2015三支一扶考试行测备考:排列组合中的易混淆概念

2015三支一扶考试行测备考:排列组合中的易混淆概念

排列组合是三支一扶考试行测中的一个题型,它是数量关系中比较特殊的题型,研究对象和方法独特、知识系统相对独立,同时也是另一个重点考查题型——概率问题的基础。从近几年的三支一扶考试形式来看,对它的考查难度逐年上升,题型愈发灵活。那么,将此部分的内容弄懂、吃透就显得更为重要了。中公教育江西三支一扶考试网在此助考生一臂之力。

对于数量关系,需要大家能根据题干含义准确、快速地列式和计算。对于排列组合数的计算,绝大部分同学能够轻松应对,但对于如何根据题意快速、准确地列出式子,成为最大的难点,根源就在于对相关的理论知识和方法似懂非懂,理解不透彻。接下来,中公教育三支一扶考试网为考生拨开排列组合的迷雾。

排列组合的本质是计数,与之相关的有两个计数原理:加法计数原理和乘法计数原理,分别在什么时候去用它们,需要记住一句口诀:分类用加法、分步用乘法。具体来看:

一、分类计数(加法原理)

完成一件事,有多种不同的路径,每种路径之间相互无关联,缺了任何一种路径都能完成这件事,叫做分类。总的方法数等于各种路径的方法数之和。通过下面的例子来给大家进行讲解:

例1.从甲地到乙地每天有直达班车3班,从甲地到丙地每天有直达班车2班,从丙地到乙地每天有直达班车4班,则从甲地到乙地共有多少种不同的乘车方法?

中公解析:可以分成两种不同的乘车方式:

第一种,直达:甲→→乙; 第二种,中转:甲→→丙→→乙

这两种不同的路径之间相互无关联。缺了直达,可通过中转实现从甲最终到乙这个目标;缺了中转,可通过甲直达到乙。即缺了任何一种路径都能完成这件事,叫做分类。“分类用加法”,总的方法数等于这两类方法数之和。

二、分步计数(乘法原理):

完成一件事,需要多个步骤,各个步骤之间紧密相连、环环相扣,缺了任何一个步骤都

没办法完成这件事,叫做分步。总的方法数等于各个步骤方法数的乘积。

继续讨论例1,上面已对它进行了分类,第二种路径的方法数未知,继续探讨。将第二

种中转的路径:甲→→丙→→乙分为两步。①:从甲→→丙;②:从丙→→乙。这两个步骤

之间紧密相关,缺了任何一个步骤都没办法实现从甲到乙这个目标,叫做分步。“分步用乘

法”,中转的方法数等于每步方法数的乘积,即第二种中转的方法数为2×4=8种。

再根据加法原理可得:从甲地到乙地共有3+8=11种不同的乘车方式。

并不是所有的方法数都能够轻松枚举出来,在正式考试过程中,绝大部分需要利用排列数和组合数来统计方法数。紧接着我们再来一起探讨另一组易混淆概念:组合和排列。

三、组合(不需要考虑顺序):

从n个不同元素中选出m(m≤n)个元素组成一组,称为从n个不同元素中取出m(m≤n)个元素的一个组合。用

来计数。

例2:从全班30个人中选取7个人打扫卫生,共有多少种不同的选取方式。

中公解析:题干只要求从30个人当中选出7个人,至于先选谁后选谁,对于整个结果不造成影响,所以不需要考虑顺序,即为组合,用

来计数。

四、排列(需要考虑顺序):

从n个不同元素中任取m(m≤n)个元素按照一定的顺序排队,称为从n个不同元素中任取m(m ≤n)个元素的排列。用

来计数。

高等数学部分易混淆概念及例题

高等数学部分易混淆概念 第一章:函数与极限 一、数列极限大小的判断 例1:判断命题是否正确. 若()n n x y n N <>,且序列,n n x y 的极限存在,lim ,lim ,n n n n x A y B A B →∞ →∞ ==<则 解答:不正确.在题设下只能保证A B ≤,不能保证A B <.例如:11 ,1 n n x y n n == +,,n n x y n ,那么函数()f x 在X 上无界. 无穷大:设函数 ()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义).如果对于任意给定的正数M (不论它多么大), 总存在正数δ(或正数X ),只要x 适合不等式00x x δ< -<(或x X >) ,对应的函数值()f x 总满足不等式 ()f x M > 则称函数 ()f x 为当0x x →(或x →∞)时的无穷大. 例4:下列叙述正确的是: ② ① 如果 ()f x 在0x 某邻域内无界,则0 lim ()x x f x →=∞

排列组合基本原理和几种类型

课题:___排列组合基本原理和几种类型___ 教学任务 教学流程说明 教学过程设计

资源5、平面上有7个点 共线,则一共可以连成________ 资源6、.8个人排成一排,若甲、乙两人之 排列组合基本原理和几种类型 一、选择: 1、四支足球队争夺冠、亚军,不同的结果有( C ) A.8种B.10种C.12种D.16种 2、.由0,3,5,7,9这五个数组成无重复数字的三位数,其中是5的倍数的共有多少个(B )A.9 B.21 C. 24 D.42

3、五种不同商品在货架上排成一排,其中,A B 两种必须连排,而,C D 两种不能连排,则不同的排法共有(C ) A .12种 B .20种 C .24种 D .48种 4、学校召开学生代表大会,高二年级的3个班共选6名代表,每班至少1名,代表的名额分配方案种数是 ( D ) A .64 B .20 C .18 D .10 5、从9,5,0,1,2,3,7--七个数中,每次选不重复的三个数作为直线方程0ax by c ++=的系数,则倾斜角为钝角的直线共有( C )条. A . 14 B .30 C . 70 D .60 二、填空: 6、4名男生和3名女生排成一行,按下列要求各有多少种排法: (1)男生必须排在一起 4444576p p = ; (2)女生互不相邻 43 451440p p = ; (3)男女生相间 3434144p p = ; (4)女生按指定顺序排列 47840p = . 7、6本不同的书全部送给5人,每人至少1本,有______1800___种不同的送书方法。 8、三名男歌手和两名女歌手联合举行一场演唱会,演出时要求两名女歌手之间恰有一名男歌手,则共有出场方案_____36_____种 9、圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多是 ____4 12495C =_____ 10、7人站一排,甲不站排头,也不站排尾,不同的站法种数有 3600 种;甲不站排头,乙不站排尾,不同站法种数有 3720 种 11、远洋轮一根旗杆上用红、蓝、白三面旗帜中,一面,二面或三面表示信号,则最多可组成不同信号有______15________种。 12、从3名男工和7名女工中选派2男3女去做5项不同的工作,若每人各做一项,不同的选派方法有__12600___种。 13、从全班52名学生中选10名学生参加某项活动,如果正、副班长至少有一个在内,那么有_____5547746050__________种选法。 14、4人坐在一排10个座位上,若使每人的两边都有空位,则有____120____种不同的坐法。 15、象棋比赛中,进行单循环比赛其中有2人,他们各赛了3场后,因故退出了比赛,这样,这次比赛共进行了83场,比赛开始时参赛者有_____15__人 分析:需要考虑两种情况:第一种,因故退出比赛的两人之间没有进行比赛,则2 2683n C -+=,此方程无正整数解;第二种,因故退出比赛的两人之间进行了比赛,则226183n C -+-=, 解得15n =,所以,比赛开始时参赛者有15人 三、解答: 16、三年级4个班举行班级之间男、女排球单循环赛,问: ① 男女各需比赛多少场?②组织这次比赛共需安排多少场比赛? ① C 24 =6;C 24=6②C 24+ C 2 4=12 答案:

行测排列组合例题

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法? 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)=4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法? 解答: 假设我们已经找出了两种排列方法(黄、白 、蓝) 和 (蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出3个进行排列,所以r=3。根据公式 P (3,3)=3!3216(33)!1 ??==- ( 计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法? 解答 这仍然属于排列问题,只不过r 变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P (3,2)=3!3216(32)!1 ??==- ( 计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4 黄、白、蓝三个球,任意取出两个,有几种取法?

高数易混淆概念

概念区别: 1.无界与无穷大 无界是对任一M(无论多大),总存在x,使得f(x)>M,这里x任意,存在即可,不强调存在方式。 无穷大是对任一M(无论多大),总存在x0,当x>x0时,f(x)>M(注,这里的无穷大时x趋近正无穷时,其他同理),这里的存在有限制。 从定义,再结合图像,无穷算是无界的一种。但是无界不一定无穷 无界是一个区间而无穷是针对一个趋势,举个例子1/x,在(0,+∞)是无界而同是这个函数x趋近0是无穷而趋近无穷则是0 第二个例子xsinx,x趋近无穷满足无界的定义,是无界,但不是无穷,因为无论怎样取x0,x>x0总有函数等于0,也就是不存在这样的函数。也就是说对于一个无界的区间你如果有意识的话可以挑选一些数,有一定顺序组成一个新的函数的话完全可以成为无穷了。正如例子中你选π/2,5π/2,9π/2……是不是无穷? 这也涉及到一元函数的极限概念,考虑一下二元函数极限是x,y无论哪条路径都可以趋近某个值,其实一元函数也有个路径,不过这个路径指的是在x轴无论0,2,4,6……还是1,3,5……等等都是趋近同一值,这是想通之处了。而对于某一类的无界它也不过是挑取某个路径达到无穷。不能满足所有路径都是。 2.无穷小和零 无穷小是趋势,一定条件下的趋势,同是一个函数在不同条件下地位不同比如x趋近0时时无穷小x趋近1就是,0是无论那种情况都是趋近0,所以0是无穷小。但是无穷小和0不是等价的,这点把握到这里就可以了。 3.常见的几种点 驻点:导数为0的点,不仅有定义,而且导数必须存在且为0 极值点:相对点,相对于附近某一小临域,它是最大〔小〕的值,这里强调这个临域存在,临域不是区间;这样的点有一些性质,若可导则导数必为0,但导数为0不全是极值点(x^3) 但是这不是判断极值点的唯一条件,还要根据定义,这就属于不可导的点了(|x|的0点),所以极值点穿插很多,多重考虑,别忘了必须有定义。 拐点:性质有点类似极值点只是要求不同,它是某一临域左右凸凹性改变,同理既要考虑二阶导数是0还有二阶导不存在的穿插,还要注意最基本,有定义 4.可积,原函数,变限积分 可积指定积分存在〔注意是定积分不包括反常积分广义积分〕,按几何意义,曲线与x轴面积〔这里也可以说是负面积〕存在。 原函数是函数,不是一个值,判定是否存在原函数,对它求导后导函数是该函数。 变限积分定积分下限为常数,上限是自变量,集合两者,把x确定为一个值它就是定积分,某种意义上它可以算是某个原函数,但是这是一般情况,总体来说它还是一个函数。 可积不一定有原函数〔一个值存在怎么断定一个趋近有函数呢,〕,有第一类间断点是没有原函数但是可以有定积分,可积。有原函数不一定可积〔1/x〕,它们之间关系颇为复杂,求一个定积分我们有能力的就是利用奇偶性或者间接利用原函数〔牛顿,来布尼次公式〕,一马归一马,注意区别。 而可积和变限积分联系挺大的,一般区间可积的话变限积分不仅存在而且连续,不深入讨论。 原函数和变限积分是最易混淆的,两者都是函数,求的过程容易觉得变限积分算是原函数的其中一个,一般函数可以这么以为,不过深入讨论,决不这么简单,对于存在原函数的上述结论正确,可是最大的区别就是有第一类间断点没有原函数,但是变限积分存在且连续,图形上理解就是有间断点,不影响面积存在性而且不影响连续性,这点可以证明。 5.一元与二元函数的可微,可导和连续 一元函数和二元函数在连续,可微,可导虽然从书上看性质不太一样但这决不违背定理,两个之间有莫大的关系。 一元函数和二元函数的连续都要求极限存在且等于函数值,不同就是因为不同元函数因为空间的分布不同决定了极限的趋近方式不同,因为一元只有x是一条轴,一根线,那么教材上强调的更多是左右趋近,其实另一角度看,正如概念区别1来说其实方式也有很多,因为别看只是一条轴它却有无穷多个点,极限是要求连续取的,可是为了区别,我们有时候会跳跃取。正如数列极限中2n,2n+1,只有同时取尽才保证极限存在,而二元函数分布于一个平面这就决定了方向的无穷性了,随意一个一元函数都可以决定一个方向y=x,y=x^2等等,作为一条曲线可以作为一条方向只要它过所确定的点即可,一元函数其实就是沿着(x,0)对二元函数的极限,这也就说明二元函数连续,那么在该点确定的一元函数也连续。举个例子f(x,y)在0,0连续,那么f(x,0)肯定在x=0连续,一般到特殊,但是反之却不可以,这也从一定程度说明证明二元函数不连续,可以选取不同y,x关系,极限不同则不连续。 可导,一元函数中有可导必连续,这是因为导数的定义

【小学数学】小学数学最易混淆的15个基础概念

小学数学最易混淆的15条基础概念 数学考试里有不少基础概念,似是而非,孩子们很容易因为混淆而没能答对题。今天小编搜集了小学数学最容易混淆的15条基础概念,家长让孩子看看都搞清楚了吗? 最小的一位数是0还是1? 这个问题在很长一段时间存在争论。先来看看《九年义务教育六年制小学数学第八册教师教学用书》第98页“关于几位数”的叙述:“通常在自然数里,含有几个数位的数,叫做几位数。例如“2”是含有一个数位的数,叫做一位数;“30”是含有两个数位的数,叫做两位数;“405”是含有三个数位的数,叫做三位数……但是要注意:一般不说0是几位数。 再来听听专家的说明:在自然数的理论中,对“几位数”是这样定义的,“只用一个有效数字表示的数,叫做一位数;只用两个数字(其中左边第一个数字为有效数字)表示的数,叫做两位数……所以,在一个数中,数字的个数是几(其中最左边第一个数字为有效数字),这个数就叫几位数。 于此,所谓最大的几位数,最小的几位数,通常是在非零自然数的范围研究。所以一位数共有九个,即:1、2、3、4、5、6、7、8、9。 0不是最小的一位数。 为什么0也是自然数? 课标教材对“0也是自然数”的规定,颠覆了人们对自然数的传统认识。 于此,中央教科所教材编写组主编陈昌铸如是说:国际上对自然数的定义一直都有不同的说法,以法国为代表的多数国家都认为自然数从0开始,我国教材以前一直都是遵循前苏联的说法,认为0不是自然数。2000年教育部主持召开教材改编会议时,已明确提出将0归为自然数。这次改版也是与国际惯例接轨。 从教学实践层面来说,将“0”规定为“自然数”也有着积极的现实意义。 “0”作为自然数的“好处” 众所周知,数学中的集合被分为有限集合和无限集合两类。有限集合是含有有限个元素的集合,像某班学生的集合。无限集合是含有的元素个数是非有限的集合,如分数的集合。因为自然数具有“基数”的性质,因此用自然数来描述有限集合中元素的个数是很自然的。 但在有限集合中,有一个最主要也是最基本的集合,叫空集{},元素个数为0。如果不把0作为自然数,那么空集的元素的个数就无法用自然数来表示了。如果把“0”作为一个自然数,那么自然数就可以完成刻画“有限集合元素个数”的任务了。于此,从“自然数的基数性”这个角度,我们看到了把“0”作为自然数的好处。 把“0”作为自然数,不会影响自然数的“运算功能” “0”加入传统的自然数集合,所有的“运算规则”依旧保持,如新自然数集合{0,1,2,…,n,…}中的任何两个自然数都可以进行加法和乘法运算,而运算结果仍然是自然数。同时,加法、乘法运算的结合律和交换律,以及乘法的分配律也不会受到影响。 所以,“0”加盟到自然数集合实属理所当然,而不仅仅是人为的“规定”。它让我们更好地理解自然数和它的功能,同时也让我们意识到教学时不仅要知道和记住数学的“定义”和“规定”,还应该思考“规定”背后的数学涵义。 什么是有效数字一无效数字? 有效数字是对一个数的近似值的精确程度而提出的。同一个近似数如果在取舍时,保留的有效数字多,就比保留的有效数字少更精确。

大学数学排列组合

1.两个基本原理 (l)从甲地到乙地,可乘火车、汽车、轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 分析:因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法. 一般地,有如下原理: 加法原理:做一件事,完成它可以有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法.那么完成这件事共有N =m 1十m 2十…十m n 种不同的方法. (2) 由A 村去B 村的道路有3条,由B 村去C 村的道路有2条.从A 村经B 村去C 村,共有多少种不同的走法? 分析:从A 村到B 村有3种不同的走法,按这3种走法中的每一种走法到达B 村后,再从B 村到C 村又有2种不同的走法.因此,从A 村经B 村去C 村共有 3×2=6种不同的走法. 一般地,有如下原理: 乘法原理:做一件事,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,…,做第n 步有m n 种不同的方法.那么完成这件事共有12n N m m m =???L 种不同的方法. 例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书. 1)从中任取一本,有多少种不同的取法? 2)从中任取数学书与语文书各一本,有多少的取法? 解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6+5=11. (2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是 6530N =?=. 例2 (1)由数字l ,2,3,4,5可以组成多少个数字允许重复三位数? (2)由数字l ,2,3,4,5可以组成多少个数字不允许重复三位数? (3)由数字0,l ,2,3,4,5可以组成多少个数字不允许重复三位数? 解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是555125N =??=. 练习:

小学数学16条易混淆概念解析

随着课程改革的不断深入,新课程理念已为越来越多的一线数学教师所接受。对处于微观知识层面的一些现实性“诘问”,诸如“最小的一位数是0还是1”、“为什么0也是自然数”、“最大的分数单位是多少”、“计算出勤率可不可以不乘100%”……等等,看似“细节”的问题,却是彰显数学教学“科学性”“严谨性”不可或缺的一环,处理不好可能直接影响到教学评估和考试命题。特转录了困扰小学数学教师的16条“知识性诘问”,供同仁参考。 1、最小的一位数是0还是1 这个问题在很长一段时间存在争论。先来看看《九年义务教育六年制小学数学第八册教师教学用书》第98页“关于几位数”的叙述:“通常在自然数里,含有几个数位的数,叫做几位数。例如“2”是含有一个数位的数,叫做一位数;“30”是含有两个数位的数,叫做两位数;“405”是含有三个数位的数,叫做三位数……但是要注意:一般不说0是几位数。再来听听专家的说明:在自然数的理论中,对“几位数”是这样定义的,“只用一个有效数字表示的数,叫做一位数;只用两个数字(其中左边第一个数字为有效数字)表示的数,叫做两位数……所以,在一个数中,数字的个数是几(其中最左边第一个数字为有效数字),这个数就叫几位数。于此,所谓最大的几位数,最小的几位数,通常是在非零自然数的范围研究。所以一位数共有九个, 即:1、2、3、4、5、6、7、8、9。0不是最小的一位数。 2、为什么0也是自然数 课标教材对“0也是自然数”的规定,颠覆了人们对自然数的传统认识。于此,中央教科所教材编写组主编陈昌铸如是说:国际上对自然数的定义一直都有不同的说法,以法国为代表的多数国家都认为自然数从0开始,我国教材以前一直都是遵循前苏联的说法,认为0不是自然数。2000年教育部主持召开教材改编会议时,已明确提出将0归为自然数。这次改版也是与国际惯例接轨。从教学实践层面来说,将“0”规定为“自然数”也有着积极的现实意义。 “0”作为自然数的“好处”。众所周知,数学中的集合被分为有限集合和无限集合两类。有限集合是含有有限个元素的集合,像某班学生的集合。无限集合是含有的元素个数是非有限的集合,如分数的集合。因为自然数具有“基数”的性质,因此用自然数来描述有限集合中元素的个数是很自然的。但在有限集合中,有一个最主要也是最基本的集合,叫空集{},元素个数为0。如果不把0作为自然数,那么空集的元素的个数就无法用自然数来表示了。如果把“0”作为一个自然数,那么自然数就可以完成刻画“有限集合元素个数”的任务了。于此,从“自然数的基数性”这个角度,我们看到了把“0”作为自然数的好处。 把“0”作为自然数,不会影响自然数的“运算功能”。“0”加入传统的自然数集合,所有的“运算规则”依旧保持,如新自然数集合{0,1,2,…,n,…}中的任何两个自然数都可以进行加法和乘法运算,而运算结果仍然是自然数。同时,加法、乘法运算的结合律和交换律,以及乘法的分配律也不会受到影响。所以,“0”加盟到自然数集合实属理所当然,而不仅仅是人为的“规定”。它让我们更好地理解自然数和它的功能,同时也让我们意识到教学时不仅要知道和记住数学的“定义”和“规定”,还

排列组合常用方法总结

排列组合常用方法总结 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是,请参考! 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何

一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定。 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。

高考地理易混淆的40个概念

高考地理易混淆的40个概念 易混概念一天体与天体系统 天体——宇宙中各种物质存在的形式,如恒星、行星、小行星、流星体、彗星、星云等都属于天体。 天体系统——运动着的天体之间相互吸引和相互绕转所构成不同等级,构成天体系统至少要有两个天体,如地月系、太阳系等。 区别——天体是独立的个体,天体系统是多个天体的集合。 易混概念二地球存在生命的条件与地球存在生命的原因 地球存在生命的条件——三大金锁链条件,液态水、适宜的温度和适合呼吸的大气。 地球存在生命的原因——是指形成三大条件的地球自身和宇宙条件,如日地距离适中、地球体积质量适中、八大行星各行其道等。 易混概念三光照与热量 光照——主要是指直接来自太阳辐射的能量。光照的多少主要取决于日照时数的多少,而影响日照时数的因素主要与昼夜长短、天气、海拔高度有关。通常太阳高度角越大,晴天多,日照时数越长,光照就越充足。一般在光照充足的地区,农作物光合作用强,单产高,比如新疆的长绒棉、青藏高原的青稞。 热量——是指某一地区在特定的气候条件下所能获得的热量,它是太阳辐射和地表、大气各种物理过程的综合结果。一个地区的热量主要取决于纬度位置和海拔高度。一般来说,纬度低,地面获得的太阳辐射能量多,热量高;纬度高,地面获得的太阳辐射能量少,热量低。热量状况最直观的描述就是温度。 区别——光照充足的地方,热量不一定丰富,例如青藏高原光照充足但热量不足。 易混概念四积温和无霜期 积温——我们知道,温度是影响农作物生长与发育的主要因素。由于大多数农作物只有在日平均气温稳定升到10 ℃以上时才能活跃生长,因此我们把日均温达到10 ℃以上的持续时期视为作物的活跃生长期。把作物生长期内,每天的日平均气温累加起来,得到的温度总和叫做积温。积温的多少决定了农作物的生长期的长短,能直接影响作物长势和生长季节。根据≥10 ℃积温的多少,我国自北向南可以分为五个温度带:寒温带、中温带、暖温带、亚热带和热带;积温越来越多,农作物的生长期也是越来越长。 无霜期——是指一地春天最后一次霜至秋季最早一次霜之间的天数。无霜期直接影响育苗移栽的时间,决定了播种的时节。在实际生产中,真正有危害的是霜冻,因此应该叫无霜冻期,即春季最后一次霜冻(终霜冻)至秋季第一次霜冻(初霜冻)之间的天数。 易混概念五恒星日与太阳日 恒星日——指地球以恒星作为参照物,地球上的某点顺地球自转方向连续两次对准恒星的时间间隔,是地球真正的周期,时间为23小时56分4秒。 太阳日——指地球以太阳作为参照物,地球上的某点顺地球自转方向连续两次对准恒星的时间间隔,是昼夜交替的周期,时间为24小时。谭老师地理工作室综合整理 易混概念六冬至日与近日点、夏至日与远日点 地球绕太阳运行的轨道(黄道)为近似正圆的椭圆轨道,太阳位于椭圆的两焦点之一。 近日点——每年1月初,地球离太阳最近,这个位置叫近日点。 远日点——7月初,地球距离太阳最远,这个位置叫远日点。

排列组合基本知识

有关排列组合的基本知识 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法. 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列,当m=n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n!

(三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个 这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的. 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力 (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)

行测排列组合例题

行测排列组合例题Last revision on 21 December 2020

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)= 4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法 解答:

假设我们已经找出了两种排列方法(黄、白、蓝)和(蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出3个进行排列,所以r=3。根据公式 P(3,3)= 3!321 6 (33)!1 ?? == - (计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法解答 这仍然属于排列问题,只不过r变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P(3,2)= 3!321 6 (32)!1 ?? == - (计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4黄、白、蓝三个球,任意取出两个,有几种取法 解答: 假设我们第一次取出黄球,第二次取出白球,或者第一次取出白球,第二次取出黄球,可以发现虽然顺序不同,但都是同一种取法,即(黄,白)和(白,黄)是同一种取法。由于和取出的球的排列位置无关,因此这属于组合问题。 组合公式的定义如下

英语语言学 易混淆概念辨析

Phonological structure音系结构 Which sound units are used and how they are put together Phonological analysis 音系学分析 Take a word, replace one sound by another, and see whether a different meaning results. (minimal pairs Phonemic contrast The relation between 2 phonemes when they occur in the same environment and distinguish meaning Phonological rule 音系规则 a formal way of expressing a systematic phonologicalprocess or sound change in language. Assimilation Dissimilation 异化 A process where 2 identical or similar phonemes changes or displaces the other one Suprasegmental/Phonological features (syllable stress tone intonation Those aspects of speech that involve more than single sound segments Syllable structure 音节结构(divided into rhyme and onset Componential analysis A way in which the meaning of a word can be dissected into meaning components, called semantic features. Grammatical construction 语法结构 The process of internal organization of a grammatical unit ( IC analysis Syntactic construction 句法结构 (endo/exo-centric construction Syntactic function 句法功能 Shows the relationship between a linguistic form and other parts of the linguistic pattern in which it is used Grammatical rule By which the grammaticality of a sentence is governed Grammatical relations The structural and logical functional relations of constituents Syntactic relations positional/substitutability/co-occurrence

高中生物:易混淆概念汇总

高中生物:生物易混淆概念汇总 1、脂质与油脂 脂质是脂类物质的统称,包括油脂(C、H、O)、磷脂(C、H、O、N、P)、胆固醇(C、H、O)、植物蜡(C、H、O)等。 2、鲜重与干重 鲜重:细胞正常活性状态下的重量。一般含量最多的化合物是H2O,含量最多元素是O; 干重:细胞除去自由水后的重量,烘干后保持恒重后测定的重量。一般含量最多的化合物是蛋白质,而含 量最多的元素是C。 3、类囊体膜与叶绿体内膜 类囊体在叶绿体基质中,是单层膜围成的扁平小 囊,也称为囊状结构薄膜。沿叶绿体的长轴平行排 列,含有光合色素和电子传递链组分,“光能向活 跃的化学能的转化”在此上进行,因此类囊体膜亦 称光合膜。类囊体可增大叶绿体的膜面积,增大光 合作用率。与叶绿体内膜的区别见右图。 4、分裂与增殖 (1)细胞增殖是侧重结果,细胞分裂侧重过程。 (2)对于真核生物而言,绝大多数体细胞靠有丝 分裂来增殖;少数的体细胞(如蛙的红细胞)是靠 无丝分裂来增殖;精子和卵细胞是靠减数分裂来增 殖的。 例如:2002年上海高考题:精原细胞增殖的方式为: A有丝分裂B有丝分裂和减数分裂 (答案:A) 解析:精原细胞的增殖方式只能是有丝分裂,减数分裂增殖的是精子。 5、细胞液与细胞内液 细胞液特指植物细胞液泡内的液体;细胞内液是细胞内所有液体成分的总括,包括细胞质基质,核基质, 叶绿体等细胞器的基质以及液泡内的细胞液。 6、原生质体与原生质层 原生质层:指细胞膜、液泡膜和这两层膜之间的细胞质,可看作是一层选择透过性膜,这层膜将细胞液与 外界环境分隔开。原生质层为成熟的高等植物细胞及成熟的酵母菌等所具有。 原生质体:通常是指具细胞壁的细胞用酶解法除去壁后获得的结构。原生质体主要用于细胞工程的体细胞 杂交研究。如:植物细胞用纤维素酶和果胶酶处理可获得原生质体,细菌用溶菌酶处理可获得原生质体。

排列组合基本概念

两个基本原理 1.加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有 N=m1十m2十…十m n种不同的方法. 2.乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法.那么完成这件事共有N=m1m2…m n种不同的方法.例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书. 1)从中任取一本,有多少种不同的取法? 2)从中任取数学书与语文书各一本,有多少的取法? 解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6十5=11. 答:从书架任取一本书,有11种不同的取法. (2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是 N=6X5=30.答:从书架上取数学书与语文书各一本,有30种不同的方法. 例2(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数? (2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数? (3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数? 解:要组成一个三位数可以分成三个步骤完成:第一步确定百

位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复, 这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是 N=5X5X5=125. 答:可以组成125个三位数. 排列 什么叫排列? 从n 个不同元素中,任取m(n m ≤)个元素按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 【排列数】 1. 定义:从n 个不同元素中,任取m(n m ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示. 2. 排列数公式:m n A =n(n-1)(n-2)…(n -m+1) 3.全排列、阶乘的意义; n !=n(n-1)(n-2)…1= n n A ,规定 0!=1 )! (!m n n A m n -= (其中m ≤n m,n Z ) 例1:⑴ 7位同学站成一排,共有多少种不同的排法? 解:问题可以看作:7个元素的全排列——7 7A =5040 ⑵ 7位同学站成两排(前3后4),共有多少种不同的排法? 解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040 ⑶ 7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?

行测排列组合例题整理

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法? 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 !()!r n n P n r =- r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)=4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法? 解答: 假设我们已经找出了两种排列方法(黄、白 、蓝) 和 (蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中

取出3个进行排列,所以r=3。根据公式 P (3,3)=3!3216(33)!1 ??==- ( 计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法? 解答 这仍然属于排列问题,只不过r 变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P (3,2)=3!3216(32)!1 ??==- ( 计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4 黄、白、蓝三个球,任意取出两个,有几种取法? 解答: 假设我们第一次取出黄球,第二次取出白球,或者第一次取出白球,第二次取出黄球,可以发现虽然顺序不同,但都是同一种取法,即(黄,白)和(白,黄)是同一种取法。由于和取出的球的排列位置无关,因此这属于组合问题。 组合公式的定义如下 ()!!!r n n C r n r =- r n C 也可写成C (n,r )其中n 表示总共的元素个数,r 表示进行组合的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 C (5,3)=5!54321302!(53)!(21)(21) ????==-??? 另外,为便于计算,还有个公式请记住 r n r n n C C -=

相关文档
最新文档