1弯曲回弹的表现形式是什么

1弯曲回弹的表现形式是什么
1弯曲回弹的表现形式是什么

1弯曲回弹的表现形式是什么?产生回弹的主要原因是什么?

弯曲回弹的表现形式为:弯曲半径的变化和弯曲角的变化。

产生回弹的主要原因是:材料的力学性能、相对弯曲半径、弯曲中心角、弯曲方式、模具间隙等。

2拉深变形区的应力应变的特点是什么?

拉深变形区为凸缘部分,切向为压应力,径向为拉应力,切向压应力的绝对值最大,所以在切向是压应变,径向为拉应变。

3拉深时容易出现什么样的质量问题?为什么?

凸缘的起皱和底部圆角R处的开裂,前者是因为切向压应力太大,后者是R处的塑性变形小,加工硬化现象弱。

4、请简述拉深变形的变形区的应力和应变的特点。

在拉深过程中,毛坯受凸模拉深力的作用,在凸缘毛坯的径向产生拉伸应力σ1,切向产生压缩应力σ3。在它们的共同作用下,凸缘变形区材料发生了塑性变形,并不断被拉入凹模内形成筒形拉深件。

5、拉深时的危险端面在哪里?为什么?

危险端面为筒壁和圆筒底部的过渡区,材料承受筒壁较大的拉应力σ1、凸模圆角的压力和弯曲作用产生的压应力σ2和切向拉应力σ3。在这个区域的筒壁与筒底转角处稍上的位置,拉深开始时材料处于凸模与凹模间,需要转移的材料较少,受变形的程度小,冷作硬化程度低,加之该处材料变薄,使传力的截面积变小,所以此处往往成为整个拉深件强度最薄弱的地方,是拉深过程中的“危险断面”。

6什么是最小相对弯曲半径?

板料在弯曲时,弯曲半径越小,板料外表面的变形程度越大。如果板料的弯曲半径过小,则板料的外表面将超过材料的变形极限而出现裂纹。所以,板料的最小弯曲半径是在保证变形区材料外表面不发生破坏的前提下,弯曲件的内表面所能弯成的最小圆角半径,用r min表示。

最小弯曲半径与板料厚度的比值r min/t称为最小相对弯曲半径,它是衡量弯曲变形程度大小的重要指标。

7 拉深件的变形有以下特点:

(1)变形区为毛坯的凸缘部分,与凸模端面接触的部分基本上不变形;

(2)毛坯变形区在切向压应力和径向拉应力的作用下,产生切向压缩和径向拉伸的“一拉一压”的变形。

(3)极限变形参数主要受到毛坯传力区的承载能力的限制;

(4)拉深件的口部有增厚、底部圆角处有减薄的现象称为“危险断面”(底部的厚度基本保持不变);

(5)拉深工件的硬度也有所不同,愈靠近口部,硬度愈高(这是因为口部的塑性变形量最大,加工硬化现象最严重)

8.什么是弯曲回弹?影响弯曲回弹的主要力学性能是什么,他们是怎样影响的??

答:当弯曲结束,外力去除后,塑性变形留存下来,而弹性变形则完全消失。产生了弯曲件的弯曲角度和弯曲半径与模具相应尺寸不一致的现象称为弯曲件的弹性回跳

(简称回弹)。

材料的屈服极限σs,弹性模量E。材料的屈服点σs越高,弹性模量E越小,弯曲

弹性回跳越大。

9、影响板料弯曲回弹的主要因素是什么?

答:在弯曲的过程中,影响回弹的因素很多,其中主要有以下几个方面:

1 )材料的机械性能

材料的屈服极限σ s 愈高、弹性模量E愈小,弯曲变形的回弹也愈大。

2 )相对弯曲半径 r/t

相对弯曲半径 r/t 愈小,则回弹值愈小。因为相对弯曲半径愈小,变形程度愈大。反之,相对弯曲半径愈大,则回弹值愈大。这就是曲率半径很大的弯曲件不易弯曲成形的原因。

3 )弯曲中心角α

弯曲中心角α愈大,表示变形区的长度愈大,回弹的积累值愈大,因此弯曲中心角的回弹愈大,但对曲率半径的回弹没有影响。

4 )模具间隙

弯曲模具的间隙愈大,回弹也愈大。所以,板料厚度的误差愈大,回弹值愈不稳定。

5 )弯曲件的形状

弯曲件的几何形状对回弹值有较大的影响。比如,U形件比V形件的回弹要小些,这是因为U形件的底部在弯曲过程中有拉伸变形的成分,故回弹要小些。

6 )弯曲力

弯曲力的大小不同,回弹值也有所不同。校正弯曲时回弹较小,因为校正弯曲时校正力比自由弯曲时的弯曲力大很多,使变形区的应力与应变状态与自由弯曲时有所不同。

10、拉深过程中工件热处理的目的是什么 ?

答:在拉深过程中材料承受塑性变形而产生加工硬化,即拉深后材料的机械性能发生变化,其强度、硬度会明显提高,而塑性则降低。为了再次拉深成形,需要用热处理的方法来恢复材料的塑性,而不致使材料下次拉深后由于变形抵抗力及强度的提高而发生裂纹及破裂现象。冲压所用的金属材料,大致上可分普通硬化金属材料和高硬化金属材料两大类。普通硬化金属材料包括黄铜、铝及铝合金、

08 、10 、 15 等,若工艺过程制订得合理,模具设计与制造得正确,一般拉深次数在 3 ~ 4 次的情况下,可不进行中间退火处理。对于高硬化金属材料,一般经 1 ~ 2 次拉深后,就需要进行中间热处理,否则会影响拉深工作的正常进行。

11、什么是校形?校形的作用是什么?

答:校形是指工件在经过各种冲压工序后,因为其尺寸精度及表面形状还不能达到零件的要求,这时,就需要在其形状和尺寸已经接近零件要求的基础上,再通过特殊的模具使其产生不大的塑性变形,从而获得合格零件的一种冲压加工方法。

校形的目的是把工件表面的不平度或圆弧修整到能够满足图纸要求。一般来说,对于表面形状及尺寸要求较高的冲压件,往往都需要进行校形。

12、精密级进模结构设计有哪些基本要求?

答、 1 、能顺利、连续、稳定地工作,保证制件的形状和精度。凸、凹模配合中心一致,步距准确;

2 、各种成形尽可能在一副模具上完成;

3 、排样合理,有自动送料、自动检测保护装置;

4 、效率高,寿命长,易损件更换方便;

5 、制造周期短,成本低;

13. 试述产生起皱的原因是什么?

拉深过程中,在坯料凸缘内受到切向压应力σ3的作用,常会失去稳定性而产生起皱现象。在拉深工序,起皱是造成废品的重要原因之一。因此,防止出现起皱现象是拉深工艺中的一个重要问题

14.影响拉深时坯料起皱的主要因素是什么?防止起皱的方法有哪些?

影响起皱现象的因素很多,例如:坯料的相对厚度直接影响到材料的稳定性。所以,坯料的相对厚度值t/D 越大(D 为坯料的直径) ,坯料的稳定性就越好,这时压应力σ 3 的作用只能使材料在切线方向产生压缩变形( 变厚) ,而不致起皱。坯料相对厚度越小,则越容易产生起皱现象。在拉深过程中,轻微的皱摺出现以后,坯料仍可能被拉入凹模,而在筒壁形成褶痕。如出现严重皱褶,坯料不能被拉入凹模里,而在凹模圆角处或凸模圆角上方附近侧壁(危险断面)产生破裂。防止起皱现象的可靠途径是提高坯料在拉深过程中的稳定性。其有效措施是在拉深时采用压边圈将坯料压住。压边圈的作用是,将坯料约束在压边圈与凹模平面之间,坯料虽受有切向压应力σ3 的作用,但它在厚度方向上不能自由起伏,从而提高了坯料在流动时的稳定性。另外,由于压边力的作用,使坯料与凹模上表面间、坯料与压边圈之间产生了摩擦力。这两部分摩擦力,都与坯料流动方向相反,其中有一部分抵消

了σ3 的作用,使材料的切向压应力不会超过对纵向弯曲的抗力,从而避免了起皱现象的产生。由此可见,在拉深工艺中,正确地选择压边圈的型式,确定所需压边力的大小是很重要的。

15.弯曲变形有何特点?

1 )弯曲变形主要集中在弯曲圆角部分

2 )弯曲变形区存在一个变形中性层

3 )形区材料厚度变薄的现象

4 )变形区横断面的变形

16.简述拉深成形的主要成形障碍及防止措施

答:拉深成形时主要的成形障碍是起皱和开裂。

防止起皱发生在生产中最常用的方法是采用压边圈。

防止危险断面破裂的根本措施是减小拉深时的变形抗力,确定合理的拉深系数,采用较大的模具圆角半径,改善凸缘部分的润滑条件,增大凸模表面的粗糙度。

17精密级进模结构设计有哪些要点?

1)导向装置和卸料板的形式选用。

2)凹模的整体式、拼块式和嵌块式的选择。

3)模具材料的选用。

4)互换性与维修的考虑。

5)冲压速度的选择。

6)刚度的考虑。

7)弹性零件的选用和安装方法。

8)零件加工方法。

钣金弯曲回弹及控制

[摘要] 本文分析了弯曲回弹的影响因素,且着重介绍了控制弯曲回弹的具体措施。 正如起皱影响拉深件质量一样,回弹则主要影响弯曲件质量,故弯曲回弹及其控制是模具工作者一直所关心的问题。可以说任何板科塑性变形,卸载后都不可避免地要产生回弹,只不过弯曲表现得更为突出一些。究其原因是还可以有这么几点:其一是弯曲变形时内、外层应力性质相反,卸载后弹复方向一致,故而弯曲件形状、尺寸变化大;其二是弯曲加工不像拉深、翻边等工序那样为封闭形冲压,而呈非封闭状态,故而相互牵拉少,易于造成大的弹复;其三是弯曲加工中变形区小,不变形区大,大面积的不变形区对小面积变形区的牵连影响,使得小面积的变形区很难达到纯塑性弯曲状态。 现有理论认为即使材料在加工中内外纤维全部进入塑性状态,弹性变形消失了,也会出现回弹现象。 a 弹性弯曲 b弹塑性弯曲 c纯塑性弯曲 弯曲过程中毛坏变形区内切向应力分布情况。图la为弯曲初始阶段相对弯曲半径r/t较大,板料内部仅发生弹性弯曲;随着弯曲力加大、r/t值小、弯曲变形程度逐步增大,表层的切向应力达到屈服点,进而向板料中心扩展,则板料内部处于弹塑性变形状态;当r/t值继续减少到一定程度时,板料内、外层和中心的切向应力全部超过屈服点进入全塑性状态。塑性弯曲时总是伴有弹性变形的现象。2a 所示为纯塑性弯曲应力状态,2b为其卸载应力,2c为卸载后弯曲件在自由状态下的断面内残余应力;3为弹一塑性弯曲卸载过程中毛坏断面内切向应力变化情况。3a为卸载时应力,3c为卸载后弯曲件在自由状态下的断面内残余应力。由此可见,塑性弯曲卸载后弹复是不可避免的。 毛坯断面切向应力变化 由上所述可见干坯料回弹是客观存在的,无法改变的,只有因势利导,掌握好材料的回弹规律,尽可能准确地计称好回弹值的大小,才能有效地减少和控制好坯料的弯曲回弹。此乃是研究回弹、制订弯曲工艺、设计模具所要考虑的主要问题。 1 弯曲回弹的影响因素 回弹包括角度回弹及曲率回弹两个方面,此是弯曲变形区与不变形区两部分回弹综合效应的结果。影响回弹的因素很多,主要有:①坏料的机械性能σs、Eoσs愈高、E值愈小,弯曲回弹愈大;②变形程度r/t。在其相同的条件下,角度回弹量随r/t值增大而增大;曲率回弹量则随r/t值增大而减少; ③弯曲中心角αo弯曲中心角α大,回弹角大;④模具间隙Z。凸、凹模间隙大,回弹量大;⑤弯曲方式。自由弯曲回弹量大,较正弯曲回弹量小,全形镦校弯曲回弹量最小;⑥工件形状及材料组织状态。形状复杂,相互牵扯多回弹量小,冷作硬化后回弹量大;⑦模具结构及压边力大小。压边力大,工件弯后回弹量小。 -------------------------------------------------------------------------------- 2 回弹值的确定 确定工件的回弹值是为了采取应的措施来克服回弹以使弯曲工件达到图纸要求的精度。确定回弹值的方法有查图法、查表法和计算法一般来说都是近似的。目前不论国内还是国外对回弹的研究仍在继续。由于回弹涉及的因素多较为复杂目前还没有一个精确的计算公式。故对于回弹值的控制一般均是用不同结构的模具来修正主要是在试模中予以修正的。 3 控制回弹的措施 3.1 选择弯曲性能好的材料 用屈服极小、弹性模量大的材料作为弯曲件可获得较高的弯曲质量。此外坯料的厚度公差大小表面质量的优劣和平面度的好坏都对弯曲回弹有较大的影。对弯曲精度要求高的工件也要对坯料此方面的质量加以筛选。 3.2 选择较小的对弯曲半径 r/t值小表明变形程度大。一般在r/t≤3-5时认为板料的弯曲区已全部进入塑料状态。较小的弯曲半径对减烛回弹有利但过小的弯曲半径会使弯曲区破裂。目前资料上给出的材料最小弯曲半径主要是绝对经验数据可作为板金设计者设计工件弯曲半径的参考依据。 3.3 选择需要的模具间隙 V型弯曲其间隙值是靠高速机床来实的与模具本身无关。而对U型弯曲来说其回弹随凹模开口深

板料弯曲回弹及工艺控制

板料弯曲回弹及工艺控制 板料在弯曲过程中,产生塑性变形的同时会产生弹性变形。当工件弯曲后去除外力时,会立即发生弹性变形的恢复,结果使弯曲件的角度和弯曲半径发生变化,与模具相应形状不一致,即产生回弹。回弹是弯曲成形过程的主要缺陷,它的存在造成零件的成形精度差,显著地增加了试、修模工作量和成形后的校正工作量,故在冲压生产中,掌握回弹规律非常重要。如果在设计模具前,能准确掌握材料的回弹规律及回弹值大小,设计模具时可预先在模具结构及工作部分尺寸上采取措施,试冲后即使尺寸精度有所差异,其修正工作量也不会太大,这不仅可以缩短模具制造周期,而且有利于模具成本的降低及弯曲件精度的提高。 1 弯曲回弹的表现形式 弯曲回弹的表现形式有下列二个方面(如图1所示): (a) 弯曲半径增加:卸载前板料的内半径r (与凸模的半径吻合),在卸载后增加至r0,半径的增量为△r二r0一r (b) 弯曲件角度增大:卸荷前板料的弯曲角为α(与凸模的顶角吻合),在卸荷后增大到α0,角度增量为△α=α0一α 图1 回弹导致弯曲角和弯曲半径变化 2 弯曲回弹产生的原因 弯曲回弹的主要原因是由于材料弹性变形所引起的。板料弯曲时,内层受压应力,外层受拉应力。弹塑性弯曲时,这两种应力尽管超过屈服应力,但实际上从拉应力过渡到压应力时,中间

总会有一段应力小于屈服应力的弹性变形区。由于弹性变形区的存在,弯曲卸载后工件必然产生回弹。在相对弯曲半径较大时,弹性变形区占的比重大,回弹尤其显著。 回弹是由于在板厚方向应力或应变分布不均匀而引起的。这种应力和应变的不均匀分布是弯曲的特点,对于只施加弯矩的弯曲方式,要有效减少回弹是困难的。为了使回弹减小,应尽量使板厚断面内的应力和应变分布均匀,为此可采取在纵向纤维方向对板料进行拉伸或压缩的方法,也可采用在板厚方向施加强压的方法。在沿板的长度方向单纯拉伸变形的场合,除去外力后,由于在整个板厚断面内变形的恢复是均匀的,所以不会发生形状的变化。 3 影响弯曲回弹的因素 (1)材料的机械性能材料的屈服点σs越高,弹性模量E越小,回弹越大。 (2)相对弯曲半径R/t 弯曲半径R越大,材料厚度t越小,即相对弯曲半径R/t值越大,回弹越大。 (3)弯曲处校正力的大小校正力越大,回弹越小。 (4)凸凹模间隙间隙越大,回弹越大。间隙小于材料厚度时,有可能出现负回弹。 (5)弯曲件的形状弯曲件直边过短时,回弹较大。V型弯曲件的回弹比U型弯曲件的回弹大。 (6)凹模形状及尺寸凹模深度过小时,回弹很大。 4 控制弯曲回弹的方法与措施 减小回弹常用方法有补偿法、校正法、改变应力状态、改进工件设计等。影响弯曲回弹的因素很多,对于不同的影响因素,应采用不同的措施,也可综合运用几种方法,来减少回弹。 4.1 补偿法减少弯曲回弹 补偿法是按预先估算或试验所得的回弹量,在模具工作部分相应的形状和尺寸中予以“扣除”,从而使出模后的弯曲件获得要求的形状和尺寸。 (l) V型弯曲,如图2a所示。可在凸模和凹模上同时减小一个回弹角,使工件回弹后恰好等于所要求的角度,这种方法适用于相对弯曲半径较大,回弹较大的工件。 (2) L型弯曲,如图2b所示。凹模向内倾斜一角度△α,并同时缩小凸、凹模的间隙,单面间隙取小于材料厚度,促使工件贴住凹模。出模后工件回弹,直边恢复垂直。图2c所示,采用硬橡胶促使工件贴住凹模,补偿工件回弹。

回弹法测砼强度值的计算方法和步骤

回弹法测砼强度值的计算方法和步骤在学习计算方法和步骤之前,先了解几个术语: 1、测区:检测结构或构件砼抗压强度时的一个检测单元。 2、测点:在测区内进行的一个检测点。 3、测区砼强度换算值:由测区的平均回弹值和碳化深度值通过测强度曲线或查表得到的该检测单元(测区)的现龄期砼抗压强度值。 回弹法检测砼强度试用于工程结构普通砼抗压强度的检测。砼强度值的确定分为如下几个步骤:1、回弹值测量2、碳化深度值测量3、回弹值计算4、砼强度的计算 一、回弹值测量 1、一般规定:结构或物件砼强度检测可采用下列两种方式,其适用范围及结构或构件数量应符合下列规定: (1)、单个检测:适用于单个结构或构件的检测。 (2)、批量检测:适用于相同的生产工艺条件下,砼强度等级相同,原材料、配合比、成型工艺、养护条件基本一致且龄期相近的同类结构或构件,按批进行检测的结构构件。抽检数量不得少于同批构件总数的30%且不得少于10件。 2、每一结构或构件的测区应符合下列规定: (1)、每一结构或构件测区数量应不少于10个。对某一方向尺寸小于4.5米,且另一方向尺寸小于0.3米的构件其测区数量可适当减少,但不应少于5个。 (2)、相邻两测区的间距应控制在2米以内。测区离构件端部或施

工缝边缘的距离不宜大于0.5米,且不宜小于0.2米。 (3)、测区应选在使回弹仪处于水平方向检测砼浇筑侧面,当不能满足这一要求时,可使回弹仪处于非水平方向检测砼强度浇筑侧面、表面或底面。但回弹值需修正。 (4)、测区宜选在构件的两个对称可测面上,也可选在一个可测面上,且应均匀分布。在构件的重要部位及薄弱部位必须布置测区,并应避开预埋件。 (5)、测区的面积不宜大于0.04㎡。 (6)、检测面应为砼表面,并应清洁平整,不应有疏松层、浮浆、油垢、涂层以及蜂窝、麻面。必要时可用砂轮清除疏松层和杂物,且不应有残留的粉末或碎屑。 3、回弹值测定 (1)、检测时,回弹仪的轴线应始终垂直于结构或构件的检测面。缓慢施压,准确读数,快速复位。 (2)、测点宜在测区范围内均匀分布。相邻两测点的净距不宜小于20mm。测点距外露钢筋、预埋件的距离不宜小于30mm。测点不应在气孔或外露石子上,同一测点只应弹一次,每一测区应取16个回弹值。 二、碳化深度测量值 1、回弹值测量完毕后,应在有代表性的位置上测量碳化深度值。 测点不应小于构件测区数的30%,取其平均值为该构件的每测区的碳化深度值,当碳化深度最大值与最小值之差大于2.0mm

浅谈解决弯曲件回弹现象的措施

浅谈解决弯曲件回弹现象的措施 摘要 弯曲件在机械零件中占有相当大的比例,它的质量将直接影响整机质量,而回弹是影 响弯曲件质量的重要因素,因此探讨弯曲件回弹的原因和防止措施是非常必要的。寻求防 止回弹的有效途径和方法,对保证产品质量和提高弯曲件生产的经济性是有积极现实意义的。 关键词:弯曲;回弹;措施 abstract Bending occupies a large proportion in mechanical parts, its quality will directly affect the overall quality, and the resilience is an important factor affecting the bending quality, thus to explore the causes of the springback and the prevention measures are very necessary. It is of positive and practical significance to ensure the quality of products and improve the economy of bending parts. Key words: bending; springback; measures 一、板料回弹的产生 在板料弯曲成形过程中,板料内外缘表层纤维进入塑性状态,而板料中心仍处于弹性状态,这时当凸模上升去除外载后,板料就会产生弹性回复。金属塑性成形总是伴有弹性变形,所以板料弯曲时,即使内外层纤维全部进入塑性状态,在去除外力时,弹性变形消失,也会出现回弹。弯曲时,弯曲变形只发生在弯曲件的圆角附近,直线部分不产生塑性变形。 影响板料弯曲回弹的因素很多,大体可分为以下几种:(1)材料的力学性能。(2)相对 弯曲半径 R/t的影响。(3)弯曲角的影响。(4)弯曲零件形状的影响。(5)模具几何参数 影响。(6)张力的影响。(7)工况参数。(8)模具间隙的影响。(9)弯曲校正力的影响。(10)弯曲方式的影响。 二、回弹现象的分析 由于金属板料在塑性弯曲时总伴随着弹性变形产生,当弯曲件从模具中取出之后,弯曲 件不受外力的作用,弹性变形消失,使工件的弯曲角度和弯曲半径发生变化,皆与模具的设

弯曲件的回弹及回弹值的确定实验

弯曲件的回弹及回弹值的确定实验 一、实验目的1、通过试件在V形弯曲模中的弯曲实验,观察回弹现象和学习测定弯曲回弹角的方法。2、培养分析材质和弯曲变形程度等对回弹值影响的能力和懂得针对实际情况采取减少回弹的措施。 二、实验原理弯曲工艺中的回弹,直接影响了弯曲件的精度。故研究影响弯曲回弹的因素和减少回弹的办法对保证弯曲件质量有重要意义。 弯曲的回弹值(弯曲角度和圆角半径的变化量)与下列因素有关: 1、材料的力学性能:材料的屈服强度和硬化模数D 愈大,回弹值愈大;材料的弹性模量E愈大,回弹值愈小。 2、相对弯曲半径r/t : r/t愈小,弯曲变形程度愈大,回弹值愈小,反之回弹值愈大。 3、弯曲中心角α:α的大小表达了弯曲变形区的大小,弯曲中心角愈大,所代表的弯形区愈大,回弹值愈大。 采用一副快换凸模的弯曲模进行弯曲实验,就可以测出以下几组数据: 1、相同材料、不同r/t的弯曲回弹角(包括相同厚度、

不同凸模圆角半径和相同圆角半径、不同厚度两种情况)。 2、不同材料、相同r/t的弯曲回弹角。 3、减少承压面积的凸模弯曲时的回弹角。 通过对实验数据的分析,可以看出材料的σs /E和r/t 对弯曲回弹的影响情况;以及使用减少承压面积的凸模达到减小回弹的良好效果; 利用较厚材料的弯曲,使其弯曲变形程度超过材料的极限变形程度,即r/t小于r min /t,可以观察到变形区外层材料破裂的情况。 三、实验设备、材料、模具和工具 1、J23-250型曲柄压力机一台。 2、长50mm ,宽15mm的Q195钢板31件,其中厚度分别为0.5, 1.5, 2.5mm的各10件,厚度为4mm 的一件;长宽尺寸同上,厚度为0.5mm的08钢板10件;长宽尺寸同上的H62黄铜板11件,其中厚度为0.5mm的10件,4mm的一件。 3、实验用弯曲模一副(图1),快换凸模10个,其中如图2所示的R分别为0.1,0.4,0.8,1.2,1. 5,2. 0,2. 5,3,4mm的九个,如图3所示的减少承压面积的一个。 4、一字旋具、万能角度尺、镊子各一件。

回弹计算公式.doc

4.2 强度计算 4.2.1 回弹值计算 从每一个测区所得的16 个回弹值中,剔除3 个最大值和3个最小值后,将余下的10 个回弹值按下列公式计算平均值: 式中,R m为测区平均回弹值,精确至0.1;R i为第i 个测点的回弹值。 4.2.2 回弹值修正 ①对于回弹仪非水平方向检测混凝土浇筑侧面时,回弹值按下式校正。 R m=R m α+R aα 式中,R m α为非水平方向检测时测区的平均回弹值,精确至0.1;R aα为非水平方向检测时测区的平均回弹值的修正值,按表2 取值。 ② 将回弹仪水平方向检测混凝土浇筑表面时得的回弹值,或相当于水平方向检测混凝土浇筑面时的回弹值,按下式修正: R m=R m t+R a t, R m=R m b+R a b.

式中,R m t,R m b为水平方向(或相当于水平方向)检测混凝土浇筑表面、底面,测区的平均回弹值,精确至0.1;R a t,R a b为混凝土浇筑表面、底面回弹值的修正值,按表3 取值。 4.2.3 碳化深度计算 对于抽检碳化深度的计算,用数理统计方法计算,以平均值作为测区碳化深度。 4.2.4 测强曲线应用 对于没有可以利用的地区和专用混凝土回弹测强曲线,测区混凝土强度的求取,可以按规范附录中所提供的“ 测区混凝土强度换算表”换算。 4.3 异常数据分析 混凝土强度不是定值,它服从正态分布。混凝土强度无损检测属于多次测量的试验,可能会遇到个别误差不合理的可疑数据,应予以剔除。根据统计理论,绝对值越大的误差,出现的概率越小,当划定了超越概率或保证率时,其数据合理范围也相应确定。因此,可以选择一个“ 判定值”去和测量数据比较,超出判定值者则认为包含过失误差而应剔除。

浅谈解决回弹现象的措施

目录 摘要 (Ⅱ) 关键词 (Ⅱ) 正文 (Ⅱ) 1 板料回弹的产生 (2) 2 回弹现象的分析 (2) 3 影响回弹的主要因素 (2) 参考文献 (Ⅴ) 结束语 (Ⅵ)

摘要 弯曲件在机械零件中占有相当大的比例,它的质量将直接影响整机质量,而回弹是影响弯曲件质量的重要因素,因此探讨弯曲件回弹的原因和防止措施是非常必要的。寻求防止回弹的有效途径和方法,对保证产品质量和提高弯曲件生产的经济性是有积极现实意义的。 关键词:弯曲;回弹;措施 正文: 一、板料回弹的产生 在板料弯曲成形过程中,板料内外缘表层纤维进入塑性状态,而板料中心仍处于弹性状态,这时当凸模上升去除外载后,板料就会产生弹性回复。金属塑性成形总是伴有弹性变形,所以板料弯曲时,即使内外层纤维全部进入塑性状态,在去除外力时,弹性变形消失,也会出现回弹。弯曲时,弯曲变形只发生在弯曲件的圆角附近,直线部分不产生塑性变形。 影响板料弯曲回弹的因素很多,大体可分为以下几种:(1)材料的力学性能。(2)相对弯曲半径 R/t的影响。(3)弯曲角的影响。(4)弯曲零件形状的影响。(5)模具几何参数影响。(6)张力的影响。(7)工况参数。(8)模具间隙的影响。(9)弯曲校正力的影响。(10)弯曲方式的影响。 二、回弹现象的分析 由于金属板料在塑性弯曲时总伴随着弹性变形产生,当弯曲件从模具中取出之后,弯曲件不受外力的作用,弹性变形消失,使工件的弯曲角度和弯曲半径发生变化,皆与模具的设计尺寸存在一个差值,这种现象称为弯曲件的回弹。 三、影响回弹的主要因素 3. 1 材料的机械性能 回弹的大小与材料的屈服极限成正比,与弹性模数成反比,即 Qs/E值愈小,回弹也愈小。 Qs——材料的屈服极限 E——材料的弹性模数 3. 2 相对弯曲半径 r/t

弯曲件回弹主要影响因素研究_王洪芬

第25卷第3期 吉林工程技术师范学院学报 V o l 125N o 13 2009年3月 Journa l of J ilin T eache rs Instit ute o f Eng i nee ri ng and T echno l ogy M ar 12009 收稿日期:2008-02-27 作者简介:王洪芬(1980- ),女,吉林德惠人,吉林工程技术师范学院机电工程学院助教,主要从事机械制造及冲压模具设计教学研究。 弯曲件回弹主要影响因素研究 王洪芬1 ,陶忠祥 2 (1.吉林工程技术师范学院机电工程学院,吉林长春130052; 2.空军航空大学航空机械工程系,吉林长春130022) [摘 要]板料成形过程中普遍存在着回弹问题,特别在弯曲和浅拉深过程中回弹现象更严重,在板料 成形领域,回弹已成为模具设计中的关键问题。本文旨在浅析板料成形过程中弯曲件的回弹现象,研究影响回弹的主要因素。 [关键词]弯曲件;回弹;影响因素 [中图分类号]TH 16 [文献标识码]A [文章编号]1009-9042(2009)03-0064-03 Study on theM ain I nfluence Factors of Spring Back in Bending Parts WANG H ong -fen 1 ,TAO Zhong-x iang 2 (1.Co llege of E lectro m echanical Engineer in g,J ilin T eachers Institute of Eng i neering and T echnology,Changchun J ili n 130052,China ;2.D e p art m ent of A vi a tionM echanical Eng i neering ,A viation Un i vers it y of A ir Force ,Changchun J ilin 130022,Ch i na) Abstract :Spring back ex ists w ide l y i n sheet m eta l for m ing processes ,and particularly in ben -ding and sha llo w dra w ing process .It has been the key prob le m of mould desi g n i n the fie l d o f sheetm etal for m i n g .Through the research on the pheno m enon o f spri n g back i n sheet m etal for m ing processes ,t h is paper d iscussed the m a i n infl u ence factors o f spri n g back i n bending parts . Key w ords :bend i n g parts ;spring back;i n fl u ence factors 板料成形过程中普遍存在着回弹问题,特别在 弯曲和浅拉深过程中回弹现象更严重,在板料成形领域,回弹已成为模具设计中要考虑的关键问题,由于回弹的存在,卸载后零件的形状尺寸与模具表面的形状尺寸不能完全符合,零件的尺寸精度达不到设计要求,对生产效率造成极大的影响,所以有必要对其进行深入的研究和有效的控制。回弹是不可避免的,在实际生产中,准确掌握回弹规律和回弹值大小,剖析影响回弹的因素,实用的工艺技术方法,有助于改善和消除弯曲回弹倾向,提高生产效率和工艺质量。因此,对回弹机理以及影响回弹因素的研究至关重要。本文旨在浅析板料成形回弹现象,研究影响回弹的主要因素。 1 弯曲件的回弹 1.1 回弹现象 与所有的塑性变形一样,塑性变形时伴随有弹性变形,塑性变形保留下来,而弹性变形会完全消失。由于弯曲时内、外区切向应力方向相反,因而弹性回复方向也相反,即外区弹性缩短而内区弹性伸长,这种反向的弹性回复加剧了工件形状和尺寸的改变,使弯曲件的形状和尺寸与模具尺寸不一致,这种现象叫弯曲回弹(简称回弹)。 另外,对整个坯料而言,不变形区占的比例比变形区大得多,大面积不变形区的惯性影响会加大变形区的会弹,这是弯曲回弹比其他成形工艺回弹严重的另一个原因。他们对弯曲件的形状和尺寸变化影响十分显著,加之回弹是不可避免的,因此,与其他变形工序相比,弯曲过程的回弹现象是一个影响弯曲件精度的重要问题。

回弹法测砼强度值的计算方法和步骤

-- 回弹法测砼强度值的计算方法和步骤 在学习计算方法和步骤之前,先了解几个术语: 1、测区:检测结构或构件砼抗压强度时的一个检测单元。 2、测点:在测区内进行的一个检测点。 3、测区砼强度换算值:由测区的平均回弹值和碳化深度值通过测强 度曲线或查表得到的该检测单元(测区)的现龄期砼抗压强度值。 回弹法检测砼强度试用于工程结构普通砼抗压强度的检测。砼强 2、碳化深度值测量1、回弹值测量度值的确定分为如下几个步骤: 、砼强度的计算 3、回弹值计算4 一、回弹值测量 其适一般规定:结构或物件砼强度检测可采用下列两种方式,1、 用范围及结构或构件数量应符合下列规定: )、单个检测:适用于单个结构或构件的检测。1(

(2)、批量检测:适用于相同的生产工艺条件下,砼强度 等级相同,原材料、配合比、成型工艺、养护条件基本一 致且龄期相近的同类结构或构件,按批进行检测的结构构件。抽检数量不得少于同批构件总数的 30%且不得少于 10 件。 2、每一结构或构件的测区应符合下列规定: (1)、每一结构或构件测区数量应不少于 10 个。对某一 方向尺寸小于 4.5 米,且另一方向尺寸小于 0.3 米的构件其测区数量可适当减少,但不应少于 5 个。 (2)、相邻两测区的间距应控制在 2 米以内。测区离构 件端部或施工 1 ---- -- 缝边缘的距离不宜大于 0.5 米,且不宜小于 0.2 米。(3)、测区应选在使回弹仪处于水平方向检测砼浇筑侧面,当不能满足这一要求时,可使回弹仪处于非水平方向检测 砼强度浇筑侧面、表面或底面。但回弹值需修正。 (4)、测区宜选在构件的两个对称可测面上,也可选在一

1弯曲回弹的表现形式是什么

1弯曲回弹的表现形式是什么?产生回弹的主要原因是什么? 弯曲回弹的表现形式为:弯曲半径的变化和弯曲角的变化。 产生回弹的主要原因是:材料的力学性能、相对弯曲半径、弯曲中心角、弯曲方式、模具间隙等。 2拉深变形区的应力应变的特点是什么? 拉深变形区为凸缘部分,切向为压应力,径向为拉应力,切向压应力的绝对值最大,所以在切向是压应变,径向为拉应变。 3拉深时容易出现什么样的质量问题?为什么? 凸缘的起皱和底部圆角R处的开裂,前者是因为切向压应力太大,后者是R处的塑性变形小,加工硬化现象弱。 4、请简述拉深变形的变形区的应力和应变的特点。 在拉深过程中,毛坯受凸模拉深力的作用,在凸缘毛坯的径向产生拉伸应力σ1,切向产生压缩应力σ3。在它们的共同作用下,凸缘变形区材料发生了塑性变形,并不断被拉入凹模内形成筒形拉深件。 5、拉深时的危险端面在哪里?为什么? 危险端面为筒壁和圆筒底部的过渡区,材料承受筒壁较大的拉应力σ1、凸模圆角的压力和弯曲作用产生的压应力σ2和切向拉应力σ3。在这个区域的筒壁与筒底转角处稍上的位置,拉深开始时材料处于凸模与凹模间,需要转移的材料较少,受变形的程度小,冷作硬化程度低,加之该处材料变薄,使传力的截面积变小,所以此处往往成为整个拉深件强度最薄弱的地方,是拉深过程中的“危险断面”。 6什么是最小相对弯曲半径? 板料在弯曲时,弯曲半径越小,板料外表面的变形程度越大。如果板料的弯曲半径过小,则板料的外表面将超过材料的变形极限而出现裂纹。所以,板料的最小弯曲半径是在保证变形区材料外表面不发生破坏的前提下,弯曲件的内表面所能弯成的最小圆角半径,用r min表示。 最小弯曲半径与板料厚度的比值r min/t称为最小相对弯曲半径,它是衡量弯曲变形程度大小的重要指标。 7 拉深件的变形有以下特点: (1)变形区为毛坯的凸缘部分,与凸模端面接触的部分基本上不变形; (2)毛坯变形区在切向压应力和径向拉应力的作用下,产生切向压缩和径向拉伸的“一拉一压”的变形。 (3)极限变形参数主要受到毛坯传力区的承载能力的限制; (4)拉深件的口部有增厚、底部圆角处有减薄的现象称为“危险断面”(底部的厚度基本保持不变); (5)拉深工件的硬度也有所不同,愈靠近口部,硬度愈高(这是因为口部的塑性变形量最大,加工硬化现象最严重) 8.什么是弯曲回弹?影响弯曲回弹的主要力学性能是什么,他们是怎样影响的?? 答:当弯曲结束,外力去除后,塑性变形留存下来,而弹性变形则完全消失。产生了弯曲件的弯曲角度和弯曲半径与模具相应尺寸不一致的现象称为弯曲件的弹性回跳

abaqus计算回弹的方法

Abaqus回弹计算过程 回弹分析我倒是做过两个,说下简要步骤吧,同样是仅供参考啊 1.首先用·explicit做成型过程的分析,加载方式选位移加载比较好,加载的幅值选smooth step(平滑变化) 2.可适当的用质量放大来加快这一准静态分析的过程 3.分析完成后可用standard观察工件的回弹,具体做法是: 1.Model-Copy Model 2.在新复制的模型中仅留下成型件,删除其他一切无关的边界条件以及上下模,包括在Explicit中定义的接触属性 3.在step模块中创建predefine field request-others-initial state-last frame/last step(导入的job名称为之前做成型分析的那个job的名称) 4.删除原来所有的后续分析步,并新建一个static,general的分析步 5.创建一个新的作业提交分析,并观察回弹 大致就是这样吧,希望对你有用! 回弹分析,从explicit导入standard计算。先copy explicit中模型进入standard模块,然后做一下改进,删除各个part、set和surface等,只留下需要回弹分析的变形体。删除分析步,删除接触和属性。然后在step中建立一个static分析步骤。设置计算为非线性。然后定义居于前面成形结果的回弹分析,在Model Tree中打开Predefined Fields,选择Initia 作为分析步,Other最为类别,选择Initial State,然后在视窗中选择需要分析的回弹体,然后点击done,然后Edit Predefined Field,选择你成形分析的job名字。然后一致ok下去,对称的边界哦条件还要施加。 你可以在amplitude中设置,比如说你分析步设置时间为6s,然后在amplitude中设置0,0;4,1(也就是在4秒时冲头应景达到了要求的位移,也就是液晶冲完,那么剩下的2秒就是停留的时间了),然后在另外设置一个分析步把冲头往回移就可以了 小弟这些天正好在做冲压回弹,刚做成功,从simwe论坛上学了很多东西。 在此讲讲小弟个人经验,回报论坛: 1.在原模型中设置restart。 2.将原model,copy另取名字 3.删除不需要的instance(以回弹分析来讲只要留下欲做回弹的instance即可) 4.重设分析步,一般改用静态隐式。(小弟把之前的分析步都删了,新建了分析步) 5.在load 模组中除去无用的边界条件,并添一个固定点或固定线。 6.在predefined field中建立initial state,选择欲做回弹的instace,job name选择原分析之odb档名(不用再加.odb),step及frame一般是选择Last. 7.再执行分析即可. 注:若想观察的是回弹量,可在initial state中勾选update reference configuration即可. 另外,多做几次,不成功的原因有时不是步骤有问题,而是自己忽略了某个小地

回弹计算方法

回弹强度计算方法 1.回弹法测构件强度,一个测区16个点,舍去三个最高点,三个最低点,算出10个点的 平均值,然后根据碳化深度查表得出混凝土强度换算值。如果是全面回弹,每个构件布10个或10个以上测区,采用方差法计算评定;否则按最小值法评定。34,38,40的 数据,碳化如果在1.5左右,勉强达到C30。 3+补充问题:这个透明液体是按1%配比自配的酚酞酒精溶液。酚酞溶液测碳化深度利用的原理就是酸碱反应,酚酞作指示剂(遇碱变红,遇酸无色),二氧化碳扩散到的地方,酚酞溶液滴上去呈无色,未扩散到的地方呈红色(有碱存在)。 修改五回弹仪测定混凝土强度计算《规程JGJ/T23-2001》 根据2001年颁布的《回弹法检测混凝土抗压强度技术规程》 JGJ/T23-2001(J115-2001)代替1992年颁布的《回弹法检测混凝土抗压强度技术规程》JGJ/T23-92,有如下主要修改。 P119页“统一换算表”内容有部分改动(下表中的灰色部分)回弹均测区混凝土平均抗压强度换算值f(Mpa) 平均碳化深度值d平均(mm) 值0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 ≥6 20 10.3 10.1 … 21 11.4 11.2 10.8 10.5 10.0 22 12.5 12.2 11.9 11.5 11.0 10.6 10.2 …

23 13.7 13.4 13.0 12.6 12.1 11.6 11.2 10.8 10.5 10.1 24 14.9 14.6 14.2 13.7 13.1 12.7 12.2 11.8 11.5 11.0 10.7 10.4 10.1 25 16.2 15.9 15.4 14.9 14.3 13.8 13.3 12.8 12.5 12.0 11.7 11.3 10.9 26 17.5 17.2 16.6 16.1 15.4 14.9 14.4 13.8 13.5 13.0 12.6 12.2 11.6 27 18.9 18.5 18.0 17.4 16.6 16.1 15.5 14.8 14.6 14.0 13.6 13.1 12.4 28 20.3 19.7 19.2 18.4 17.6 17.0 16.5 15.8 15.4 14.8 14.4 13.9 13.2 29 21.8 21.1 20.5 19.6 18.7 18.1 17.5 16.8 16.4 15.8 15.4 14.6 13.9 30 23.3 22.6 21.9 21.0 20.0 19.3 18.6 17.9 17.4 16.8 16.4 15.4 14.7 31 24.9 24.2 23.4 22.4 21.4 20.7 19.9 19.2 18.4 17.9 17.4 16.4 15.5 32 26.5 25.7 24.9 23.9 22.8 22.0 21.2 20.4 19.6 19.1 18.4 17.5 16.4 33 28.2 27.4 26.5 25.4 24.3 23.4 22.6 21.7 20.9

回弹计算公式

回弹计算公式 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

强 度计算 回弹值计算 从每一个测区所得的16 个回弹值中,剔除3 个最大值和3个最小值后,将余下的10 个回弹值按下列公式计算平均值: 式中,R m 为测区平均回弹值,精确至;R i 为第i 个测点的回弹值。 回弹值修正 ① 对于回弹仪非水平方向检测混凝土浇筑侧面时,回弹值按下式校正。 R m =R m α+R aα 式中,R m α 为非水平方向检测时测区的平均回弹值,精确至;R aα 为非水平 方向检测时测区的平均回弹值的修正值,按表2 取值。 ② 将回弹仪水平方向检测混凝土浇筑表面时得的回弹值,或相当于水平方向检测混凝土浇筑面时的回弹值,按下式修正: R m =R m t +R a t , R m =R m b +R a b . 式中,R m t ,R m b 为水平方向( 或相当于水平方向)检测混凝土浇筑表面、底 面,测区的平均回弹值,精确至;R a t ,R a b 为混凝土浇筑表面、底面回弹值的修 正值,按表3 取值。 碳化深度计算 对于抽检碳化深度的计算,用数理统计方法计算,以平均值作为测区碳化深度。 测强曲线应用 对于没有可以利用的地区和专用混凝土回弹测强曲线,测区混凝土强度的求取,可以按规范附录中所提供的“ 测区混凝土强度换算表”换算。

异常数据分析 混凝土强度不是定值,它服从正态分布。混凝土强度无损检测属于多次测量的试验,可能会遇到个别误差不合理的可疑数据,应予以剔除。根据统计理论,绝对值越大的误差,出现的概率越小,当划定了超越概率或保证率时,其数据合理范围也相应确定。因此,可以选择一个“ 判定值”去和测量数据比较,超出判定值者则认为包含过失误差而应剔除。 强度推定 按批量检测,其混凝土强度推定值由下式计算: 式中,R m ,m ine 为该批构件中最小的测区混凝土强度换算值的平均值( M Pa),精确至 M Pa。 该批构件混凝土强度推定值取上述公式中( R m 或R 2 )较大值。 对于按批量检测的构件,当该批构件混凝土强度标准差出现下列情况之一时,则该批构件应该全部按单个构件进行检测:① 当该批构件混凝土强度平均值小于25 M Pa 时,S 大于 M Pa。② 当该批构件混凝土强度平均值不小于25 M Pa时,S 大于 M Pa。 当按单个构件计算时以最小值为该构件的混凝土强度推定值: R=R m ,m ine

混凝土回弹强度计算范例

混凝土回弹强度计算范例 简况:回弹楼板混凝土强度,设计强度C25, 测区回弹值为32.4MPa,测得平均碳化值为1.5㎜。 方法:回弹由室内垂直向上回弹。 计算如下: 测区平均值:32.4 MPa (一个测区) 角度修正值(90度):查表为-4.8,插入计算为-4.7 角度修正后:32.4-4.7=27.7 浇筑面修正值:查表为-2.3,插入计算为-2.2 浇筑面修正后:27.7—2.2=25.5,根据碳化值1.5㎜和浇筑修正 值25.4查表,插入计算测区混凝土强度换算值为17.2 MPa。 角度修正值插入计算方法:查表32对应值为-4.8,插入 计算32/x=32.4/-4.8 x=-4.7(精确到0.1) 浇筑修正值插入计算方法:查表27对应值为-2.3,插入 计算27/x=27.7/-2.3 x=2.2 (精确到0.1) 以上两项为反插法计算,即回弹值小修正值大,回弹值大则修正值小。 根据碳化值1.5㎜和浇筑面修正值25.4查表为17.1,插入 计算25.4/17.1=25.5/x x=17.2 (精确到0.1),该项为正插入法计算,即在同一碳化值范围内回弹值越高测区混凝土换算值越大,该项为正值。

混凝土强度的推定 1. 平均值的计算:(以10个测区为例)经修正后的混凝土换算值为22 19.5 27.6 31.5 24 30.4 26 30 25.7 28.1 。平均值=(22+19.5+27.6+31.5+24+30.4+26+30 +25.7+28.1)÷10=26.5 (精确到0.1) 标准差的计算:10个测区换算值平方之和减去10倍平均值的平方除以10-1后再开方。(精确到0.01) {(222 +19.52 +27.62 +31.52 +242 +30.42 +262 +302 +25.72 +28.12 )-10(26.5)2 }÷(10-1)=(7144.52-7022.5)÷9=13.58 13.58开方=3.69 混凝土强度的推定值为:26.5-1.645×3.69=20.4MPa 混凝土强度的推定值应按下列方法确定: 1.推定值=构件中最小的测区混凝土强度换算值; 2.当该结构或构件的测区强度值中出现小于10.0MPa 时,推定值﹤10.0MPa; 3.当该结构或构件的测区数不少于10个或按批量检测时,应按下列公式计算:推定值=平均值-1.645×标准差

结构回弹方法及计算流程

结构回弹方法及计算流程,终于讲清楚! 回弹法检测混凝土抗压强度的基本原理:混凝土表面硬度与混凝土极限强度存在一定关系,回弹仪的弹击重锤被一定弹力打击在混凝土表面上,其回弹高度和混凝土表面硬度存在一定关系。这样可以利用回弹仪测试混凝土表面硬度,并结合混凝土碳化深度从而间接测定混凝土强度。 然而,这种检测方式得到的结果精度较低。不适用于表面和内容有明显质量差异的构件,结果受混凝土自身原材料、施工工艺、养护条件等众多因素影响较大。 但不可否认的是,回弹法用于检测混凝土的抗压强度已在我国得到了广泛的应用,实践证明,采用回弹法推定的混凝土抗压强值,对于处理工程质量问题具有十分重要的意义。 回弹检测方法 一、回弹仪检定 回弹仪检定周期为半年,当回弹仪具有下列情况之一时,应由法定计量检定机构按行业标准《回弹仪》JJG817进行检定: 1、新回弹仪启用前; 2、超过检定有效期限; 3、数字式回弹仪数字显示的回弹值与指针直读示值相差大于1; 4、经保养后,钢砧率定值不合格; 5、遭受严重撞击或其他损害。 注意还有保养要求,具体详规范! 回弹仪率定试验

二、抽检构件数量 按批进行检测的构件,抽检数量不宜少于同批构件总数的30%且构件数量不宜少于10件。当检验批构件数量大于30个时,抽样构件数量可适当调整,但不得少于国家现行有关标准规定的最少抽样数量 三、测区布置要求 1、对于一般构件,测区数不宜少于10个。

可适当减少测区数,但不得少于5个的情况: 受检构件数量大于30个且不需提供单个构件推定强度;受剪构件某一方向尺寸小 于4.5m 且另一方向尺寸小于 0.3m 的构件; 2、相邻两测区的间距不应大于2m,测区离构件端部或施工缝边缘的距离不宜大 于0.5m ,且不宜小于0.2m; 3、测区应选在使回弹仪处于水平方向的混凝土浇筑侧面。当不能满足这一要求时,也可使回弹仪处于非水平方向的混凝土浇筑表面或底面; 4、测区宜选在构件的两个对称可测面上,当不能布置在对称的可测面上时,也可 布置在同一可测面上,且应均匀分布。在构件的重要部位及薄弱部位必须布置测区,并应避开预埋件; 5、测区的面积不宜大于0.04平方米; 6、测区表面应为混凝土原浆面,并应清洁、平整,不应有疏松层、浮浆、油垢、涂 层以及蜂窝、麻面; 7、对弹击时产生颤动的薄壁、小型构件应进行固定; 8、测区应标有清晰的编号,并宜在记录纸上绘制测区布置示意图和描述外观质量 情况。 四、回弹值及碳化深度测量

相关文档
最新文档