金属铝在锂离子电池负极材料方面的初探讲诉

金属铝在锂离子电池负极材料方面的初探讲诉
金属铝在锂离子电池负极材料方面的初探讲诉

铝在锂离子电池负极材料方面的初探

**********作者

(西北师范大学化学化工学院,甘肃兰州,730070)

摘要:本文总结了铝在锂离子电池负极材料方面的研究现状。介绍了锂离

子电池用铝基复合材料的电化学性能及其研究进展。进一步探究展望铝在锂离子

电池负极材料方面的前景。

关键词:金属铝;锂离子电池负极材料;电化学性能;

Nanometer alumina in lithium battery anode material

***************作者

( College of Chemistry and Chemical Engineering, Northwest Normal University, LanZhou 730070, China)

Abstract:This paper summarizes the aluminum anode materials for lithium ion batte

ry current status of research. Introduction of lithium-ion battery electrochemical prope rties of aluminum matrix composites and its research progress. Looking further explor

e the aluminum anode material for lithium ion battery's prospects.

Key words:Metal aluminum; Lithium ion battery cathode material; The electrochemical properties;

1.前言

锂离子电池具有开路电压高、循环寿命长、能量密度大和无记忆效应等特点,

被广泛应用于移动电话、笔记本电脑和其他便携式电器中,给人们的生活带来了

便利。正因为其独特的优点,锂离子电池在未来依然是研究以及商业化的重要选择,其市场需求将不断的扩大,市场地位也将进一步提高。锂离子电池负极材料

经历了由金属锂到锂合金、碳材料、氧化物再到纳米合金的演变过程[5]。商业

电池中的负极材料碳,其理论容量(LiC6,372 mAh/g)[6],已无法满足高容量锂电

池的需求,需要开发新极材料以满足对高容量及大规模商业化的需求。因此要实

现锂离子电池高比能量化,必须研究开发高容量的负极材料。Li在室温下能与多

种金属形成合金,研究较多的是Sn、Si和Al,其理论容量分别为994 mAh/g(Li4.4Sn)[7]、4200 mAh/g(Li4.4Si)和2234 mAh/g(Al4Li9)[8],其中,以金属Al 及其合金作为负极材料已有少量报道[9-14]。从Al-Li二元相图可知,Al与Li可以得到AlLi、Al2Li3和Al4Li93种合金,即使得到的是AlLi,其理论容量也可达到993 mAh/g。铝又是地球上含量非常丰富的金属元素,是世界上产量最大,应用最广的有色金属,因此金属铝作为锂离子电池的负极材料具有良好的应用前景。2.铝在锂离子电池负极材料中的应用现状总结

铝因其首周放电容量为430 mAh/g[1],体现出优良的嵌锂性能,且电化学当量很高,为2234 mAh/g, 电极电位负,为除锂金属之外质量比能量最高的金属。并且在新型负极材料的研究当中,金属Al可与Li形成3种不同的金属间化合物AlLi、Al2Li3、Al4Li9。采用金属Al作为锂离子电池负极材料,形成Al4Li9时的理论容量可达2234 mAh/g,远远高于目前商业化的石墨基负极材料(理论比容量为372 mAh/g),即使是形成AlLi时的理论容量也达到993 mAh/g,与Sn基负极材料的理论容量相当;而且其嵌锂电位在0.2V vs. Li+/Li左右,能够有效地避免锂枝晶的出现,提高了安全性能,并且Al的嵌脱锂过程具有平坦的电化学反应平台,能提供非常稳定的工作电压。因此具有成为新型高容量锂离子电池负极材料的潜力。从国内外的研究现状来看,Machill等[2-3]为改善AI电极的循环性能,研究在Al电极中添加一些溶于Al的或者可以和Al形成金属间化合物的金属元素,例如Ni、Cu、Mg等,以改善Li在嵌入负极过程中的扩散速度,从而提高A1电极的循环性能。虽然在Al电极中添加其它的金属元素会导致其比容量和能量密度的减少,但由此带来的循环性能的提高却可以弥补此不足。由此,铝在锂离子电池负极材料的研究领域引起了广泛关注,并取得了很大进步。研究主要集中在Al基合金材料,铝的复合物及其合金上。

2.1 Al基复合材料

铝基负极材料在作为锂离子电池负极材料方面限制其应用的最主要问题是在嵌锂时铝负极会产生巨大的体积膨胀[4],而导致电极发生破裂和粉化。陈等[1]采用高能球磨的合成工艺合成了Al/CaCO3/C三元复合材料,并对其结构和其作为锂离子电池负极材料时的电化学性能进行了表征。他们将金属Al和

Al/CaCO3/C复合材料以100 mA/g电流密度在0-1.5 V范围内进行恒流充放电测试,结果表明:⑴经高能球磨合成工艺后Al的特征峰依然存在,但强度有明显的减弱并出现宽化现象,说明经高能球磨合成工艺后,复合材料中Al的结晶尺寸相对纯金属Al有了较显著的减小;⑵复合材料的首次放电容量为572mAh/g,高于单独金属Al的430 mAh/g,体现出优良的嵌锂性能;⑶复合材料的首周效率为62%,远高于单独金属Al的39%,材料经20周循环后仍然保持有228 mAh/g 的嵌锂容量。研究表明形成复合物能有效减小金属Al的晶格尺寸并抑制Al负极充放电过程中的体积变化,显著地改善Al负极的电化学性能,也就是限制金属铝在嵌锂时铝负极产生的巨大体积膨胀现象。而赵等[15]采用直流电弧等离子体气相蒸发法制备了Al纳米粒子,并对其结构和其作为锂离子电池负极材料时的电化学性能进行了表征。比较研究了Al电极在不同电流密度下的循环寿命,结果发现:随着电流密度的升高首次放电容量逐渐降低,且几次循环后电流密度较大的条件下Al纳米粒子的循环稳定性要略好,这主要归因于Al粒子在嵌锂时的粉碎,也是限制Al在锂离子电池负极材料中应用的主要原因。电流密度越小反应相对较充分,体积膨胀就越严重,久之也就降低电池的容量,影响其循环性能。对Al负极材料首次放电后进行XRD图析得出:首次充放电后的粒子为包含Al、AlLi和Al2Li3的多相结构;粉体中依然存在很多的纯Al,说明制备出的Al基纳米复合电极的导电能力不足以使所有的Al活性物质发挥其储锂作用,有一部分Al活性物质没有参与到嵌锂过程中,即没有充分发挥电极中活性物质的潜能。在之后的研究中,通过适当提高导电剂、黏结剂在电极中所占比例,避免部分Al活性物质的浪费,从而可提高纳米Al在锂离子电池负极中的导电能力,获得更高的比容量。

2.2铝基合金材料

一系列的研究表明, 一些单质虽显示了比较高的理论比容量,例如Si、Sn、Al等单一与锂形成合金时,体积膨胀很大,循环性能不理想, 所以一般采用两种金属或多种金属作为锂嵌入的电极基体。并且两种金属或多种金属的平衡态合金负极材料由于具有石墨负极材料无法比拟的理论嵌锂容量,而受到了人们的广泛关注和研究[17-19]。但合金负极材料与石墨相比循环性能差,因此,目前合金负极材料的研究主要集中于利用各种制备手段和设计新的合金体系提高循环性能

方面,Si、Sn、Al与惰性元素的合金便被尝试用作电极极材料[21?24],通过增加一些惰性部件可显著提升比容量,也可缓解在充放电过程中的体积变化。

一些通过球磨法,电镀法,磁控溅射法和熔体纺丝法 [8?11]来制备具有特殊结构的电极材料能够提高循环性能,将过度金属与Al三者形成合金负极材料在锂离子电池中具有优良的嵌锂性能、高容量及循环性能。例如,宋咸雷等[16]采用熔体快淬法制备了化学组成为Al80-x Si20Mn x(x=0.5%、7%、10%(摩尔分数))的锂离子电池合金负极材料。分析了合金的相组成、热力学状态、微观组织和与锂离子电池相关的电化学性能。结果表明:在含20%~40% Si、5%~10%Mn的熔体快淬Al基合金中,锂主要储存在过饱和固溶体中,晶界和相界对储锂有重要贡献;合金的循环性能与Al基过饱和固溶体的成分有关,第三组元Mn的加入提高固溶体的过饱和度,并通过影响Li原子的嵌入与脱出,从而改善循环性能。对于熔体快淬Al70Si20Mn10合金,结构趋向于非晶,但Mn含量很高,充锂量很低,这个效应是由于结构引起的还是成分效应引起的还有待进一步研究。并且经过一定周次的电化学循环后,电池极片存在粉末脱落现象,严重时粘接剂和粉末成片脱落,导致容量衰减甚至循环停止。对于这个问题和纳米Al在作为锂离子电池负极材料方面的主要问题一样均需在粘接材料或极片制作技术上加以改进。并且,铝在作为锂离子电池负极材料的应用过程中,部分单体便会与电解液进行反应,使电池的循环寿命降低。针对这一问题,马等[20]研制一种用于碱性电池的高电化学活性的新型铝合金负极材料。具体是用熔铸法和压力加工技术将铝合金制成薄板,用电化学方法测试了材料的电化学性能,用排水法测试了材料静态浸泡腐蚀的析氢速率。结果表明:研制的新型铝合金负极材料⑴由于低熔点合金化元素均匀弥散,一部分固熔在Al的晶粒内,一部分分布在晶界处,导致Al 晶格破坏, 从而使Al负极在发生电化学反应时, 其表面不能生成连续的钝化膜;⑵低熔点的合金化元素随Al负极的电化学反应而溶解, 促使Al负极腐蚀产物的脱落, 使得新鲜的活性Al负极表面不断与电解质发生反应, 减弱了Al负极电阻极化, 同时使得Al负极表面的金属离子迅速脱离其表面迁移入溶液, 减弱了Al负极的电化学极化;⑶溶解脱落的合金化元素具有低熔点、高氢超电位,再次沉积到铝合金负极的表面, 从而始终使铝合金处于高活性表面状态。从马的研究我们可以知道,可以利用金属Al来研制开发高能量密度的铝合金电池。

3.铝在各种电极材料中的主要问题及目前的解决办法

目前铝在电池负极材料方面应用的文献报道越来越多,制备工艺也多种多样, 但绝大部分负极材料都存在着三个主要的问题:一是电池容量低;二是循环性能不理想;三没有充分发挥电极中活性物质的潜能。这也是衡量电极材料性能的三个重要指标, 不解决这三个问题就无法实现金属Al在锂离子电池负极材料中的实用化。

铝在负极材料循环性能不理想的原因比较复杂, 从文献中看目前重要有以下几个方面:一是由于铝极其容易被氧化,这就意味着Al在与Li发生反应前,必须要冲破表面氧化铝的阻碍,在Li与Al反应的过程中Al粒子就会发生膨胀,进而导致氧化铝薄膜的破碎,此时,更多的铝才会裸露出来与更多的Li反应,从而维持正常的电压回升,在此过程中就导致电极发生了破裂和粉化;二是电极材料中的铝在电池充放电的循环过程中被电解液不断腐蚀,造成不必要的浪费,使Al没有充分发挥其在电池材料中应该展现的作用;三是制备出的Al基纳米复合电极的导电能力不足以使所有的Al活性物质发挥其储锂作用,导致粉体中依然存在很多的纯Al不能参与到嵌锂过程中,即没有充分发挥电极中活性物质的潜能。有研究显示Si、Sn、Al与惰性元素的合金便被尝试用作电极极材料[21-24],通过增加一些惰性部件可显著提升比容量,从而来提高合金电极材料体系的循环性能,也可缓解在充放电过程中的体积变化。对于Al电极的破裂与粉化导致的不能充分发挥电极火星物质的潜能,我们还仍需在粘接材料或极片制作技术上加以改进。在电池容量方面,其大小也与电流密度存在一定关系,电流密度越小时反应相对较充分,但体积膨胀就越严,所以电流密度越小,其首次放电容量越大,首次容量损失也越大;多次循环后,则电流密度较大的电池由于体积膨胀小点,电极粉碎的也少,循环稳定性就要好些。过渡金属元素和锂有很大的容量,我们也可通过一些合成工艺过程将过度元素与电极材料制备成合金来改善比容量。4.铝在锂离子电池负极材料方面的研究前景

铝作为在锂离子电池负极材料一种很有潜力的锂离子电池负极材料, 也成为锂离子电池负极材料研究的热点之一,在近几年中取已经有了初步的研究。从目前铝在锂离子电池负极材料方面的研究现状,并综合近几年的文献报道,我们

自己可以得出经过一定周次的电化学循环后,电池极片存在粉末脱落现象,严重时粘接剂和粉末成片脱落,导致容量衰减甚至循环停止。对于这个问题还需在粘接材料或极片制作技术上加以改进。并且有作者表明,当Mn、Li溶于fcc -Al 中时会对Li的扩散产生明显影响。当fcc -Al的过饱和度不高时,Li的嵌入和脱出可逆性不佳,表现不出良好的循环性能。对于熔体快淬Al70Si20Mn10合金,结构趋向于非晶,但Mn含量很高,充锂量很低。由于任何合金都无法比拟到石墨烯的理论嵌锂容量,并且合金负极材料与石墨相比循环性能差,所以我们有望将这些合金材料与石墨烯进行复合来获得更高的比容量,发展电化学性能更好的锂离子电池负极材料,为锂离子发展更好的应用前景。

参考文献

[1] 陈重学,王小梅, 曹余良,艾新平,杨汉西. 锂离子电池 Al 基负极材料的

研究,第十五届全国电化学会议-锂电专场论文集

[2]Machill S,Rahner D.Studies of Al-Al3Ni eutectic mixtures as insertion anodes

in rechargeable lithium batteries[J].Journal of Power Sources,1997,68(2): 506-509.

[3] Machill S, Rahner D. in situ electrochemical characterization of

lithium-alloying materials for rechargeable anodes in lithium batteries[J].Journal of Power Sources,1995,54(2): 428-432.

[4] Besenhard J O, Yang J, Winter M. Will advanced lithium-alloy anodes have a

chance in lithium-ion batteries?[J]. Journal of Power Sources, 1997, 68(1): 87-90.

[5] 付文莉. 锂离子电池电极材料的研究进展[J]. 电源技术,2009,133(9):

822-824.

[6] Kganyago K R, Ngoepe P E, Catlow C R A. Ab initio calculation of the voltage

profile for LiC6 [J]. Solid State lonics, 2003, 159(1): 21-23.

[7] Noriyuki T, Ryuji O, Masahisa F. Study on the anode behavior of Sn and Sn-Cu

alloy thin-film electrodes [J]. Journal of Power Sources, 2002, 107 (1): 48-55.

[8] Hatchard T D, Dahn J R. Study of the electrochemical performance of sputtered

Si1-x Sn x films[J]. Journal of the Electrochemical Society, 2004, 151(10):

A1628-A1635.

[9] Hamon Y, Brousse T, Jousse F. Aluminum negative electrode in lithium ion

batteries[J]. Journal of Power Sources, 2001, 97-98: 185-187.

[10] Lei X F, Wang C W, Yi Z H. Effects of particle size on the electrochemical

properties of aluminum powders as anode materials for lithium ion batteries [J]. Journal of Alloys and Compounds, 2007, 429(1-2): 311-315.

[11] Wang Z Y, Li Y, Lee J Y. Characterizations of Al-Y thin film composite anode

materials for lithium-ion batteries[J]. Electrochemistry Communications, 2009, 11(6): 1179-1182.

[12] Hu R Z, Zeng M Q, et al. Microstructure and electrochemical performance of

thin film anodes for lithium ion batteries in immiscible Al–Sn system[J].

Journal of Power Sources, 2009, 188(1): 268-273.

[13] Fleischauer M D, Obrovac M N, Dahn J R. Al-Si Thin-Film Negative

Electrodes for Li-Ion Batteries[J]. Journal of the Electrochemical Society, 2008, 155(11): A851-A854.

[14] Lei X F, Ma J X. Synthesis and Electrochemical Performance of Aluminum

Based Composites[J]. Journal of the Brazilian Chemical Society, 2010, 21(2): 209-213.

[15] 赵亚楠,薛方红,黄昊,刘春静,甘小荣,董星龙. 铝纳米复合电极脱/

嵌锂离子特性分析[J].中国科技论文在线,2011, 6(9): 688-691.

[16] 宋咸雷, 梁普, 孙占波, 宋晓平, 王小东. 熔体快淬Al80-x Si20Mn x锂离

子电池负极材料的电化学性能[J].功能材料,2011, 42(6): 1008-1011. [17] Hatchard T D, Obrovac M N, Dahn J R. Electrochemical Reaction of the Si1-x

Zn x Binary System with Li[J]. Journal of the Electrochemical Society, 2005, 152(12): A2335?A2344.

[18] Bonakdarpour A, Hewitt K C, Turner R L. Electrochemical and In Situ XRD

Studies of the Li Reaction with Combinatorially Sputtered Mo1-x Sn x?( 0 ≤ x ≤

0.50 )Thin Films[J]. Journal of the Electrochemical Society, 2004, 151(3):

A470?A483.

[19] Suresh P, Shukla A K, Shivashankar S A,Munichandraiah N. Electrochemical

behaviour of aluminium in non-aqueous electrolytes over a wide potential range[J]. Journal of Power Sources. 2002, 110(1): 11-18.

[20] 马正青, 曾苏民, 黎文献. 高活性铝合金负极材料的电化学性能研究[J].

表面技术, 2005, 34(1): 25-33.

[21] Hou X H, Yu H W, Hu S J. Prep aration and properties of Sn?Al thin-film

electrode material for lithium ion batteries[J].Acta Physica Sinica, 2010, 59(11): 8226?8230.

[22] Huang K L, Zhang G, Liu S Q. Effect of graphite content on electrochemical

performance of Sn?SnSb/graphite composite powders[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(4): 841?845.

[23] Park C M, Sohn H J. Electrochemical characteristics of TiSb2 and Sb/TiC/C

nanocomposites as anodes for rechargeable Li-ion batteries[J]. Journal of the Electrochemical Society, 2010, 157(1): 46?49.

[24] Park S E, Kim B E, Lee S W, Lee J K. Employment of encapsulated Si with

mesoporous TiO2layer as anode material for lithium secondary batteries[J].

Transactions of Nonferrous Metals Society of China, 2009, 19(4): 1023?1026.

硅负极材料在锂离子电池中的应用

新型硅负极材料在锂离子电池中的应用研究 吴孟涛 天津巴莫科技股份有限公司 当今社会便携式可移动电子设备的高速发展极大的刺激了市场对重量轻体积小容量和能量密度更高的锂离子电池的需求。目前商业化锂离子电池都是以碳基材料作为负极的,但由于石墨负极的可逆容量只有372mAh/g (LiC6),严重限制了未来锂离子电池的发展,所以研发下一代锂离子电池负极材料成为新的热点。人们发现在Li22Si5中硅的恒流理论容量达到了4200mAh/g,是极具开发潜力的锂离子负极材料。但这种材料的缺点也很突出:在嵌锂和脱锂过程中材料体积会发生膨胀,微观结构发生改变而导致在嵌锂脱嵌过程中电极的断裂和损耗[1]。虽然不少文献提出了很多改进方法但由于制备出的硅薄膜材料厚度较薄,不适宜商业化生产。为了使硅负极可以应用于实际生产,我公司以无定形硅薄膜溅射在铜箔上成功制备出了厚度大于1μ的硅薄膜负极材料并与市场上的LiCoO2制成电池进行了一系列循环和倍率性能测试。 1 实验: 硅薄膜是以物理溅射的方法在表面粗糙的铜箔上的[2]。表面形貌分析应用的是HRTEM(FEI Tecnai20).制备出的硅薄膜材料在80℃下真空干燥24h,与市场上销售的LiCoO2在手套箱中组成2025扣式全电池。电解液为1M LiPF6/EC+DMC(体积比1:1);隔膜使用的是Celgard-2300。所有倍率试验和循环性能试验都是在电脑控制的25±1℃恒温系统中进行的。 2结果与讨论: 图1是循环前硅薄膜材料的HRTEM图和SAED图,从图中可以清楚看出涂在铜箔上的硅薄膜是无定形状态的。 图1 硅薄膜材料的HRTEM图和SAED图

锂电池负极材料大体分为以下几种

锂电池负极材料大体分为以下几种: 第一种是碳负极材料: 目前已经实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。 第二种是锡基负极材料: 锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。目前没有商业化产品。 第三种是含锂过渡金属氮化物负极材料,目前也没有商业化产品。 第四种是合金类负极材料: 包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金,目前也没有商业化产品。 第五种是纳米级负极材料:纳米碳管、纳米合金材料。 第六种纳米材料是纳米氧化物材料:目前合肥翔正化学科技有限公司根据2009年锂电池新能源行业的市场发展最新动向,诸多公司已经开始使用纳米氧化钛和纳米氧化硅添加在以前传统的石墨,锡氧化物,纳米碳管里面,极大的提高锂电池的冲放电量和充放电次数。 锂金属电池 锂-二氧化锰电池是一种以锂为阳极(负极)、以二氧化锰为阴极(正极),并采用有机电解液的一次性电池。该电池的主要特点是电池电压高,额定电压为3V(是一般碱性电池的2倍);终止放电电压为2V;比能量大(金属锂的理论克容量为3074mAh);放电电压稳定可靠;有较好的储存性能(储存时间3年以上)、自放电率低(年自放电率≤10%);工作温度范围-20℃~+60℃。 该电池可以做成不同的外形以满足不同要求,它有长方形、圆柱形及纽扣形(扣式)。 锂离子电池 可充电锂离子电池是目前手机、笔记本电脑等现代数码产品中应用最广泛的电池,但它较为“娇气”,在使用中不可过充、过放(会损坏电池或使之报废)。因此,在电池上有保护元器件或保护电路以防止昂贵的电池损坏。锂离子电池充电要求很高,要保证终止电压精度在±1%之内,目前各大半导体器件厂已开发出多种锂离子电池充电的IC,以保证安全、可靠、快速地充电。 现在手机已十分普遍,基本上都是使用锂离子电池。正确地使用锂离子电池对延长电池寿命是十分重要的。它根据不同的电子产品的要求可以做成扁平长方形、圆柱形、长方形及扣式,并且有由几个电池串联并联在一起组成的电池组。锂离子电池的额定电压,因为近年材料的变化,一般为3.7V,磷酸铁锂(以下称磷铁)正极的则为3.2V。充满电时的终止充电电压一般是4.2V,磷铁3.65V。锂离子电池的终止放电电压为2.75V~3.0V(电池厂给出工作电压范围或给出终止放电电压,各参数略有不同,一般为3.0V,磷铁为2.5V)。低于2.5V(磷铁2.0V)继续放电称为过放,过放对电池会有损害。

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展 摘要:随着时代的进步,能源与人类社会的生存和发展密切相关,持续发展是全人类的、共同愿望与奋斗目标。矿物能源会很快枯竭,解决日益短缺的能源问题和日益严重的环境污染是对国家经济和安全的挑战也是对科学技术界地挑战。电池行业作为新能源领域的重要组成部分,已经成为全球经济发展的一个新热点本文阐述了锂离子负极材料的基本特性,综述了碳类材料、硅类材料以及这两种材料形成的复合材料作为锂离子电池负极材料的研究及开发应用现状。 关键词:锂离子电池负极材料碳/硅复合材料 引言:电极是电池的核心,由活性物质和导电骨架组成正负极活性物质是产生电能的源泉,是决定电池基本特性的重要组成部分。本文就锂离子电池的负极材料进行研究。锂离子电池是目前世界上最为理想的可充电电池。它不仅具有能量密度大、无记忆效应、循环寿命长等特点,而且污染小,符合环保要求。随着技术的进步,锂离子电池将广泛应用于电动汽车、航空航天、生物医学工程等领域,因此,研究与开发动力用锂离子电池及其相关材料有重大意义。对于动力用锂离子电池而言,关键是提高功率密度和能量密度,而功率密度和能量密度提高的根本是电极材料,特别是负极材料的改善。 1、锂离子负极材料的基本特性 锂离子电池负极材料对锂离子电池性能的提高起着至关重要的作用。锂离子电池负极材料应具备以下几个条件: (1) 应为层状或隧道结构,以利于锂离子的脱嵌且在锂离子嵌入和脱出时无结构上的变化,以使电极具有良好的充放电可逆性和循环寿命; (2) 锂离子在其中应尽可能多的嵌入和脱出,以使电极具有较高的可逆容量。在锂离子的脱嵌过程中,电池有较平稳的充放电电压; (3) 首次不可逆放电比容量较小; (4) 安全性能好; (5) 与电解质溶剂相容性好; (6) 资源丰富、价格低廉; (7) 安全、不会污染环境。 现有的负极材料很难同时满足上述要求。因此,研究和开发新的电化学性能更好的负极材料成为锂离子电池研究领域的热门课题。 2、选材要求 一般来说,锂离子电池负极材料的选择主要要遵循以下原则:1、插锂时的氧化还原电位应尽可能低,接近金属锂的电位,从而使电池的输出电压高;2、锂能够尽可能多地在主体材料中可逆的脱嵌,比容量值大;3、在锂的脱嵌过程中,主体结构没有或很少发生变化,以确保好的循环性能;4、氧化还原电位随插锂数目的变化应尽可能的少,这样电池的电压不会发生显著变化,可以保持较平稳的充放电:5、插入化合物应有较好的电子电导率和离子电导率,这样可以减少极化并能进行大电池充放电;6、具有良好的表面结构,能够与液体电解质形成良好的固体电解质界面膜;7、锂离子在主体材料有较大的扩散系数,便于快速的充放电;8、价格便宜,资源丰富对环境无污染 3、负极材料的主要类型用作锂离子电池负极材料的种类繁多,根据主体相

锂离子电池碳负极材料研究进展

锂离子电池碳负极材料的研究进展 赵永胜 (河北工业大学化工学院应用化学系,天津 300130) 摘要综述了锂离子电池碳负极材料中石墨化碳、无定形碳和碳纳米材料近几年的研究成果及发展方向,探讨了该类材料目前存在的问题及解决办法,对该类材料的发展趋势进行了展望。 关键词锂离子电池负极材料碳材料 Research progress of carbon anode materials for lithium ion batteries Zhao Yongsheng (Department of Applied Chemistry,School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130)Abstract:The research achievements on three main aspects in the field of lithium ion battery carbon anode materials in recent years. Graphitized carbon,amorphous carbon,carbon nano-materials are summarized. The problems in these materials and the feasible methods to solve the problems are discussed. Finally, the developing trend of lithium ion battery carbon anode materials is prospected. Keywords:Lithium ion batteries;anode materials;carbon materials 自1991年日本索尼公司开发成功以碳材料为负极的锂离子电池(LixC6/LiX In PC-EC(1:1)/Li1-x CoO2)以来(LiX为锂盐),锂离子电池已迅速向产业化发展,并在移动电话、摄像机、笔记本电脑、便携式电器上大量应用[1]。自锂离子电池的商品化以来,研究的负极材料有以下几种:石墨化碳材料、无定向碳材料、氮化物、硅基材料、锡基材料、新型合金[2]。本文着重对锂离子电池碳负极材料方面的研究进展进行评述。 1.碳基负极材料的分类 炭素材料的种类繁多,其结晶形式有金刚石、石墨、富勒烯、碳纳米管等,

锂离子电池的组成部分之负极(非常详细)

锂离子电池的组成部分之负极(非常详细) 2、负极(1) 此主题相关图片如下: 2、负极(2) 在负极材料部分,锂电池的负极材料主要是: A、石墨系碳(graphite) a、天然石墨 b、人工石墨 c、类石墨(如 MCMB , Meso Carbon Micro Beads) B、非石墨碳材(如焦碳系,coke) 由于石墨系的重量能量密度较高且材料本身的结构具有较高的规则性,所以第一次放电的不可逆电容量会较低,另外石墨系负极材料具有平稳工作电压作用,对电子产品的使用和充电器的设计较具优势。而另一种类的焦炭系与碳黑系﹝carbon black﹞的负极材料在第一次充放电反应的不可逆电容量很高,但是此材料可以在较高的C- rate下作充放电,另外此材料的放电曲线较斜,有利于使用电压来监控电池容量的消耗。 负极(3) 石墨为层状结构,由碳网平面沿C轴堆积而成,层间距为3.36A。平面碳层由碳原子呈六角形排列并向二维方向延伸,碳层间以弱的范德华力结合,锂嵌在碳层之间 石墨的实际比容量为320—340mAh/g。平均嵌锂电位约为0.1V(VS Li+/Li),第一周充放电效率约为8 2—84%,循环性能好,且价格低廉(<10元/Kg)。 A、石墨类的制备 ①中间相碳微球(Mesophase Carbon Micro Beads, MCMB)是用煤焦油沥青、石油重质油等在350—5

00℃温度下加热并经分离、洗涤、干燥和分级等过程制得的平均粒径6-10微米的碳微球,然后于28000C 下进行石墨化热处理制得的碳材料。其外形呈球形,晶体结构同石墨基本一致。 MCMB的实际比容量约为310—330mAh/g,平均嵌锂电位约为0.15V(VS Li+/Li),第一周充放电效率约为88%—90%,循环性及大电流性能好,是目前为止最为理想的负极材料,但价格昂贵(约300元/Kg) 负极(4) A、石墨类的制备 ②气相成长碳纤(Vapor-Grown Carbon Fiber, VGCF) 以碳氢化合物经化学蒸镀(CVD)反应,再用不同温度经热处理而成 负极(5) B、非石墨类的制备 ①可石墨化碳类 ---- 软碳主要为焦碳﹝Coke﹞类,可由沥青或煤渣而来 2、负极(6) B、非石墨类的制备 ②不可石墨化类 ---- 硬碳(最具发展潜力) 硬碳不易石墨化。是一种与石墨不同的近似非晶结构的碳材料,晶体尺寸较小,通常在几个纳米以下,呈无规则排列,有细微空隙存在,是利用高分子先驱物(polymer precursor),在不同温度下经热解所形成的无次序碳材而得到。其主要特点:嵌锂容量高,一般可达600mAh/g以上。问题: A、第一周充放电效率低,一般不超过60% B、循环性能差 此主题相关图片如下: 负极(7)-锡基金属间化合物及复合物、锡基复合氧化物 Sn与Li能可逆地形成组成为Li4.4Sn的合金,七十年代开始就引起了人们的广泛关注。由于Sn贮锂—脱锂过程体积膨胀超过200%,极易引起电极粉化,导致循环性能迅速衰减。如何稳定材料结构,防止电极 粉化是一直以来研究的重点。 近年来,人们发现将Sn均匀的分布在对锂惰性的金属或化合物、复合物中,可较好地缓冲电极的膨胀, 抑制电极粉化问题,从而获得比较好的循环性能。

锂电池负极材料的研究进展

锂离子电池负极材料研究进展介绍 来源:中国燃料电池网时间:2015-09-08 09:11 编辑:周奕 我国能源生产量和消费量均已居世界前列,但在能源供给和利用形式上存在着一系列突出问题,如能源结构不合理、能源利用效率不高、可再生能源开发利用比例低、能源利用安全水平有待进一步提高。总体上讲,我国能源工业大而不强,与发达国家相比,在技术创新能力方面还存在较大差距。因此,提高能源利用效率,调整能源结构,开发和利用可再生能源将是我国能源发展的必然选择。为了解决我国能源工业所面临的难题,寻求替代传统化石燃料的可再生绿色能源显得尤为迫切。与此同时,随着人们环保意识的日益增强和对资源利用率的关注,可充电电池逐渐成为研究的焦点,而锂原电池的成功应用大大推动了锂离子电池的研究和发展,使锂离子电池成为关注的重点。 1锂离子电池发展状况 锂电池最早出现于1958年,20世纪70年代开始进入实用化[2]。由于具有重量轻、体积小、安全性好、工作电压高、能量密度高、使用寿命长等优点成为近年来最受关注的储能器件之一。随着世界全面步入信息时代,电子化和信息化己经成为各个领域的共同发展趋势,锂离子电池也被越来越多地应用于多个方面。医疗上,锂离子电池可以为心脏起搏器、助听器等设备供能,对于病人更安全、更便捷;交通上,锂离子电池己经被广泛应用于电动单车、电动汽车上;军事上,锂离子电池可为电磁武器充能,为小型定位系统供能,甚至作为潜艇等大型作战设备的备用动力源;航天上,锂离子电池可作为航天器及各种仪器设备的电力补充单元。 电池按工作性质可以分为一次电池和二次电池[3]。一次电池是指不可循环使用的电池,如碱锰电池、锌锰电池等。二次电池指可以多次充放电、循环使用的电池,如先

动力锂离子电池及其负极材料的现状和发展

动力锂离子电池及其负极材料的现状和发展 2010-11-10 14:45:06 中国石墨碳素网 文/苗艳丽杨红强岳敏 天津市贝特瑞新能源材料有限责任公司 随着汽车行业的发展,石油、天然气等不可再生石化燃料的耗竭日益受到关注,空气污染和室温效应也成为全球性的问题。为解决能源问题、实现低碳经济,基于目前能源技术的发展水平,电动汽车技术逐渐成为全球经济发展的重点方向,美国、日本、德国、中国等国家相继限制燃油车使用,大力发展电动车。作为电动汽车的核心部件——动力电池也迎来了大好的发展机遇。动力电池是指应用于电动车的电池,包括锂离子电池、铅酸电池、燃料电池等,其中,锂离子电池因具有比能量高、比功率大、自放电少、使用寿命长及安全性好等特性,成为目前各国发展的重点。 国外政府及企业在动力锂离子电池研发上均做出了很大的努力。我国的锂离子电池产业起步虽较晚,但发展速度非常快,同时,政府给予了大力的支持。“十一五”期间,“863”电动汽车重大专项对混合动力(HEV)、外接充电式混合动力(PHEV)用锂离子电池关键材料和电池进行了专门的研究。 与锂离子电池其他部件相比,锂离子电池负极材料的发展较为成熟。在商业应用中,石墨类碳材料技术较为成熟,市场价格也比较稳定,但随着锂离子动力电池对能量密度、功率密度、安全等性能的要求不断提升,硬碳、钛酸锂(Li4Ti5O12)、合金等其他材料也相继成为研究热门。 一、动力锂离子电池负极材料简介 1.动力锂离子电池负极材料特性 锂离子电池由正极、负极、电解液、隔膜和其他附属材料组成。锂离子电池负极材料要求具备以下的特点:①尽可能低的电极电位;②离子在负极固态结构中有较高的扩散率;③高度的脱嵌可逆性;④良好的电导率及热力学稳定性;⑤安全性能好;⑥与电解质溶剂相容性好;⑦资源丰富、价格低廉;⑧安全、无污染。 2.动力锂离子电池负极材料主要类型 早期人们曾用金属锂作为负极材料,但由于存在安全问题没有大规模商业应用。目前,对锂离子电池负极材料的研究较多有:碳材料、硅基材料、锡基材料、钛酸锂、过渡金属氧化物等。本文将主要介绍3类负极材料:碳材料、合金材料(锡(Sn)、硅(Si)等)和钛酸锂。 (1)碳材料 碳材料是人们最早开始研究并应用于锂离子电池生产的负极材料,至今仍然为大家关注和研究的重点。碳材料根据其结构特性可分成3类:石墨、易石墨化碳及难石墨化碳(也就是通常所说的软碳和硬碳)。软碳主要有中间相炭微球、石油焦、针状焦、碳纤维等;硬碳主要有树脂碳(如酚醛树脂、环氧树脂、聚糠醇PFA-C 等),有机聚合物热解碳(包括聚乙烯醇基、聚氯乙烯基、聚丙烯腈基等)以及碳黑等。由于软碳与石墨的结晶性比较类似,一般认为它比硬碳更容易插入锂,即更容易充电,安全性也更好些。 石墨类碳材料技术比较成熟,在安全和循环寿命方面性能突出,并且廉价、无毒,是较为常见的负极材料。常规锂离子电池负极材料包括天然石墨、天然石墨改性材料、中间相炭微球和石油焦类人造石墨。天然石墨和天然石墨改性材料价格比较低,但是在充放电效率和使用寿命方面有待进一步提高。中间相炭微球结构特殊,呈球形片层结构且表面光滑,直径在5~40μm之间,该材料独特的形貌使其在比容电量(可达到330mAh/g以上)、安全性、放电效率、循环寿命(循环次数达到2000次以上)等方面具有显著优势,但是成本有待降低。石油焦类的产品在放电效率和循环寿命方面比较突出,但存在着高成本和制备工艺复杂的问题。 近年来,随着研究工作的不断深入,研究者发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,有利于锂在其中的嵌入-脱

锂离子电池负极材料发展历程

锂电池是一类由锂金属或锂合金为正极材料、使用非水电解质溶液的电池。优点:绿色环保,不论生产、使用和报废,不产生任何铅、汞、镉等有毒有害重金属元素和物质。 电池原理: 组成材料主要包括:负极材料、正极材料和隔膜。 在充放电过程中,锂离子在正负极之间来回运动。充电时,锂离子从正极脱出,经过隔膜嵌入到负极中。放电时,锂离子再从负极中脱出,重新回到正极。由此可以看出锂电池的正、负极材料都要有良好的嵌入、脱出锂离子的能力。一般来说,锂离子电池的总比容量是由正极材料的比容量、负极材料的比容量及电池的其它组分决定的,因此,我们迫切需要提高正负极材料的比容量。 负极材料: 碳材料:商业化锂电池负极材料一般为碳作为基质的材料,包括石墨、中间相碳微球、碳纳米管等。虽然碳材料作为锂离子电池负极具有较好的循环性能,但已基本达到其理论极限容量(石墨理论比容量为372mAh/g),限制了电池的性能。另外实际应用中也暴露出碳负极存在许多缺陷:在快速充电或低温充电易发生“析锂”现象引发安全隐患;有机电解液中会形成钝化层,引起初始容量损失;这些因素直接制约了锂离子电池的进一步发展。因此,高能动力型锂离子电池的发展需要寻求高容量、长寿命、安全可靠的新型负极来取代碳负极材料。 其中锡基负极材料具有质量与体积比能量高,价格便宜,无毒副作用,加工合成相对容易等优点,因此一经提出就受到研究者的广泛关注。 研究表明,当负极材料的比容量在1000~1200 mAh/g时可以显著提高锂离子电池的总比容量。在各种非碳负极材料中,硅的理论比容量为4200mAh/g,具有明显的优势,因此吸引了越来越多研究者的目光。 硅-非金属体系:在此复合体系中,硅颗粒作为活性物质,提供储锂容量;非金属相作为分散基体,缓冲硅颗粒嵌脱锂时的体积变化,保持电极结构的稳定性,并维持电极内部电接触。目前主要有硅-碳复合体系、硅-玻璃/陶瓷体系、硅的氧化物、金属氮化物等体系。其中,碳类负极材料具有良好的导电性,在充放电过程中体积变化很小,循环稳定性能好。与硅结合可以很好的改善硅的体积膨胀,提高其电化学稳定性。因此,硅-碳复合材料成为当前负极材料的研究的热点。

四种锂电池负极材料的PK

四种锂电池负极材料的PK 作者:中国储能网新闻中心来源:电池中国网发布时间:2016-8-8 18:46:00 中国储能网讯:负极材料作为锂电池四大组成材料之一,在提高电池 的容量以及循环性能方面起到了重要作用,处于锂电池产业中游的核心环节。调研显示,2015年中国负极材料产量7.28万吨,同比增长42.7%,国内产值为38.8亿元,同比增长35.2%。这标志着锂电池负极材料市场 迎来了发展的春天。 负极材料分类众多,其中石墨类碳材料一直处于负极材料的主流地位。编辑总结发现,近日受到追捧的石墨烯概念、业内使用较为普遍的人工石墨、性能稳定的中间相碳微球以及有“新大陆”之称的硅碳复合材料,在 负极材料领域形成了“四方争霸”的局面。下面就让编辑带大家了解一下 这“四方霸主”的厉害吧。 独占一方的石墨烯 石墨烯是由碳原子构成的只有一层原子厚度的二维晶体,因为质地薄、硬度大且电子移动速度快而被科学家广泛推崇,并冠以“新材料之王”的

美誉。尽管这位“王者”优异的化学性能被新能源市场所看好,但是至今 为止依然停留在“概念化”的阶段。 如果将石墨烯用作锂电负极材料的话,需要独立的上下游产业链、昂 贵的价格还有复杂的工艺,这让众多负极材料厂商望而却步。尽管如此, 国内依然有一些企业砥砺前行,目前中国安宝、大富科技以及贝特瑞等知 名企业已经开始布局石墨烯产业。 但是,行业内关于石墨烯用作负极材料的质疑也在不断发酵,有人认 为石墨烯的振实和压实密度都非常低,又加之成本昂贵,作为电池负极材 料前景十分渺茫。但是鉴于它的热潮还在持续,说它是“一方霸主”也不 为过。 控制“主场”的人工石墨 目前负极材料主要以天然石墨和人造石墨为主,这两种石墨各有优劣。湖州创亚总经理胡博表示:“天然石墨克容量较高、工艺简单、价格便宜,但吸液及循环性能差一些;人造石墨工艺复杂些、价格贵些,但循环及安 全性能较好。通过各种手段的技术改进,这两种石墨负极材料都可以‘扬 长避短’,但就目前来看,人造石墨用于动力电池上占据一定的优势”。 而这一说法也在市场中得到了印证。相关媒体调研数据显示,今年第 一季度中国天然石墨产量4770吨,同比增长16.3%;人造石墨出货15160吨,同比增长110.5%。从以上数据来看,人造石墨出货量远高于天然石墨,而造成这一现象的重要原因,是今年以来市场对动力电池的强 劲需求。 性能稳定的中间相碳微球 中间相碳微球具有高度有序的层面堆积结构,是典型的软碳,石墨化 程度较高,结构稳定,电化学性能优异。据中咨网研究部统计数据显示,2012年中国负极材料出货量为27650吨,其中天然石墨出货量占比59%,人造石墨30%,石墨化中间碳微球8%。就此说来,中间相碳微球是仅次于天然石墨和人工石墨的第三大主流碳类负极材料。

锂离子电池负极材料介绍及合成方法

锂离子电池负极材料介绍及合成方法 目前,锂离子电池所采用的负极材料一般都是碳素材料,如石墨、软碳(如焦炭等)、硬碳等。正在探索的负极材料有氮化物、PAS、锡基氧化物、锡基氧化物、锡合金,以及纳米负极材料等。作为锂离子电池负极材料要求具有以下性能:(1)锂离子在负极基体中的插入氧化还原电位尽可能低,接近金属锂的电位,从而使电池的输出电压高; (2)在基体中大量的锂能够发生可逆插入和脱插以得到高容量密度,即可逆的x值尽可能大; (3)在插入/脱插过程中,锂的插入和脱插应可逆且主体结构没有或很少发生变化,这样尽可能大; (4)氧化还原电位随x的变化应该尽可能少,这样电池的电压不会发生显著变化,可保持较平稳的充电和放电; (5)插入化合物应有较好的电导率和离子电导率,这样可减少极化并能进行大电流充放电; (6)主体材料具有良好的表面结构,能够与液体电解质形成良好的SEI 膜; (7)插入化合物在整个电压范围内具有良好的化学稳定性,在形成SEI 膜后不与电解质等发生反应; (8)锂离子在主体材料中有较大的扩散系数,便于快速充放电; (9)从实用角度而言,主体材料应该便宜,对环境无污染。 一、碳负极材料 碳负极锂离子电池在安全和循环寿命方面显示出较好的性能,并且碳材料价廉、无毒,目前商品锂离子电池广泛采用碳负极材料。近年来随着对碳材料研究工作的不断深入,已经发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,锂在其中的嵌入-脱嵌不但可以按化学计量LiC6进行,而且还可以有非化学计量嵌入-脱嵌,其比容量大大增加,由LiC6的理论值372mAh/g提高到700mAh/g~1000mAh/g,因此而使锂离子电池的比能量大大增加。 目前,已研究开发的锂离子电池负极材料主要有:石墨、石油焦、碳纤维、热解炭、中间相沥青基炭微球(MCMB)、炭黑、玻璃炭等,其中石墨和石油焦最有应用价值。 石墨类碳材料的插锂特性是:(1)插锂电位低且平坦,可为锂离子电池提供高的、平稳的工作电压。大部分插锂容量分布在0.00~0.20V之间(vs. Li+/Li);(2)插锂容量高,LiC 6 的理论容量为372mAh.g-1;(3)与有机溶剂相容能力差,易发生溶剂共插入,降低插锂性能。 石油焦类碳材料的插、脱锂的特性是:(1)起始插锂过程没有明显的电位平 台出现;(2)插层化合物Li x C 6 的组成中,x=0.5左右,插锂容量与热处理温度 和表面状态有关;(3)与溶剂相容性、循环性能好。 根据石墨化程度,一般碳负极材料分成石墨、软碳、硬碳。 1、石墨 石墨材料导电性好,结晶度较高具有良好的层状结构,适合锂的嵌入-脱嵌,形成锂-石墨层间化合物,充放电容量可达300mAh.g-1以上,充放电效率在90%

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展 摘要:锂离子电池作为一种电源应用很广泛,但是在应用中存在一些不足,选取电化学性能良好的正负极材料是提高和改善锂离子电池电化学性能最重要的因素。简单介绍锂离子电池的电化学反应原理和从新型碳材料、硅基负极材料、锡基负极材料三方面锂离子电池的研究状况,并展望了锂离子电池负极材料的发展趋势。 关键词:锂离子电池;负极材料;研究现状 0 引言 目前全球最具潜力的可充电电池是锂离子电池。用碳负极材料的商品化的锂离子电池可逆比容量已达350 mA?h/g,快接近理论比容量372mA?h/g[1]。随着全球化的加快,科技日新月异,电子产品日益普及,发展中的电动汽车等对电池能源提出了更高的要求,其中主要包括能量密度、使用寿命等[2]。开发新型、廉价的负极材料是锂离子电池研究的热点课题之一。就目前而言,主要有新型碳材料、锡基材料、硅基材料等,本文研究了这些新型负极材料的研究现状及未来的发展方向。 1锂离子电池的电化学反应原理 锂离子电池是指用锂离子嵌入化合物作为正负极的二次电池.锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如LixCoO2,LixNiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到 4 V以上(vs.Li+/Li)[3].负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6等的有机溶液。 锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构成.充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态.锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关[3]。 2新型碳材料 在新型碳负极方面,未来的发展将主要集中在高功率石墨类负极及非石墨类高容量碳负极,以满足未来动力和高能电池的需求。新型碳材料:如碳纳米管(CNT)

2018年锂离子电池负极材料行业分析报告

2018年锂离子电池负极材料行业分析报告 2018年1月

目录 一、行业管理 (5) 1、行业主管部门 (5) 2、行业监管体制 (5) 3、行业主要法律法规和政策 (5) (1)电池与电池材料行业相关法律法规和措施 (5) (2)终端应用相关政策措施 (7) 二、锂离子电池与负极材料简介 (10) 1、锂离子电池简介 (10) 2、锂离子电池负极材料简介 (12) 三、下游行业:锂离子电池行业分析 (13) 1、全球锂离子电池行业高速发展 (14) 2、中国锂离子电池行业影响力日益加强 (14) 3、国内锂离子电池产业结构分析 (16) (1)动力电池异军突起 (16) ①产业导入期(2009-2013年) (16) ②快速增长期(2014年至今) (17) (2)消费电池为最大应用领域 (19) (3)储能电池尚待发力 (20) 4、区域分布:广东及周边区域先发优势明显 (21) 四、锂离子电池负极材料行业分析 (23) 1、负极材料产量保持快速增长 (23) 2、石墨类负极材料占据主导地位,人造石墨上升较快 (24) 3、华南、华东区域为主要聚集地 (26) 五、行业竞争格局 (27) 1、产能集中度持续提高 (27) 2、地域集群正在形成 (28)

六、进入行业的壁垒 (29) 1、客户壁垒 (29) 2、资金壁垒 (29) 3、技术壁垒 (30) 4、规模壁垒 (30) 七、市场供求和竞争状况 (31) 1、人造石墨负极材料当前的市场供求情况 (31) (1)产销率 (31) (2)毛利率 (32) (3)新能源汽车补贴政策调整的影响 (32) 2、企业销售情况 (33) 3、市场容量及未来增长趋势 (33) 八、行业主要企业简况 (34) 1、贝特瑞 (34) 2、上海杉杉 (35) 3、江西紫宸 (35) 4、深圳斯诺 (36) 5、星城石墨 (36) 6、翔丰华 (36) 7、正拓能源 (37) 8、日立化成 (37) 9、三菱化学 (37) 九、行业周期性、区域性和季节性特点 (38) 1、周期性 (38) 2、区域性 (38) 3、季节性 (39) 4、政策相关性 (40) 十、影响行业发展的因素 (41)

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展 作者:佚名来源:本站整理发布时间:2009-10-28 10:09:44 [收藏] [评论] 锂离子电池负极材料的研究进展 摘要:锂离子电池的石墨负极材料已商品化,但还存在一些难以克服的弱点。寻找性能更为优良的非碳负极材料仍然是锂离子电池研究的重要课题。综述了在锂离子电池中已实际使用的碳素类负极材料的特点和研究进展情况;介绍了正在探索中的锂离子电池非碳负极材料的研究现状。 关键词:锂离子电池;负极材料;非碳负极材料;研究进展 锂离子电池的负极是由负极活性物质碳材料或非碳材料、粘合剂和添加剂混合制成糊状胶合剂均匀涂抹在铜箔两侧,经干燥、滚压而成。锂离子电池能否成功地制成,关键在于能否制备出可逆地脱/嵌锂离子的负极材料。 一般来说,选择一种好的负极材料应遵循以下原则:比能量高;相对锂电极的电极电位低;充放电反应可逆性好;与电解液和粘结剂的兼容性好;比表面积小(<10m2/g),真密度高(>2.0g/cm3);嵌锂过程中尺寸和机械稳定性好;资源丰富,价格低廉;在空气中稳定、无毒副作用。目前,已实际用于锂离子电池的负极材料一般都是碳素材料,如石墨、软碳(如焦炭等)、硬碳等。正在探索的负极材料有氮化物、PAS、锡基氧化物、锡合金、纳米负极材料,以及其他的一些金属间化合物等。文章将已实用的碳素材料和正在探索的非碳材料的研究现状作简要介绍。 1 碳负极材料 1.1 石墨石墨材料导电性好,结晶度较高,具有良好的层状结构,适合锂的嵌入-脱嵌,形成锂-石墨层间化合物Li-GIC,充放电比容量可达300mAh/g以上,充放电效率在90%以上,不可逆容量低于50mAh/ g。锂在石墨中脱嵌反应发生在0~0.25V左右(vs. Li+/Li),具有良好的充放电电位平台,可与提供锂源的正极材料LiCoO2,LiNiO2,LiMn2O4等匹配,组成的电池平均输出电压高,是目前锂离子电池应用最多的负极材料。石墨包括人工石墨和天然石墨两大类。人工石墨是将易石墨化炭(如沥青焦炭)在N2气氛中于1900~2800℃经高温石墨化处理制得。常见人工石墨有中间相碳微球(MCMB)和石墨纤维。天然石墨有无定形石墨和鳞片石墨两种。无定形石墨纯度低,石墨晶面间距(d002)为0.336nm。主要为2H晶面排序结构,即按ABAB ……顺序排列,可逆比容量仅260 mAh/g,不可逆比容量在100mAh/g以上。鳞片石墨晶面间距(d002)为0.335nm,主要为2H+3R晶面排序结构,即石墨层按ABAB……及ABCABC……两种顺序排列。含碳99%以上的鳞片石墨,可逆容量可达 300~350mAh/g。由于石墨间距(d002=0.34nm)小于锂-层间化合物Li-GIC的晶面层间距(d002=0.37nm),致使在充放电过程中,石墨层间距改变,易造成石墨层剥落、粉化,还会发生锂与有机溶剂共同嵌入石墨层及有机溶剂分解,将影响电池循环性能。因此,人们又研究了其他的一些石墨材料,如改性石墨和石墨化碳纤维。 1.2 软碳软碳即易石墨化碳,是指在2500℃以上的高温下能石墨化的无定形碳。软碳的结晶度(即石墨化度)低,晶粒尺寸小,晶面间距(d002)较大,与电解液的相容性好,但首次充放电的不可逆容量较高,输出电压较低,无明显的充放电平台电位。常见的软碳有石油焦、针状焦、碳纤维、碳微球等。 1.3 硬碳硬碳是指难石墨化碳,是高分子聚合物的热解碳,这类碳在2500℃以上的高温也难以石墨化。常见的硬碳有树脂碳(如酚醛树脂、环氧树脂、聚糠醇 PFA-C等)、有机聚合物热解碳(PVA,PVC,PVDF, PAN

锂电池负极材料生产现状

锂电池负极材料生产现状 锂电池的原材料方面问题,一直都是锂厂家们非常关心的一个问题。锂电池生产厂家和大家谈谈关于锂电池的负极材料问题,有兴趣了解这方面问题的朋友可以看一下这篇文章,如果我们拿负极材料和正极材料来比的话,负极材料占锂电池成本比重变会显得较低,并且目前负极材料国内已经实现产业化,其主要的生产厂家有深圳贝特瑞、上海杉杉、长沙海容等,这些都是大型的个业,基本能够满足国内市场的需求。 深圳贝特瑞公司可能很多人对它都有所了解了,它是中国宝安(000009)控股55%的子公司,并且是国内锂电碳负极材料标准制定者。其碳负极材料产能是6000吨/年,价格为6万元/吨左右,市场占有率高达80%,居全球第二。客户包括松下、日立、三星、TCL、比亚迪等130多家厂商。2008年,贝特瑞收购了天津铁诚公司,使其碳负极材料成本下降30%. 不过锂电池生产厂家们了解到贝特瑞宣传资料显示,具有磷酸铁锂正极材料1500吨/年的产能。而据其销售部门透露,目前贝特瑞的磷酸铁锂正极材料实际产能为800吨/年,产量只有40多吨/年,主要给大型电池厂商实验供货,如天津力神、江苏双登等。其产品价格比天津斯特兰贵,达到18万-20万元/吨。据了解,其毛利率在60%以上。 据华普锂电池生产厂家了解到的加一个问题是中国宝安控股75%的天骄公司也从事正极材料的生产。该公司主营钴镍锰酸锂三元正极材料,目前产量为800吨/年左右,销量650吨左右,2009年计划产能1400吨/年,增长来自于通讯电子类、笔记本等下产品中对传统高成本的钴酸锂的替代。 杉杉股份公司可以说是贝特瑞的个巨大的竞争对手。我们都知道杉杉股份是在1999年开始涉足电池负极材料时采用CMS(中间相炭微球)技术,之后为降低成本转用人工石墨和天然石墨,此后,因为电池循环放电次数不高,又回到了CMS的技术上。目前,杉杉股份的CMS价格每吨在10万元以上,年产能为1200吨。

锂离子电池负极材料的研究现状、发展及产业化

锂离子电池负极材料的研究现状、发展及产业化 作者: userhung 发布日期: 2008-09-08 锂离子电池(Lithium Ion Battery,简称LIB) 是继镍镉电池、镍氢电池之后的第三代小型蓄电池。作为一种新型的化学电源,它具有工作电压高、比能量大、放电电位曲线平稳、自放电小、循环寿命长、低温性能好、无记忆、无污染等突出的优点,能够满足人们对便携式电器所需要的电池小型轻量化和有利于环保的双重要求,广泛用于移动通讯、笔记本电脑、摄放一体机等小型电子装置,也是未来电动交通工具使用的理想电源。 锂离子电池自1992年由日本Sony公司商业化开始便迅速发展。2000年以 前世界上的锂离子电池产业基本由日本独霸。近年来,随着中国和韩国的崛起,日本一枝独秀的局面被打破。2003年全球生产锂离子电池12.5亿只,其中中国生产4.5亿只(含日本独资和合资),国内电池公司产量大于2.8亿只,占全球锂离子电池总产量的20%以上。近几年我国锂离子电池产量平均以每年翻一番 的的速度高速增长,专家预测,未来几年,随着一批骨干企业生产规模的不断扩大,收集和笔记本电脑、摄像机、数码相机等便携产品的持续增长,我国锂离子电池产业仍将保持年平均30%以上的增长速度,2004年国内小型锂离子电池可达日产200~300万只,全年产量超过6亿只。 锂离子电池能否成功应用,关键在于能可逆地嵌入脱嵌锂离子的负极材料的制备。这类材料要求具有:①在锂离子的嵌入反应中自由能变化小; ②锂离子在负极的固态结构中有高的扩散率; ③高度可逆的嵌入反应; ④有良好的电导率; ⑤热力学上稳定同时与电解质不发生反应。目前,研究工作主要集中在碳材料和其它具有特殊结构的化合物。 1. 碳负极材料 碳负极锂离子电池在安全和循环寿命方面显示出较好的性能,并且碳材料价廉、无毒,目前商品锂离子电池广泛采用碳负极材料。 众所周知,碳材料种类繁多,目前研究得较多且较为成功的碳负极材料有石墨、乙炔黑、微珠碳、石油焦、碳纤维、裂解聚合物和裂解碳等.在众多的用作碳负极的材料中,天然石墨具有低的嵌入电位,优良的嵌入-脱嵌性能,是良好的锂离子电池负极材料。通常锂在碳材料中形成的化合物的理论表达式为LiC6,按化学计量的理论比容量为372mAh/g。近年来随着对碳材料研究工作的不断深入,已经发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,锂在其中的嵌入-脱嵌不但可以按化学计量LiC6进行,而且还可以有非化学计量嵌入-脱嵌,其比容量大大增加,由LiC6的理论值372mAh/g提高到700mAh/g~1000mAh/g,因此而使锂离子电池的比能量大大增加。所以近年来锂离子电池的研究工作重点

硅碳材料是最有潜力的锂电池负极

新能源汽车领域的日趋火爆,吸引着国内外大量企业前赴后继奔赴“战场”,并不新鲜的锰酸锂技术却似乎又开始绽放出引人注目的色彩。技术创新固然可喜,但寻找性价比更高、储藏量更大、具有更多定价话语权的新原材料,才是提升行业终端降本增效能力的治本之法。硅是目前人类至今为止发现的比容量(4200mAh/g)最高的锂离子电池负极材料,是一种最有潜力的负极材料,但硅作为锂电池负极应用也有一些瓶颈,第一个问题是硅在反应中会出现体积膨胀的问题。通过理论计算和实验可以证明嵌锂和脱锂都会引起体积变化,这个体积变化是320%。 所以不论做成什么样的材料,微观上,在硅的原子尺度或者纳米尺度,它的膨胀是300%。在材料设计时必需要考虑大的体积变化问题。高体积容量的材料在局部会产生力学上的问题,通过一系列的基础研究证明,它会裂开,形成严重的脱落。 硅体积膨胀会导致一系列结果 1.颗粒粉化,循环性能差 2. 活性物质与导电剂粘结剂接触差 第二个问题就是在硅表面的SEI膜是比较厚且不均匀的,受温度和添加剂的影响很大,会影响锂离子电池中整个比能量的发挥。 石墨表面因为导电性特别好,相对来说SEI膜比较均匀,它的组成跟硅负极不一样。为了研究这个问题,中科院相关科学家做了模型材料,通过微加工做成硅纳米柱。观察这种材料在充放电过程中SEI膜的生长,我们发现随着循环次数的增加,SEI膜逐渐把硅柱中间的空隙填上,覆盖完后还会继续生长大概μm,在硅表面如果不加任何处理,SEI膜可以长得很厚。这说明它是多孔的,溶剂始终能够接触到浸到硅的表面,这样在全电池设计时是不行的。怎么样解决这个问题,中科院科相关学家做了一些尝试在硅上做了碳包覆,为了做对比,我们硅上只做了部分的石墨烯包覆,其他地方空出来。最终看到包覆和不包覆SEI膜的生长情况不一样,碳包覆的SEI膜就明显减少,没有包覆的SEI膜就有很多。

锂离子电池负极材料

固态化学课程论文锂离子电池负极材料发展情况 材料科学与工程学院 2014/6/2

摘要: 锂离子电池具有比能量高,放电效率高,使用寿命长的特点。锂离子电池的这些特性,使在市场上的到广泛的认可的同时,学者们也在积极的对其进行更深入的研究和改进。传统的锂电池结构是石墨负极,这使得锂离子电池在应用中存在这福集电极容量有限,新型负极电极在充放电过程中大幅度容量衰减的现象。因此,诸多学者对可替代碳负极的材料进行研究。如锂的金属合金,钛氧化物及锂钛化合物,石墨烯基材料等。本文就这些研究做了一些总结和归纳。 关键词:锂离子电池,负极,锂的金属合金,锂钛化合物 一、锂电池简介 锂离子电池具有比能量高,放电效率高,使用寿命长的特点。锂离子电池的这些特性,使其每年在消费电子市场上获得数十亿的订单。[1]人们希望电池在新能源电厂中的作为电能存储系统。锂离子电池还是零排放汽车中供电系统的候选,例如用于混合动力汽车和电动汽车。但是,锂离子电池在上述体系中的应用依旧未能实现,这是由于其在安全性、成本、使用温度范围和材料来源的广泛性等存在问题,亟待研究解决。 锂离子电池轻便,结构紧凑,开路电压为4V,能量在100Whkg-1到150Whkg-1之间,是常用的电池材料。一个锂离子电池最常见的结构是由一个石墨负极,锂的金属氧化物形成的正极和在混合有机溶剂的锂盐溶液的电解质,装入一个带隔膜的容器。图1展示的是一个典型的锂离子电池的结构。在大多数情况下这些电池是按负极、电解质、正极的顺序排列的。 图1.典型的锂电池结构 该电池的反应式:yC+LiMO2=LixCy+Li(1-x)MO2,x-0.5,y=6,包括锂离子在两电极之间可逆的嵌入和脱嵌,并伴随着电子的迁移。由于高电容量,锂离子电池已经在消费电子设备市场广泛发展,如移动电话,手提电脑,MP3等等。锂离子电池的电化学反应看上去很

锂电池负极材料简介

负极材料: 负极材料作为锂离子电池的重要组成部分,其研究对象多种多样,归纳起来:主要分为两太类:第一类是碳材料,包括石墨化碳材料和无定形碳材料:第二类是非碳材料,主要包括硅基材料、锡基材料、过渡金属氧化物、金属氮化物及其它合金负极材料等。 石墨材料是商业化应用最多的负极材料,主要包括天然石墨、人造石墨和各种石墨化碳(如石墨化碳纤维和石墨化中间相碳微球)三类。石墨材料的结构为层状结构,碳原子呈六方形排列并向二维方向延伸构成石墨片层,这些石墨片层以一定的方式堆积起来便构成了不同的石墨晶体结构,即六方结构(2H)和菱形结构(3R)。在石墨材料中一般两种结构共存,石墨片层间通过范德华力相互结合在一起.理想石墨晶体的层间距为0.3354nm,密度2.2g/cm3。 天然石墨的缺陷:由于成膜不稳定,导致不可逆容量高,循环性能差。但天然石墨中的鳞片石墨电化学性能相对较好。 石墨化碳材料除了石墨之外,还包括石墨化中间相碳微球(McMB)、碳纳米管(cNT)及碳纳米纤维(CNFs)等。McMB颗粒呈球形,表面光滑,比表面积较小,堆积密度较高,因此,体积能量密度比较大,首次嵌锂过程中的不可逆容量损失较少。而且McMB球形颗粒具有高度有序的层面堆积结构,有利于锂离子从各个方向嵌入和脱出,从而解决了普通石墨类材料由于各向异性过高引起的石墨片溶涨、塌陷,循环性能差,以及不能快速大电流放电等问题。 碳纳米管(CNT)可以看成是由单层或多层石墨片状结构卷曲而成的准一维无缝中空管,长度一般在微米级,直径约几个到几百个纳米,分为多壁碳纳米管(MWNT)和单壁碳纳米管(SWNT)两种。这类石墨化碳材料因导电性好、机械强度高、化学性质稳定、长径比大,比表面积大,且储锂容量太于372 mAh/g的优点而得到了广泛的研究。 无定形碳材料因为制各温度很低,石墨化过程进行得很不完全,得到的碳材料主要由石墨微晶和无定形区组成。通常,无定形碳材料可主要通过将小分子有机物进行催化裂解:将高分子材料直接低温裂解;低温处理其它碳前驱体等3种方法制得。采用以上原料和方法制备的无定形碳材料,其微晶尺寸一般比石墨微晶小2-3个数量级,且材料中古有大量纳微米孔隙,所以它的锂离子扩散系数和首次嵌/脱锂比容量要比石墨的要大。但是,由于它的晶体化程度比较低、结构不规整,锂离子从碳材料中嵌入,脱出时的极化较大,且材料比表面积也很大.因此,无定形碳材料的嵌,脱锂时,没有明显的电压平台,电压滞后明显,且不可逆容量损失较大,首次效率较低,循环稳定性很差。 氧化石墨(Gmpjlite Oxide,GO)是指石墨在强氧化剂的作用下被氧化,氧原子进入到石墨层间,使碳平面上的大Ⅱ键断裂,并以C-OH、C=O、-COOH等官能团的形式与密实的碳平面内的碳原子结合而形成的共价键型石墨层间化合物。氧化石墨仍然会保持着石墨的层状结构,但石墨材料的致密结构因氧化剂分子的插入而变得膨胀疏松,层间距一般大于0.6mn. 。这些微孔的出现对不完全氧化改性石墨负极而言是有利于增大材料的储锂容量及增加锂离子的进出通道的。但碳平面内大∏键的破坏会使得GO不再具备导电性,且较多含氧官能目的出现也会导致更多的不可逆容量损失,因此,欲通过氧化的方法得到较理想的氧化石墨负极材料,就需要适当控制石墨被氧化的程度。

相关文档
最新文档