起重螺丝来实现的。如图4-19

在小型飞机上,起重螺丝是用配平轮或者曲柄线缆控制的,在更大的飞机上,它是马达驱动的。可调水平尾翼的配平效果和座舱指示和配平调整片的类似。

由于主飞行控制和辅助飞行控制在不同的飞机上有很大变化,你应该熟悉你自己飞机的系统。较好的信息来源是飞机飞行手册(AFM)和飞行员操作手册(POH)。

飞行控制系统简介

自动飞行控制系统 飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。 深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件 飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。 60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用。基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能。 飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。最简单的人工飞行控制系统就是机械操纵系统。不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。自动驾驶仪是最基本的自动飞行控制系统。飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。传感器为飞控系统提供飞机运动参数(航向角、姿态角、角速度、位置、速度、加速度等)、大气数据以及相关机载分系统(如起落架、机轮、液压源、电源、燃油系统等)状态的信息,用于控制、导引和模态转换。飞控计算机是飞控系统的“大脑”,用来完成控制逻辑判断、控制和导引计算、系统管理并输出控制指令和系统状态显示信息。作动器是飞控系统的执行机构,用来按飞控计算机指令驱动飞机的各种舵面、油门杆、喷管、机轮等,以产生控制飞机运动的力和力矩。自测试装置用于飞行前、飞行中、飞行后和地面维护时对系统进行自动监测,以确定系统工作是否正常并判断出现故障的位置。信息传输链用于系统各部件之间传输信息。常用的传输链有电缆、光缆和数据总线。接口装置用于飞控系统和其他机载系统之间的连接,不同的连接情况可以有多种不同的接口形式。 自动飞行控制系统由自动驾驶仪、自动油门杆系统、自动导航系统、自动进场系统和自动着陆系统、自动地形跟随/回避系统构成。 RIBOLD瑞伯达科技有限公司,致力于成为全球飞行影像系统独家先驱,其产品线涵盖无人机飞行控制系统及地面站控制系统、影视航拍飞行平台、商用云台系统、高清远距离数字图像传输系统、无线遥控和成像终端及模型飞行器产品,多旋翼飞行器和高精控制模块。 RBD瑞伯达坚持创新, 以技术和产品为核心,通过完美的产品带来前所未有的飞行体验。我们的目标是做世界一流的无人机企业,为我们的客户提供一流的产品和服务!

ATA 22 自动飞行系统

ATA22 AFS自动飞行系统 自动飞行系统是现代化数字系统,它能在飞机的整个飞行过程中,从起飞到自动进近着陆和滑跑,为飞机提供制导。它是目前最先进的自动飞行系统。 一、AFS简介: 1、基本工作原理: 图22——1 自动飞行系统(AFS)用飞机传感器提供的所需信息进行飞机位置计算。另外,在它的存储器中有几个飞行计划,这些飞行计划由航空公司预制。每个飞行计划包括一个从离港到到达目的地的完整的飞行过程,包括垂直信息和中途的航路点。 知道了飞机位置和设置的飞行计划(由飞行员选择的),该系统能计算出指令信号送到飞行控制系统和发动机控制系统,以使飞机按飞行计划飞行。 2.基本组成: 图22——2

自动飞行系统(AFS)可分为四个主要部分: ——飞行管理(FM) ——飞行制导(FG) ——飞行增稳(FA) ——故障隔离和探测系统(FIDS) 前两部分功能由飞行管理与制导计算机系统(FMGCS)实现。 后两个功能由飞行增稳计算机系统(FACS)实现。 3.飞行管理与制导计算机系统(FMGCS) 图22——3 飞行管理(FM)部分主要提供飞行计划的计算。飞行计划包括纵向和横向制导功能。 飞行制导(FG)部分主要有以下三个功能: ——自动驾驶(AP) ——飞行指引(FD) ——自动油门(A/THR) FMGCs飞行管理与制导功能是由两个多功能控制显示组件(MCDU)和一个飞行控制组件(FCU)控制。 一般由MCDU提供机组与FMGCs之间的长期信息接口(如:飞行计划的选择和修改);而FCU提供短期的信息交换接口(如:AP自驾,FD飞行指引和A/THR自动油门功能的衔接)。 除MCDU和FCU外,FM和FG的信息主要显示在EFIS电子飞行仪表系统的显示器上,即主飞行显示器(PFD)和导航显示器(ND)。 (1)自动驾驶(AP)/飞行指引(FD)

飞机导航系统

飞机导航系统 一、判断题 1、导航是一个时间和空间的联合概念,需要在特定的时刻描述在特定空间位置的状态,空间位置的描述可以采用地理坐标,由于导航通常是相对于某一具体目的地面而言的,因此采用地理坐标是方便而合理的. 2、无线电导航具有不受时间、天气的限制,精度高,定位时间短,设备简单,可靠等优点. 3、测距询问脉冲有用户发出,该询问脉冲需要经过特殊的编码以区别是哪个用户的询问脉冲,导航台站收到该脉冲后,及时向该用户发射应答脉冲,由用户接收并测量询问脉冲和应答脉冲之间的时间间隔,由导航台测量载体和导航台之间的距离. 4、无线电导航中的角参量可以分为两类:一类用于描述载体与导航台之间的相对角度关系;另一类用于描述载体的飞行状态,如导航、俯仰、横滚等. 5、频率测距通常是利用发射信号与反射信号的频率差来进行距离测量的,不一定要有反射面,因此作为频率测距系统. 6、载体航行状态指的是载体作为一个刚体在空间运动时所表现的非物理状态,通常与一定的参照量(如载体坐标系,当地理坐标系)相联系,他们可以从不同的角度进行描述,如方位、距离、位置、速度、姿态等. 7、 VOR方位飞机所在未知的磁北方向顺时针测量到飞机与VOR连线之间的夹角,是以飞机为基准来观察VOR台在地理上的方位. 8、无线电高度表,又称雷达高度表是一种等幅调频测距无线电导航设备。利用普通雷达的工作原理,以地面为发射体,在飞机上发射电波,并接收地面的反射波以测定飞机到地面的高度. 9、仪表着陆系统(ILS)决断高度(DH)是指驾驶员对飞机着陆或复飞做出判断的最低高度,在决断上,驾驶员必须看见跑到才能着陆,否则放弃着陆,进行复飞. 10、ADF指示的角度是飞机横轴方向到地面导航台的相对方位,因此,若要得到飞机相对于导航台的方位,还必须获知飞机的航向,这需要与磁罗盘或其他航向测量设备相结合. 二、选择题 1、无线电导航距离测量主要有___________________________三种测量方法。 2、导航参量的方位以经线北端为基准,顺时针测量到水平面上某方向线的高度 3、 ADF无线电罗盘,是一种_________________测向无线电导航系统,利用设置在地面的无方向信标(NDB)发射无线电波,在机上用环形方向性天线接收和处理电波信号,获取飞机到地面导航台的相对方位. 4频率测距的基本原理实际上的发射信号为__________________信号,由于颠簸的传播需要时间,那么在某一时刻,反射回来的信号的频率与正在发射的信号的频率之间的差频将反映这段时间,而这段时间同时也代表往返的距离. 5、 VOR伏尔是一种__________比较测向进程导航系统。机载设备通过接收地面VOR导航台发射的甚高频电波,可直接测量从飞机所在位置的磁北方向到地面导航台的位置,以近一步确定飞机相对于所选航道的偏离状态. 6、位置线或位置面,单值确定载体的位置,至少需要测定____条位置线或____个位置面,根据相交定位法实现定位.

飞行控制系统大作业

《飞行控制系统》课程实验报告 班级 0314102 学号 031410224 姓名孙旭东 成绩 南京航空航天大学 2017年4月

(一)飞机纵向飞行控制系统的设计与仿真 1、分析飞机纵向动力学模态,求飞机的长周期与短周期阻尼与自然频率。 在MATLAB环境下导入数据文件,输入damp(alon),得出结果: Eigenvalue Damping Freq. (rad/s) -2.29e+000 + 4.10e+000i 4.88e-001 4.69e+000 -2.29e+000 - 4.10e+000i 4.88e-001 4.69e+000 -3.16e-002 1.00e+000 3.16e-002 -7.30e-003 + 3.35e-002i 2.13e-001 3.42e-002 -7.30e-003 - 3.35e-002i 2.13e-001 3.42e-002 长周期的根为 -7.30e-003 + 3.35e-002i 和 -7.30e-003 - 3.35e-002i 阻尼为 2.13e-001 自然频率为 3.42e-002(rad/s) 短周期的根为 -2.29e+000 + 4.10e+000i 和 -2.29e+000 - 4.10e+000i 阻尼为 4.88e-001 自然频率为 4.69e+000(rad/s) 2、对升降舵及油门单位阶跃输入下的飞机自然特性进行仿真,画出相应的状态曲线。 sys=ss(alon,blon,clon,dlon) [y,t]=step(sys,500) subplot(221) plot(t,y(:,1,1)) xlabel('t(s)') ylabel('\Deltau(m/s)') subplot(222) plot(t,y(:,1,2)) xlabel('t(s)') ylabel('\Deltau(m/s)') subplot(223) plot(t,y(:,2,1)) xlabel('t(s)') ylabel('\Delta\alpha(deg)') subplot(224) plot(t,y(:,2,2)) xlabel('t(s)') ylabel('\Delta\alpha(deg)')

四轴飞行控制原理

四轴(1)-飞行原理 总算能抽出时间写下四轴文章,算算接触四轴也两年多了,从当初的模仿到现在的自主创作经历了不少收获了也不少。朋友们也经常问我四轴怎么入门,今天就简单写下四轴入门的基本知识。尽量避开专业术语和数学公式。 1、首先先了解下四轴的飞行原理。 四轴的一般结构都是十字架型,当然也有其他奇葩结构,比如工字型。两种的力学模型稍微有些不一样,建议先从常规结构入手(其实是其他结构我不懂)。 常规十字型结构其他结构 常规结构的力学模型如图。 力学模型 对四轴进行受力分析,其受重力、螺旋桨的升力,螺旋桨旋转给机体的反扭矩力。反扭矩影响主要是使机体自旋,可以想象一下直升机没有尾桨的情况。螺旋桨旋转时产生的力很复杂,

这里将其简化成只受一个升力和反扭矩力。其它力暂时先不管,对于目前建模精度还不需要分析其他力,顶多在需要时将其他力设为干扰就可以了。如需对螺旋桨受力进行详细研究可以看些空气动力学的书,推荐两本, 空气螺旋桨理论及其应用(刘沛清,北航出版社) 空气动力学基础上下册(徐华舫,国防科技大学) 网易公开课:这个比麻省理工的那个飞行器构造更对口一些。 荷兰代尔夫特理工大学公开课:空气动力学概论 以上这些我是没看下去,太难太多了,如想刨根问底可以看看。 解释下反扭矩的产生: 电机带动螺旋桨旋转,比如使螺旋桨顺时针旋转,那么电机就要给螺旋桨一个顺时针方向的扭矩(数学上扭矩的方向不是这样定义的,可以根据右手定则来确定方向)。根据作用力与反作用力关系,螺旋桨必然会给电机一个反扭矩。 在转速恒定,真空,无能量损耗时,螺旋桨不需要外力也能保持恒定转速,这样也就不存在扭矩了,当然没有空气也飞不起来了。反扭矩的大小主要与介质密度有关,同样转速在水中的反扭矩肯定比空气中大。 因为存在反扭矩,所以四轴设计成正反桨模式,两个正桨顺时针旋转,两个反桨逆时针旋转,对角桨类型一样,产生的反扭矩刚好相互抵消。并且还能保持升力向上。六轴、八轴…类似。 我们控制四轴就是通过控制4个升力和4个反扭矩来控制四轴姿态。 如力学模型图,如需向X轴正方向前进,只需增加桨3的转速,减少桨1的转速,1、3桨的反扭矩方向是一样的,一个加一个减总体上来说反扭矩没变。此时飞机已经有向X轴方向的分力,即可前行。 如需向X轴偏Y轴45°飞行,那么增加桨2、3的转速,减少桨1、4的转速,即可实现。 如果将X正作为正前方,那么就是”十”模式,如果将X轴偏Y45°作为正前方向,那就是”×”模式。理论上这两种都可以飞行,”十”模式稍微比”×”模式好计算,但是”十”模式不如”×”模式灵敏。 四轴如需向任意方向飞行只需改变电机的转速,至于电机转速改变的量是多少,增量之比是多少就需要算法了。对于遥控航模,不需要知道具体到度级别的方向精度,飞行时手动实时调节方向即可。 四轴除了能前后左右上下飞行,还能自旋,自旋靠的就是反扭矩,如需顺时针旋转,只需增加桨1、3转速,减少2、4转速,注意不能只增加桨1、3而不减少2、4,这样会造成总体升力增加,飞机会向上飞的。 理想情况下,四轴结构完全对称,电机转速一样,飞机就可以直上直下飞行。但事实和理想还是有差距的,不存在完全对称的结构,也没有完全一样的电机螺旋桨。所以需要飞控模块进行实时转速调节,这样才能飞起来,不像直升机,螺旋桨加速就能飞。 2、分析完飞行原理,接下来分析四轴飞行器系统的主要部件。

飞机导航基础知识

飞机导航基础知识 7.1航向 即飞机机头的方向(航向角是由飞机所在位置的经线北端顺时针测量到航向线的角度); 航向角的大小由飞机纵轴的水平投影线与地平面上某一基准线之间的夹角来度量。 【基准线:为真子午线(地理经线)的叫真航向; 基准线:为磁子午线(地理磁线)的叫磁航向; 基准线:为真子午线(地理磁场与金属机体磁场的合成磁场的水平分量)的叫罗航向】 7.2方位角 以经线北端为基准,顺时针转到水平面上某方向线的夹角。 分为电台方位角、飞机磁方位角、相对方位角 7.3航迹与航迹角 飞机重心在地面投影点移动的轨迹,叫航迹。 以飞机经线北端顺时针转至航迹的角度饺子航迹角。 7.4偏流角 当有侧风时,飞机的实际航迹就会与飞机的航向不一致; 航向线与航迹线之间的夹角称为偏流角;航迹线偏向航向的右侧叫正偏流角,反之为负偏流角。 7.5偏航距离 从飞机实际位置到飞机航段两个航路点连线间的垂直距离。 7.6地速 飞机在地面投影点移动的速度,即飞机相对于地面的水平移动速度。 7.7空速 飞机相对于周围空气的运动速度。 7.8风速与风向 指飞机当前位置处于相对地面的大气运动速度和方向; 空速、地速与风速三者之间的关系: 地速(Sg)=空速(Sa)+风速(Sw) 7.9航路点 飞机的飞行目的地、航路上可用于改变航向、高度、速度等或向空中交通管制中心报告的明显位置,叫做航路点。 7.10侧滑角 飞机所在位置的空速于飞机纵轴平面的夹角

无线电导航与导航参量 无线电导航的实现----接收和处理无线电信号: 导航台位置精确已知 接收并测量无线电信号的电参量 电参量与导航参量的对应关系---根据有关的电波传播特性,电参量转换成导航需要的、接收点相对于该导航台坐标的导航参量。 导航参量—表示飞机位置与基准点(一般为导航台)之间关系的一些参数。 典型导航参数:位置、高度、方向、距离、距离差等 位置线的定义 在无线电导航中,通过无线电导航系统 测得的电信号中的某一电参量(如幅度、 频率、相位及时间延迟等),可获得相应 的导航参量,对接收点而言,某导航参 量(如方向、高度、距离、距离差等) 为定值的点的轨迹线叫做位置线。 几何定位方法——用几何线或面相交来完成定位的方法 无线电定位普遍采用的一种方法 是无线电导航原理的一个重要组成部分 空间导航与平面导航 飞机导航—严格讲都是空间导航问题 空间导航的定位喜爱通过位置面相交来实现 飞机的空间导航问题可以转化为平面导航问题 在远距离导航中,飞机的高度同它到最近导航台的距离相比较是很小的,可以近似按平面导航来处理; 即使是近距离导航,飞机是装有数据计算机和有高度数据输入的情况下,可以通过计算修正来测得飞机的地平面位置。 位置线的类型:直线、圆、等高线、双曲线。 相应地,可以吧导航系统划分为: #侧向系统,如VOR、ADF的位置线是直线; #测距系统,如DME的位置线是平面上的圆; #测高系统,如LRRA(以地心为圆心的圆);

LMI在飞行控制中的应用

LMI在飞行控制中的应用 摘要:针对某飞机的飞行控制,本文采用含有区域极点配置的H x H∞混合控制方法进行了研究。首先简述飞机控制系统的建模方法,并以飞机纵向运动为例,建立了飞机的模型;然后利用Lyapunov稳定性理论和矩阵Schur补性质,将区域极点配置和H2H∞控制约束条件转化为LMI凸优化问题,设计了含有区域极点配置和H2 H∞混合控制状态反馈鲁控制器。 1.1飞机运动方程 完整的六自由度、非线性、刚体飞机运动可由如下九个放成描述: (1-1) 其中Q为阻力, Y为侧力,α为飞机迎角,β为侧滑角,T为发动机推力,M为飞机质量。 (1-2) 其中V为飞行速度,γ为航迹倾角,u为航机偏角, (1-3) 其中L为升力 (1-4) p、q、r为机体轴的滚动、俯仰、偏航角速度。 (1-5) (1-6) (1-7) I为刚体各向转动惯量m t , n t为飞机推力产生的俯仰、偏航转矩 (1-8) (1-9)

做如下假设,并将1-1至1-9的飞机运动方程线性化: (1)飞机是刚体,略去弹性影响,并略去大气不稳定性影响。 (2)假定飞机运动在小范围内,横侧与纵向小扰动量、气动力和力矩不互相影响。 (3)基准运动是对称运动,并且是定常直线运动。 (4)忽略发动机引起的陀螺力矩造成的影响,m T,n T为0; 在这些条件下,飞行纵向运动的状态方程可以得到如下: (1-10) 用x T=[V a q θ]表示状态变量,用u T=[δeδt]表示输入向量,V为飞机运动速度,α为飞机迎角,q为俯仰角速度,θ为俯仰角,δe为升降舵偏角,δt为油门开度。用A B表示系数矩阵,则1-10又可表示为: (1-11) 2. H2 H∞混合控制的LMI方法 如图所示的H2H∞混合标准控制系统,w为外部输入,z∞与z2分别表示与H∞指标,H2指标相关的输出信号,u是控制输入信号,y为测量输出信号。K为控制器。 引入H2 H∞控制,广义被控对象的状态空间描述为 H2 H∞混合控制问题就是设计反馈控制器,满足如下 (1)闭环极点落于LMI区域D (2)闭环函数阵||G z∞w||≤λ; (3)闭环函数阵G z2w满足min||G z2w|| 则此控制器称作H2 H∞混合最优控制器 对于问题(2),可转化为:当有且仅有一个W矩阵,和一个正定矩阵X使得下式成立 对于问题(3),可转化为:当有且仅有一个W矩阵,和一个对称矩阵X、Z使得下式成立

直升机飞行原理(图解)

飞行原理(图解) 直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。 直升机主旋翼反扭力的示意图 没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法 直升机抵消反扭力的方案有很多,最常规的是采用尾桨。主旋翼顺时针转,对机身就产生逆

时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。 抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。

各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆。尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性。尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制。在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。即使不算战损情况,平时使用中,尾桨对地面人员的危险很大,一不小心,附近的人员和器材就会被打到。在居民区或林间空地悬停或起落时,尾桨很容易挂上建筑物、电线、树枝、飞舞物品。 尾桨可以是推式,也可以是拉式,一般认为以推式的效率为高。虽然不管推式还是拉式,气流总是要流经尾撑,但在尾桨加速气流前,低速气流流经尾撑的动能损失较小。尾桨的旋转方向可以顺着主旋翼,也就是说,对于逆时针旋转的主旋翼,尾桨向前转(或者说,从右

飞机导航方法

飞机导航方法 所谓飞机的导航.就是引导飞机航行使之能够按照预定的航线,在准确的时间内到达目的地,完成预定的航行任务。在飞机导航中,所要解决的主要问题是确定飞机在飞行过程中的瞬时位置。这是因为,要使飞机完成预定的航行任务,除了必须知道起始位置和目标位置外, 更主要的是必须知道瞬时位置,这样才能对下一步如何飞行进行决策,从而把飞机引导到目标位置。可见飞机的导航是极为重要的。 随着科学技术的发展和飞机对导航要求的不断提高,出现了各种各样导航方法。下面作一些简单介绍。 1.仪表导航 根据空速表、航向仪表和其它议表测得的飞机空速、航向、姿态、攻角、偏流角、风速和风向等数据,进行航程推算,从而确定出飞机的位置。飞机自动领航仪就是使这种计算过程能连续进行的自动化导航仪器。仪表导航有一定的自主性,工作可靠,能够连续工作,体积和重量也较小,但它的导航定位精度比校低。 2.红外线导航 利用红外线辐射仪检测和显示地面目标,再与事先知道的地面目标进行比较,从而确定出飞机的位置。红外线导航的作用距离有限,受雨、雾等外界条件影响大,而且必须事先知道地面目标本身所发出红外辐射的情况才成。 3.全景雷达导航 利用雷达摄取地面图像,再与事先摄制的地面图像进行比较,从而确定出飞机的位置。以全景雷达导航为基础,还发展成自动地图导航。全景雷达导航不受气象条件限制,导航定位精度也较高,但它要向外发射电波,易受干扰且隐蔽性差。 4.电视导航 通过电视设备观察地面,然后将图象与地图进行比较,从而确定飞机的位置。电视导航的定位精度高,但技术复杂,易受干扰,并且受到能见度的影响。 红外线导航、全景雷达导航和电视导航等导航方法,均是属于形象比较的导航方法。 5.天文导航 通过观测天空星体来确定飞机相对星体的位置,由于在一定时刻星体相对地球的位置是一定的,故经计算之后,便可确定出飞机的位置。天文导航系统主要由星体跟踪器、陀螺稳定平台和计算机组成。 天文导航不依赖地理条件,具有全球导航能力,没有积累的导航定位误差。它不向外发射电波,隐蔽性好,也不受无线电干扰,可靠性好。但它的结构复杂,体积和重量较大,短期工作精度不高。特别是它受气象条件限制,在云雾中飞行时便无法使用,故有时工作是不连续的。

(整理)自动飞行控制系统电子讲稿第一部分

学习情景1 课程导论 1.飞行控制系统发展概述 自动飞行控制系统已有100多年的研制历史,早在有人驾驶飞机出现之前,自动飞行装置即已出现。 1.1方向稳定器 1873年,法国雷纳德(C.C.Renard)无人多翼滑翔机的方向稳定器。 1.2 电动陀螺稳定装置-姿态稳定 1914年,美国的爱莫尔·斯派雷(Eimer Sperry)研制成功第一台可以保持飞机稳定平飞的电动陀螺稳定装置,该装置利用陀螺的稳定性和进动性,建立一个测量基准,用来测量飞机的姿态,它和飞机的控制装置连在一起,一旦飞机偏离指定的状态,这个机构就通过飞机的控制装置操纵飞机的舵面偏转使飞机恢复到原来的状态。 1.3 自动驾驶仪 20世纪30年代出现了可以控制和保持飞机高度、速度和航迹的自动驾驶仪。 第二次世界大战促使自动驾驶仪等设备得到进一步发展,由过去气动-液压到全电动,由三个陀螺分别控制三个通道改用一个 或两个陀螺来操纵飞机,并可作机动、爬高及自动保持高度等。 二次大战期间,美国和原苏联相继研制出功能较完善的电气式自动驾驶仪C-1和其仿制品A∏-5; 德国在二战后期研制成功飞航式导弹V-1和弹道式导弹V-2,

更进一步促进了飞行自动控制装置的研制和发展。 20世纪50年代后,和导航系统、仪表着陆系统相联,自动驾驶装置实现了长距离自动飞行和自动着陆。 1.4 自动飞行控制系统 1947年成功突破音障后,飞机的飞行包线(飞行速度和高度的变化范围)扩大,越来越复杂的飞行任务对飞机性能的要求也越来越高,仅靠气动布局和发动机设计所获得的飞机性能已经很难满足复杂飞行任务的要求。因此,借助于自动控制技术来改善飞机稳定性的飞行自动控制装置(如增稳系统)相继问世,在此基础上,自动驾驶仪的功能得到进一步的扩展,发展成为自动飞行控制系统(AFCS)。 20世纪60年代,产生了随控布局飞行器(congtrol configured vehicle--CCV)的设计思想。 20世纪60年代前的以模拟电路或模拟计算机为主要计算装置的飞行控制系统,逐渐发展成为现在已普遍应用的数字式飞行控制系统,这也为新技术应用和更复杂更完善系统的综合提供了实现的可能性。例如: 主动控制技术(active control technology—ACT); 余度技术 容错控制技术 20世纪80年代得到迅速发展的火/推/飞综合控制系统等。 20世纪70年代中期,由于计算机的应用使自动驾驶仪和飞机的指引系统组成一个综合系统,使飞机的各种传感器数据、指

飞行操纵系统

飞行操纵系统 摘要:飞行操纵系统是保障民航飞机在天空安全可靠飞行的重要系统。它是飞机上所有用来传递操纵指令,驱动舵面运动的所有部件和装置的总和,用于控制飞机的飞行姿态、气动外形和乘坐品质。波音737NG作为典型的液压助力机械式主操作系统,对其研究具有重要意义。因此,本文将结合波音737NG对飞机的主操纵系统和辅助操纵系统做主要介绍。 正文: 飞行操纵系统分类很多,根据操纵信号的来源不同可分为人工飞行操纵系统和自动飞行操纵系统。自动飞行操纵系统操纵信号由系统本身产生,而人工飞行操纵系统操纵信号由驾驶员产生。在人工操纵系统中,通常又分为主操纵系统和辅助操纵系统。主操纵系统指驱动副翼、升降舵和方向舵,使飞机产生绕纵轴、横轴、立轴转动的系统。其他驱动扰流板、前缘装置、后缘襟翼和水平安定面配平等辅助操纵面的操纵系统均称为辅助操纵系统。 一、飞行主操作系统 1、副翼 飞机副翼通常铰接在机翼外侧后缘,在大型飞机的组合横向操纵系统中,通常有4块副翼----2块内副翼和2块外副翼。低速飞行时,内外副翼可以共同进行横向操作;高速飞行时,仅有内副翼进行横向操作。 副翼系统操纵飞机绕纵轴进行滚转运动,运动期间,一侧机翼的

副翼上偏,另一侧机翼的副翼下偏,两侧机翼产生升力差,飞机完成滚转。 图一典型副翼操纵系统原理 如图所示为737NG飞机的副翼操纵系统,采用并列驾驶盘式操纵机构,两驾驶盘通过互联鼓轮柔性相连。当转动任意驾驶盘产生操纵信号都可以按如下路径向后传递:驾驶盘、左侧副翼鼓轮、钢索、副翼输入扇形轮、副翼输入扭力管、输入摇臂和输入杆、液压助力器、输出摇臂和输出扭力管、输出鼓轮、钢索、扇形轮、传动杆、副翼。其中关键部件为驾驶盘柔性互联机构、液压助力器与副翼感觉定中机构。驾驶盘柔性互联机构用于防止驾驶盘卡阻。正常情况下,操纵一侧驾驶盘,另一侧随动。当右侧驾驶盘卡阻,左侧机长可以操纵左驾驶盘通过左钢索系统操纵副翼;当左驾驶盘卡阻时,副驾驶可以使用右驾驶盘操纵扰流板进行应急横滚操作。现代民航客机舵面的气动载荷较大,故采用液压助力器进行助力操作。液压助力器输入是一个机

西工大飞行控制系统总复习

总复习 第一章 飞行动力学 一、概念: 1、体轴系纵轴ox 在飞机对称平面内;速度轴系纵轴a ox 不一定在飞机对称平面内;稳定轴系纵轴ox 在飞机对称平面内,与体轴系纵轴ox 相差一个配平迎角0α。 2、俯仰角θ的测量轴为地轴系横轴g oy ;滚转角φ(倾斜角)的测量轴为体轴系纵轴ox ;偏航角ψ的测量轴为地轴系铅锤轴g oz 。 3、迎角α:空速向量在飞机对称平面内投影与机体纵轴ox 夹角。 以的投影在ox 轴之下为正。 4、β(侧滑角):空速向量v 与飞机对称平面的夹角。以v 处于对称面右为正。 5、坐标系间的关系 机体轴系b S 与地轴系g S 之间的关系描述为飞机姿态角(ψφθ、、); 速度轴系a S 与机体轴系b S 之间的关系描述为气流角(βα、); 速度轴系a S 与地轴系g S 之间的关系描述为航迹角(χμγ、、)。 6、舵偏角符号 升降舵偏角e δ:平尾后缘下偏为正0>e δ,产生低头力矩。0a δ,产生左滚转力矩 0r δ,产生左偏航力矩0

飞行器控制原理复习要点

1.航天器的基本系统组成及各部分作用。 2.航天器轨道和姿态控制的概念、内容和相互关系各是什么? 3.阐述姿态稳定的各种方式,比较其异同。 4.主动控制与被动控制的主要区别是什么? 5.利用牛顿万有引力定律推倒、分析航天器受N体引力时的运动方程,并阐述 简化为二体相对运动的合理性。 6.证明在仅有二体引力的作用下,航天器的机械能守恒。 7.证明在二体问题中,航天器的运动轨道始终处于空间的一个固定平面内。 8.比较航天器各种圆锥曲线轨道的参数a,c,e,p的特点,分析它们与轨道常 数h和 。 9.利用牛顿定律证明开普勒第三定律。 10.计算第一宇宙速度和第二宇宙速度。 11.已知一个木星探测器在距地面3400km处的逃逸速度为7900m/s,而实际速度 为11200m/s。试问该探测器飞至木-地距离的一半时,其速度为多少?轨道形状如何? 12.什么是轨道六要素,它们是如何确定航天器在空间的位置的? 13.分析描述航天器姿态运动常用的参考坐标系之间的相对关系。 14.若航天器本体坐标系Oxyz各轴不是主惯量轴,试推倒姿态欧拉动力学方程。 15.设有两颗转动惯量,, I I I完全相同的沿圆轨道运行的地球卫星,一颗轨道高 x y z 度为2000km,另一颗为200km。试定量分析这两颗卫星各通道之间耦合的强弱,并阐述产生耦合的原因。 16.比较各种常用姿态敏感器的优缺点。 17.航天器用的推力器应具有什么特点?为什么认为电推力器是最有发展前景的 推力器? 18.飞轮分为几种?各种的区别是什么? 19.分析比较各种环境执行机构适用的航天器和轨道高度。 20.分析比较航天器各类姿态控制方式的性能优劣。 21.证明航天器的自旋稳定原理,分析航天器绕最大惯量轴旋转不稳定的原因。 22.主动章动阻尼和被动章动阻尼的区别是什么? 23.与单自旋卫星相比,双自旋卫星的主要优缺点是什么?双自旋稳定原理如 何?

飞行操纵系统

飞行操纵系统

飞行操纵系统 ——飞机系统结课论文 指导老师:闫凤良 班级:080441D 学号:080441436 姓名:朱仕广 2010.6.25

摘要:飞行操纵系统是飞机在天空中自由飞行必不可少的系统。飞机飞行操纵系统是飞机上用来传递操纵指令,驱动舵面运动的所有部件和装置的总称,用于飞机飞行姿态、速度、轨迹的控制。此文对飞机的飞行操纵系统、空客A320的操纵系统和相关案例进行简单介绍。 关键词:飞行操纵系统空客A320的操纵系统相关案例 正文: 飞机要想在天空中自由自在的翱翔,飞行操纵系统是必不可少的。飞行操纵系统让飞机在空中能按照人的意愿自由改变飞行状态,从而飞抵人们想要飞去的地方。下面,我们简单介绍飞机的飞行操纵系统、空客A320的操纵系统和相关案例。 一、飞行操纵系统 定义:飞机飞行操纵系统是飞机上用来传递操纵指令,驱动舵面运动的所有部件和装置的总称,用于飞机飞行姿态、速度、轨迹的控制。

1.飞行操纵系统分类 按照操纵指令的来源分为:人工飞行操纵系统和自动飞行控制系统。 (1)人工飞行操纵系统:其操纵信号由驾驶员发出。包括主飞行操纵系统和辅助飞行操纵系统。 主飞行操纵系统:操纵升降舵、方向舵、副翼、三个主舵面,实现飞机的俯仰、偏航和滚转操纵;辅助飞行操纵系统:操纵襟翼、副翼、扰流板、调整片等增升、增阻及水平安定面配平、方向舵配平等系统。 (2)自动飞行控制系统:其操纵信号由系统本身发出。 对飞机实施自动和半自动控制,协助驾驶员工作或自动控制飞机对扰动的响应。 包括:自动驾驶、飞行指引和自动油门。 按照指令的执行方式来分: (1)机械式操纵系统 (2)电传操纵系统 2.基本飞行操纵原理 (1)飞机的纵向操纵是通过操纵驾驶杆或驾驶

纵向控制增稳飞行控制律

纵向控制增稳飞行控制系统实验指导书 1. 实验目的 (1)理解并掌握飞行控制系统纵向控制增稳的工作原理、控制方法、主要控制参数设计等; (2)掌握机械操纵系统、增稳系统、控制增稳系统的相关飞控知识; (3)熟练使用Matlab 仿真软件、FlightGear 仿真环境、网络数据通讯等基本工具进行数值仿真。 2. 实验内容 (1)数值仿真模型搭建 (2)模型认知与参数设置 (3)纵向控制增稳控制仿真 3、实验原理 (1)控制增稳控制律构型的设计 控制增稳控制律构型采用法向过载与经由高通滤波的俯仰角速率综合而实现。控制律如下: ,,e c z z c q s k n n k q s b δ??=-+ ?+? ? (2)放宽静稳定性控制律设计 静稳定性补偿采用经低通滤波器输出的迎角反馈进行纵向静稳定性补偿,以保证系统静稳定性的同时,不影响动态响应性能。控制律如下: ,e c c k s c α δα=-+

(3)中性速度稳定性控制律设计 中性速度稳定性控制律通过在前向支路过载指令与反馈信号综合处的下游加入比例积分控制律来实现。 综上得到最终的纵向控制增稳飞行控制律如下: ,,1e c z z c q a s c k n n k q k s s b s c αδα??? ? =+-+- ???++??? ? (4)基于FlightGear 的飞行仿真环境搭建 本文借鉴飞行模拟器的结构框架,设计的基于FlightGear 的飞行仿真系统的 总体结构如图所示。该系统主要由操纵输入设备、飞行仿真及虚拟仪表系统、通信网络和视景显示系统四部分组成,其硬件均采用常规商业产品,具有成本低廉,结构简单,构建方便,移植性强等优点,最重要的是它突出了飞行控制研究最关心的高效的飞行仿真和逼真的视景显示。 视景 飞行视景 力学仿真 操纵设备 构建的基于FlightGear 的飞行仿真系统实物如图所示。其中,视景显示采用液晶显示器,根据需要可扩展为投影显示系统。

飞行模拟机自动飞行控制系统设计

飞行模拟机自动飞行控制系统设计 自动飞行控制系统可以实现自动驾驶仪取代人工操作,是飞机飞行系统不可获取的组成部分,稳定飞机的各种姿态,降低了飞行员的工作量。介绍了自动飞行控制系统的组成、功能。通过俯仰、横滚通道的控制原理分析,设计相应的飞行控制律。利用软件实时仿真了某飞机的自动飞行控制系统;通过调试优化参数,能很好的模拟飞机的自动飞行过程。 标签:飞行模拟机;自动飞行控制系统;飞行控制律;PID控制器 1 自动飞行控制系统的组成及回路构成 自动驾驶仪、飞行指引系统、方向选择板、以及偏航阻尼器组成构成了飞机飞行系统的重要部件:自动飞行控制系统。 自动飞行控制系统的重要组成部分之一:自动驾驶仪由操纵装置、综合装置、测试设备、回输设备以及舵机构成,如图1所示。借助这些装置,自动飞行控制系统不仅能够实现自动配平、改平以及增稳的功能,而且能够在飞机飞行的时候稳定飞机的飞行速度、高度以及控制飞机的航向角、倾斜角以及俯仰角,此外在飞机自动着陆时,自动驾驶仪与仪表着陆系统相互配合,完成飞机的自动着陆。 飞机(被控对象)与自动驾驶仪构成一个稳定回路,该稳定回路主要是为了控制和稳定飞机的姿态,从而使飞机能持续稳定地飞行。自动飞行控制系统的具体组成如图2所示,描述飞机空间位置的参数、中心位置测量装置以及稳定回路构成一个稳定回路,在飞机的姿势发生改变时,各种测量装置测量飞机的姿态数据,这些数据将输出到自动驾驶仪,与此相对,如果要改变飞机的飞行姿态,自动驾驶仪将发出信号,控制飞机姿态的各种装置将接受这些信号,进而操纵飞机改变姿态,控制与反馈,不断调整,最终达到平衡。 方式选择板提供飞行员操作的按钮,选择飞行模式。主要模式为:高度保持、空速保持、下降模式、爬升模式、航向保持、导航模式、进近模式、半坡度模式。这些工作模式都是为飞机纵向运动和横向运动姿态控制提供引导量值。这些量值同时也显示在飞行指引仪表上,作为飞行员的引导量。这样,飞行员既可以选择”手动”操纵,也可以选择自动驾驶仪工作。方式选择板的功能是通过逻辑实现的。飞行控制逻辑是整个软件系统的指挥中枢,它保障整个控制系统的稳定可靠的运行。 2 自动飞行控制系统功能 飞机要是实现自动飞行、无人操纵的目的就必须借助自动飞行控制系统,在自动飞机控制系统中,飞控计算机根据自动驾驶仪传输过来的控制信号,判断出目前所选的有效飞行模式、横滚通道,进而计算出飞机需要飞行的俯仰角度、副翼偏转角度,输出滚动角指令信号,从而实现自动驾驶仪设置的飞行模式。

自动飞行控制系统 AFCS

涡轮发动机飞机 第六章自动飞行控制系统AFCS 自动飞行控制系统的组成和基本功能 自动驾驶仪(AP)飞行指引(FD)偏航阻尼系统(YDS)俯仰配平系统(Auto Trim)自动油门系统(ATS) 6.1自动飞行控制系统AFCS的组成和基本功能 系统的功用——自动飞行控制系统可在除起飞的飞机的整个飞行阶段中使用:离场、爬升、巡航、下降和进近着陆。 6.1.1 自动飞行控制系统AFCS由下列分系统组成: 自动驾驶仪(A/P)—既可用于控制飞行轨迹,也可用于控制飞行速度减轻飞行员 的工作负担,还可实现飞机的自动着陆。 飞行指引仪(F/D) 在PFD或EADI上显示计算机提供的自动飞行的指令使飞行 员按照飞行指引杆的指引驾驶飞机,或监控飞机的姿态。自动配平系统自动调节飞机的水平安定门,改善飞机的俯仰稳定性 偏航阻尼系统(Y/D)改善飞机整个飞行阶段的动态稳定性 自动油门系统(ATS)自动调节发动机输出功率,实现最佳飞行,并减轻飞行 员的负担。 偏航阻尼系统与自动配平系统合称为增稳系统。 飞行管理系统FMS 在现代飞机上,利用飞行管理系统FMS,可完成对飞机的全自动导航; 提供从起飞到进近着陆的最优侧向飞行轨迹和垂直飞行剖面的计算, 实现最佳飞行。FMS的输出信号加到AFCS,控制自动飞行控制系统 的工作,实现对飞机的制导和推力管理;同时监测AFCS的工作,防止 飞机在不正常条件下的自动飞行。 6.1.3 AFCS的基本结构 AFCS的基本组成: 飞行控制计算机——计算控制指令。 控制板——(方式控制板MCP)是人机接口,用于向计算机输入飞行员的控制 指令,如飞行方式、速度、高度等。 输出设备——将计算机产生的控制信号加到飞行控制系统(通过舵机控制飞行操 纵面等),将显示信息输往显示器。 数字式AFCS的结构 80年代AP/FD计算机集成为FCC。 电子飞行控制系统EFCS的结构

西工大_飞行控制原理试题_试题2017

综合设计1 针对所给的飞机纵向简化运动模型,设计纵向增稳控制系统,给出系统原理结构框图,通过仿真验证其对阵风扰动的响应,阵风模型按GJB-185-86选取,扰动强度中等,扰动时间不小于15s 。 综合设计2 利用上述运动模型,设计自动导航控制系统,实现下列自动飞行过程:自高度3000m ,速度400km/h 开始,以不小于-20deg 的航迹俯仰角俯冲增速,在500m 高度拉起并完成一个筋斗,之后恢复5000m 高度、500km/h 速度的飞行状态。控制策略自行设计,最大过载不超过5g ,最大速度不超过650km/h 。 结果要求: 给出原系统和增稳后的系统模态特性分析结果、控制系统设计结果及框图、所建仿真模型,绘制扰动稳定及飞行过程的过载、角速率、俯仰角、舵面、油门、高度、速度的时间历程曲线及飞行过程的垂直航迹。 飞机纵向简化运动模型: 某飞机简化纵向运动方程:X AX BU =+g ,Y CX DU =+ 控制向量:[]T e T U δδ=,是升降舵偏角、油门调节;状态向量:[]T X V q αθ=???,分别是空速、迎角、俯仰速率、俯仰角;输出向量:[]T z Y V q n αθγ=?????,分别是空速、迎角、俯仰速率、法向过载、俯仰角、航迹俯仰角。 440.035750.01600.1710.00210.051100.00390.1590.35700010A ?--??--??=??--????420 1.220.1432502.13206000B ???-??=??-???? 64 1000010000100.02049 5.03390.55959000010101C ???????=??-????-??620000000.441600000D ???????=??-?? ????

多旋翼飞行原理

四旋翼飞行器结构和原理 1.结构形式 旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。结构形式如图 1.1所示。 .工作原理 四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时

却有六个状态输出,所以它又是一种欠驱动系统。 四旋翼飞行器的电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。 在上图中,电机1和电机3作逆时针旋转,电机2和电机4作顺时针旋转,规定沿x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。

(1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态 。 (2)俯仰运动:在图(b)中,电机1的转速上升,电机3 的转速下降(改变量大小应相等),电机2、电机4 的转速保持不变。由于旋翼1 的升力上升,旋翼3 的升力下降,产生的不平衡力矩使机身绕y 轴旋转,同理,当电机1 的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动

相关文档
最新文档