The Far-Infrared Background Correlation with CMB Lensing

The Far-Infrared Background Correlation with CMB Lensing
The Far-Infrared Background Correlation with CMB Lensing

a r X i v :a s t r o -p h /0209001v 1 30 A u g 2002

Submitted to ApJ

Preprint typeset using L A T E X style emulateapj v.16/07/00

THE FAR-INFRARED BACKGROUND CORRELATION WITH CMB LENSING

Yong-Seon Song 1,Asantha Cooray 2,Lloyd Knox 1and Matias Zaldarriaga 3

1

Department of Physics,University of California,Davis,CA 95616,USA

email:yssong@https://www.360docs.net/doc/c73732984.html,,lknox@https://www.360docs.net/doc/c73732984.html,

2

Theoretical Astrophysics,California Institute of Technology,Pasadena,CA 91125,USA

email:asante@https://www.360docs.net/doc/c73732984.html,

3Physics Department,New York University,New York ,NY 10003,USA Institute for Advanced Study,Einstein Drive,Princeton NJ 08540,USA

email:mz3@https://www.360docs.net/doc/c73732984.html, Submitted to ApJ

ABSTRACT

The intervening large–scale structure distorts cosmic microwave background (CMB)anisotropies via gravitational lensing.The same large–scale structure,traced by dusty star–forming galaxies,also induces anisotropies in the far–infrared background (FIRB).We investigate the resulting inter–dependence of the FIRB and CMB with a halo model for the FIRB.In particular,we calculate the cross–correlation between the lensing potential and the FIRB.The lensing potential can be quadratically estimated from CMB temperature and/or polarization maps.We show that the cross–correlation can be measured with high signal–to–noise with data from the Planck Surveyor .We discuss how such a measurement can be used to understand the nature of FIRB sources and their relation to the distribution of dark matter.Subject headings:cosmology:theory –cosmology:observation –di?use radiation –infrared:cosmology:

weak lensing –cosmology:formation –galaxies:evolution

1.introduction

Dusty star–forming galaxies give rise to a far–infrared background (FIRB)(Puget et al.1996;Fixsen et al.1998;Dwek et al.1998;Schlegel Finkbeiner &Davis 1998;La-gache et al.1999;Guiderdoni et al.1998;Blain 1999).Correlations in the large–scale structure traced by these contributing sources lead to correlated ?uctuations in the FIRB (Bond et al.1986;Scott &White 1999;Haiman &Knox 2000;hereafter HK00;Knox et al.2001;Maglioc-chetti 2001).At arcminute scales and more,?uctuation power associated with the source distribution can poten-tially be detected with Planck and other planned CMB ex-periments with channels at frequencies around and above 300GHz (Knox et al.2001).

The same large–scale structure that generates FIRB an-isotropy also generates anisotropy in the CMB in sev-eral ways.These include modi?cations due to scattering via free electrons in galaxy clusters,such as the thermal Sunyaev-Zel’dovich e?ect (Sunyaev &Zel’dovich 1980),and modi?cations imposed by the time evolving gravi-tational ?eld,such as the integrated Sachs-Wolfe e?ect (Sachs &Wolfe 1967).The large–scale structure mass ?eld also de?ects CMB photons propagating to us from the last scattering surface via the gravitational lensing e?ect (Sel-jak 1996).Since the lensing e?ect on CMB anisotropies is second order in temperature ?uctuations,it induces non-Gaussian signatures in the temperature data;the cross–correlation between the lensing e?ect and other secondary anisotropies,such as SZ or ISW,contributes to the tem-perature bispectrum (Goldberg &Spergel 1998;Cooray &Hu 2000;Seljak &Zaldarriaga 1999).

We extend previous discussions on correlations between the CMB and large–scale structure and consider the cross-correlation of CMB anisotropies and FIRB ?uctuations.The FIRB contributes signi?cantly at the high frequency end of certain CMB experiments,such as the 350GHz,545GHz and 850GHz channels of the High Frequency In-strument (HFI)of the Planck Surveyor.Over this range of frequencies,and in regions of the sky with low galac-tic dust emission,the FIRB stands out as the dominant source of ?uctuation power over a wide range of angu-lar scales (Knox et al.2001).We model the expected cross-correlation between lensing potentials and the FIRB though a physically motivated semi-analytical approach involving the halo model (Scherrer &Bertschinger 1991;Seljak 2000;Scoccimarro et al.2000;Cooray &Sheth 2002).

Though the lensing potential-FIRB correlation leads to a bispectrum or a three-point correlation function in CMB temperature and FIRB,we suggest a direct cross-correlation between lensing potentials and FIRB.Our sug-gestion follows from recent discussions in the literature on how to reconstruct lensing potentials associated with CMB lensing,especially through higher order statistics such as quadratic estimates optimized for the lensing extraction in temperature and polarization data (Zaldarriaga &Seljak 1999;Hu 2001b;Hu &Okamoto 2001;Cooray &Kesden 2002).We consider this possibility for planned missions such as Planck.

Using reasonable assumptions,we show that Planck has su?cient sensitivity for a detection of the lensing-FIRB correlation.A detection of such a correlation would allow us to test how well the sources of the FIRB trace the large–scale mass distribution.While semi–analytic approaches such as the halo model suggest a high correlation,the ex-act correlation as measured will allow us to further re?ne details of these models and to understand certain physical properties of contributing FIRB sources.

The layout of the paper is as follows.In Section 2we present the halo model for FIRB ?uctuations.In Sec-tion 3we revisit the angular power spectrum of the FIRB and describe the cross correlation between the FIRB and a quadratic function of the CMB temperature map.The quadratic CMB statistic is an estimator for the lensing

1

2Far-infrared background—CMB lensing Cross-Correlation potential.In section4we discuss associated errors and

the extent to which the FIRB-lensing correlation can be

detected.We conclude with a discussion of our results in

Section5.We refer the reader to Haiman&Knox(2000;

hereafter HK00)and Knox et al.(2001)for initial de-

tails on our calculation of correlations in the FIRB.More

details of the halo approach to large–scale structure are

available in the recent review by Cooray&Sheth(2002).

For a review of our observational knowledge of the FIRB

see Hauser&Dwek(2001).While we provide a general

derivation of the FIRB-lensing correlation,when illustrat-

ing our results we assume aΛCDM cosmological model

with?m=0.35,?Λ=0.65,?b=0.05,h=0.65.To de-

scribe linear clustering,we use the transfer function given

by Eisenstein&Hu(1999)and normalize?uctuations to

COBE(Bunn&White1997)such thatσ8=0.86.

2.halo approach to the firb

As in HK00,we write the FIRB Rayleigh–Jeans tem-

perature(T RJ≡Iν/(2k B)(c/ν)2)at frequencyνand in

direction?n as a sum of the mean and the?uctuation about

the mean

T RJ(?n,ν)=ˉT RJ(ν)+δT RJ(?n,ν)

=c2

ˉj(ν,r) .(1)

Here,r is the radial distance from us to a redshift of z and ˉj(ν,z)is the mean emissivity of the dust.Note that we have related the excess?uctuation in FIRB temperature to a?uctuation in the emissivity,δj(r?n,ν,z).

We adopt the HK00model for the mean emissivity as a function of redshift and frequency.The key ingredients of this model are the history of ultra–violet radiation and dust production.Both of these are assumed to be pro-portional to a star–formation rate,which here and in the HK00?ducial model we take to be that of Madau(1997). By further assuming the optical properties of the dust (Draine&Lee1984)we then derive the comoving mean emissivity,ˉjν(z).The dust and UV production propor-tionality constants are chosen so that the resulting FIRB agrees with inferences from COBE/FIRAS data(Fixsen et al.1998).

To model?uctuations of the FIRB,we assume that the sources of this emissivity are galaxies so that δj(r?n,ν,z)/ˉj(ν,z)=δgal where n gal=ˉn gal(1+δgal).Our modeling di?ers from that in HK00in that we calculate the statistical relation of the galaxy number density?eld to the dark matter by making assumptions about how these galaxies populate dark matter halos;i.e.,we use the‘halo approach’to large–scale structure.

The halo approach to large–scale structure involves a simpli?ed description of the complex distribution of dark matter as consisting of a population of dark matter halos. The spatial distribution of any tracer?eld of the large–scale structure,such as galaxies,is described through the relation of the tracer?eld to that of the dark mat-ter halo distribution.The halo approach has now been widely discussed in the literature to understand the clus-tering of dark matter,galaxies and baryons(Scherrer& Bertschinger1991;Scoccimarro et al.2000;Cooray& Sheth2002).The necessary inputs for the halo–based cal-culations come from either analytical tools,such as the dark matter halo mass function,or from numerical sim-ulations,such as the distribution of dark matter within each halo.

The two–point correlation function of the object of inter-

est in a halo model has two terms;the?rst is a two-point correlation function within each dark matter halo and the second is the two-point correlation function between points which are in di?erent halos.The halo distribution is taken

to trace the linear?uctuations with biases which are pre-dictable from analytical arguments.The time evolution

of the correlation function is naturally determined by this semi–analytic model since clustering evolution can be re-lated to the evolution of the halo mass function and any evolution of physical properties related to halos.As we

?nd below,the halo model has the advantage that one does not need to specify a priori quantities such as the bias and evolution of?elds that trace the mass distribu-tion of the large–scale structure.

Following Scherrer&Bertschinger(1991)and Scocci-marro et al.(2000)we can write the two–point function of

the mass distribution as

ˉρξ(x?x′,z)=

n(m,z)m2dm d3yu m(y,z)u m(y+x?x′,z)

+ n(m1,z)m1dm1 n(m2,z)m2dm2 d3x1u m1(x?x1,z)× d3x2u m2(x′?x2,z)ξ(x1?x2;m1,m2,z),(2)

where we have written out explicitly the redshift–dependence of the correlation function;hereafter,for sim-plicity,we usually drop this redshift–dependence when writing our expressions.In above,n(m)is the mass func-tion describing the number density of collapsed objects with given mass m:

m2n(m)

m

=νf(ν)

2 ν2 .(4) Here,νis given by

ν≡

δ2sc(z)

(r/r s)(1+r/r s)2

,(6) where r s is the core radius andρs is the density at r s. We can also get r s from the known mean concentration

Song,Cooray,Knox&Zaldarriaga3 relation,ˉc=r vir/r s.We calculate the virial radius of each

halo following spherical collapse arguments such that M=

4πr3v?(z)ρb/3,where?(z)is the overdensity of collapse

andρb is the background matter density today.We use

comoving coordinates throughout.

The mean concentration parameterˉc is given by(Bul-

lock et al.2001;Jing2000)

ˉc=9

m?(z) ?0.13(7)

where m?(z)is the critical mass at given z.The density pro?le in Fourier space is

u(k|m)= r vir0dr4πr2sin kr m,(8) where r vir is the virialized radius of the collapsed object. The Fourier transformation of equation(1)gives the power spectrum

P dm(k)=P1h dm(k)+P2h dm(k)

P1h dm(k)= dmn(m) m

ˉρ

u(k|m1)

× dm2n(m2)m2

δsc(z1)

.(11) We assume that the dust giving rise to the FIRB is all in galaxies.To describe clustering properties of these dusty galaxies,we modify the halo model for dark matter to describe point sources following previous discussions in the literature(Seljak2000;Jing et al.1998).

An important ingredient is how these galaxies occupy dark matter halos.Following Scoccimarro et al.(2000); Cooray&Sheth(2002),we model this halo occupation number,the average number of galaxies in each dark mat-ter halo of mass m,through a simple relation of the form N gal(m) =A gal(m/m0)p gal.(12) When illustrating our results,we will take A gal= 0.7,m0=4.2×1012and p gal=0.8consistent with what is suggested in the literature for the halo occupation number of blue,star-forming,galaxies(Scoccimarro et al.2000; Cooray&Sheth2002).Besides these parameters,we also set a lower bound on the halo mass,at m c=1011M⊙/h, in which dusty galaxies may exist.This accounts for the fact that baryons may not collapse and cool to form stars in low mass halos as well as to account for the fact that star–formation may not be e?cient due to processes such as supernova winds which may expel any remaining gas in such small mass halos(Benson et al.2001;Kau?mann et al.

1993).

Fig. 1.—Galaxy bias as a function of k for our?ducial halo model at z=0,1,2(upper panel)and galaxy–dark matter density contrast correlation coe?cient(lower panel).

Note that we have described the halo occupation number of sources that contribute to FIRB with a description that is consistent for blue galaxies at low redshifts.While these late-type galaxies are expected to trace dusty-starbursts that form the FIRB,our choice of parameters is also con-sistent with another consideration.The non-linear cluster-ing of sources in the IRAS Point Source Redshift Survey Catalog(PSCz),based on60μm?uxes,is well produced by a halo occupation number consistent with the above set of parameters for p,A gal,and m0(Scoccimarro et al.2000; Cooray2002).These sources are also likely to trace the dusty-starbursts that contribute to FIRB.An additional complication,which we return to later,is if FIRB sources are associated with either mergers or active galactic nuclei. To describe galaxy clustering at the two-point level we also need the second moment, N gal(N gal?1) of the galaxy halo occupation distribution.Given our limited knowl-edge,we take the simplest approach involving a Poisson distribution such that N gal(N gal?1) = N gal(m) 2.This assumption is consistent with numerical simulations espe-cially at the high mass end while at the low mass end of the mass function,when N gal(m) <1,evidence exists for departures from a Poisson distribution(Scoccimarro et al. 2000;Cooray&Sheth2002).

With information related to the halo occupation num-ber,we can write the power spectrum of dusty galaxies, again with two terms:

P gal(k)=P1h gal(k)+P2h gal(k)

P1h gal(k)= dmn(m) N gal(m)

ˉn gal(m1)

u(k|m1)

4Far-infrared background—CMB lensing Cross-Correlation × dm2n(m2) N gal(m2)

ˉρ

N gal(m)

ˉρ

u(k|m1)

× dm2n(m2) N gal(m2)

P gal(k,z)

ˉn

.(17) At non-linear scales bias increases due to the choice of p=1when N gal <1.The behavior of r gal(k)can also be understood from the halo model.At linear scales,galaxies trace the dark matter such that they perfectly correlate with each other.At non-linear scales,r gal(k)is greater than unity since the galaxy power spectrum is de?ned such that,following the standard de?nitions,it does not include the shot–noise part associated with the?nite number of galaxies(Seljak2000).

3.angular power spectra

In this paper we are interested in measuring the cross-correlation between FIRB?uctuations and the lensing ef-fect on CMB anisotropies.For the purpose of this dis-cussion,we will describe lensing through the associated projected potential,φ,along the line of sight

φ(?n)=?2 dr d A(r0?r)

P dm?gal(l/r)(light)and W F(k,ν,z)/r

(2π)3 d2θ

drW X(k,r)δX( k,r)e?i(l?k r)·θ.

(24) Following Knox et al.(2001),we write the FIRB weighting function at a given frequencyνas

W F(z;ν)≡a(z)ˉj(ν,z)/(2k B)(c/ν)2and

δF=δgal.(25)

Song,Cooray,Knox&Zaldarriaga5 Similarly,for lensing potentials,

Wφ(k,z)≡?3?m

k 2d A(r0?r)

d2A

[W len(k,z)]2P dm k=l

d2A

[W F(z;ν)]2P gal k=l

d2A

W F(z;ν)W len(k,z)P dm?gal k=l

6Far-infrared background —CMB lensing

Cross-Correlation

Fig. 4.—Angular power spectrum of FIRB–CMB lensing cross–correlation function at 545GHz for same FIRB models as in Fig.3.The curves labeled 1-h and 2-h show the 1-and 2-halo contributions to the cross power spectrum.Note that in the range of angular scales of interest to Planck,all contributions e?ectively come from the 2-halo term or the large scale correlations between FIRB sources and dark matter between di?erent halos.Error boxes assume use of 10%of the sky,include the contributions from unsubtracted dust and do not include polarization information.Solid (dashed)error boxes are for Planck (no)noise.

matter traced by lensing potentials,such that b (l )=

C φφ

l .(29)

We also plot this bias factor and its associated errors on the bottom panel of Fig.5.

4.error forecasts

Here we consider expected measurement errors on the various signals predicted in the previous sections and shown in Figures 3,4,and 5.First,we consider the ex-pected errors on the detection of lensing potential power spectrum and the FIRB power spectrum.Then we will discuss the associated errors on the determination of the cross-correlation between FIRB and lensing.

4.1.Lensing

In the case of lensing power spectrum,we assume that the de?ection angle associated with the CMB lensing can be constructed from quadratic statistics involving temper-ature ?uctuations (Hu &Okamoto 2001;Cooray &Kesden 2002).

To understand the mechanism involved,?rst notice that lensing involves a remapping of the CMB tempera-ture (Seljak 1996;Zaldarriaga 2000;Hu &Okamoto 2001;Cooray &Kesden 2002)such that

?Θ(?n )=Θ[?n +?φ(?n )]

=Θ(?n )+?i φ(?n )?i Θ(?n )

+

1(2π)2

W (l ,l 1)?Θ(

l 1)?Θ(l ?l 1),(31)

where W is a ?lter that acts on the CMB temperature and

can be derived by the requirment that an ensemble aver-age of this quadratic statistic returns an estimator for φ,

2(l ) ≡?φ(l ),with a minimum noise contribution.Tak-ing the Fourier transform of equation (30),and substitut-ing for ?Θ(

l )in equation (31),one can obtain the required ?lter as

W (l ,l 1)=N φφ

l

[l ·l 1C Θl 1+l ·(l ?l 1)C Θ|l ?l 1|](2π)2

[l ·l 1C Θl 1

+l ·(l ?l 1)C Θ|l ?l 1|]2

Song,Cooray,Knox &Zaldarriaga

7

CMB power spectrum after gravitational lensing,C noise l is detector and instrumental noise contributions,and C fore l describes the contribution due to any foregrounds and sec-ondary e?ects,such as the SZ e?ect.

Note that the variance of the ?ltered quadratic temper-ature map,

?Θ2(l )?Θ2(l ′) =(2π)2δD (l +l ′) C φφl +N φφl ,(34)

returns the lensing potential power spectrum plus an as-sociated Gaussian noise bias given by N φφl .We note that

even in the case of a CMB experiment with no detec-tor noise,the reconstructed potential,under the quadratic statistic techhnique described above,is biased as N φφl has contributions from primordial CMB ?uctuations.This im-plies that the correlation coe?cient de?ned in equation (28)is not the correlation coe?cient one measures between the FIRB map and the reconstructed φmap,as described above,even for an ideal experiment.This noise bias,how-ever,can be eliminated possibly through a di?erent re-construction technique involving an unbiased estimator of the lensing de?ection potential.In order to generalize our discussion,we ignore this noise-bias and treat N φφl as the error contribution associated with the reconstructed C φφl .Thus,correlation coe?cients we plot in Fig.5are those that one would measured by correlating the FIRB map with an unbiased estimator of the de?ection angle.

In addition to the case with temperature we have just discussed,the polarization ?eld can also be used to recon-struct φ(Guzik,Seljak,&Zaldarriaga 2000;Benabed et al.2000;Hu &Okamoto 2001;Cooray &Kesden 2002),though we perform no error forecasts for polarization data here.

When estimating N φφl ,we consider two experiments cor-responding to Planck and a no-detector noise,cosmic vari-ance limited,experiment.In the case of Planck,we use tabulated values for its detector sensitivities and resolu-tions,or beam sizes,following Cooray et al.(2000)to cal-culate C noise l .In the case of the cosmic variance limited experiment,we set C noise l =0and take a maximum l of 3000.to which we integrate equation (33).In both these experimental possibilities,we set C fore l =0.

4.2.FIRB

On the FIRB side,we expect a signi?cant contribution to the angular power spectrum at 545GHz from galactic dust.The level of the dust power spectrum shown in Fig.3is for that in the cleanest 10%of 5?×5?patches (Knox et al.2001).The average level in the cleanest 50%is about 10times higher.

We approximate the e?ect of dust contamination by in-cluding it as an unsubtracted noise source with a power spectrum given by C D l .The error on the FIRB-FIRB power spectrum is

?C FF l =1

(2l +1)f sky

C FF ,tot l ,

(35)

where following Knox et al.(2001)

C FF ,tot l =

C FF l +C

D l +N FF l and

N FF l ≡?2T RJ e

l (l +1)σ2/8ln2

.(36)

Here,N FF l is due to instrumental noise in the beam–deconvolved maps.For example,the Planck 545GHz channel has σ=5.0′and (on average)?T RJ =13μK ?arcmin.Throughout we use the ν=545GHz channel as our probe of the FIRB though valuable,and complementary,information does lie in other channels at both higher and lower frequencies.

Equation (35)is formally correct for a single–frequency measurement if the power spectrum of the dust is perfectly known and the dust is a statistically isotropic Gaussian random ?eld.These conditions do not hold;this equa-tion only serves as a rough guide,with dust increasing the errors when C D l C FF l and having little e?ect when C D l <

4.3.Lensing-FIRB

Following our discussion on lensing reconstruction,one can use the estimator for the de?ection angle,or the projected potential,to measure the cross-correlation with FIRB ?uctuations.Thus,similar to equation (34),we can

write ?Θ2(l )F (l ′) =(2π)2δD (l +l ′)C F φl

as an estimate of the cross-power spectrum between lensing potentials and FIRB ?uctuations.In Fig.4we plot C F φl .Note that while C φφl is biased under quadratic temperature recon-struction techniques,the cross-correlation power spectrum between lensing potential and FIRB is unbiased;this is due to the fact that FIRB ?uctuations are assumed to be uncorrelated with unlensed temperature anisotropies Θ(l )F (l ′) =0.

Following our discussion of errors on lensing and FIRB ?uctuation power spectra,we can write the expected error on C F φl as

?C F φl = (2l +1)f sky C F φl 2

+(C φφ,tot l )(C FF ,tot l ) 1/2,

(37)

where C φφ,tot l =C φφl +N φφl is the total contribution in the φpower spectrum.

The associated error on the correlation coe?cient and the bias factor can be calculated by propagating errors related to C φφl ,C FF l ,and,C F φl .For reference,we repro-duce the ?nal result for these errors here.In the case of r corr (l ) ≡C F φl /

C F φ

l 2

+1

C φφ

l +C FF ,tot

l C φφ

l +

C FF ,tot

l C FF l /C φφ

l

:

(?b )2

=

l

b 2(l )

C φφ

l ?

C FF ,tot

l

8Far-infrared background—CMB lensing Cross-Correlation

5.discussion

We now discuss the main results of our paper.We have

introduced a semi-analytic approach to describe the FIRB

?uctuations.The model involves a distribution of dark

matter halos populated by dusty,starforming galaxies.

The basic ingredients of the calculation include properties

of this dark matter distribution,such as the mass func-

tion and clustering properties of dark matter halos,and

properties of the sources responsible for the FIRB.To de-

scribe these sources we have introduced a relation,the halo

occupation number,that attempts to capture how FIRB

sources populate dark matter halos.These model can be

used to calculate measurable properties of the sources such

as their bias as a function of redshift and their spatial cor-

relation with the underlying dark matter as a function of

redshift.

The approach presented here di?ers from previous at-

tempts to model the?uctuations in the FIRB.HK00

used several biasing models,all of which were scale–

independent.The one most similar to our calculation here

assumed all the FIRB sources were in1012M⊙halos and

used the biasing prescription of Mo&White(1996).Be-

cause we include a range of halo masses extending below

1012M⊙and because we take the FIRB mean to be

Song,Cooray,Knox&Zaldarriaga9 than considered here.In such a scenario,we expect source

bias to be larger with an increase in clustering power com-

pared to the results presented here.Such an increase

should be detectable and constrained using observational

data.

While these issues may complicate the direct interpreta-

tion of the observations,a reliable detection of the FIRB-

lensing correlation can allow one to introduce more so-

phisticated analysis techniques to try to understand these

complicating factors.For example,the two power spectra

and the cross-power spectrum can be combined and writ-

ten as C F F

l =b2(l)Cφφ

l

and C Fφ

l

=b(l)r(l)Cφφ

l

,which can

be inverted with appropriate techniques to obtain r(k,z) and b(k,z).Such an inversion requires accurate informa-tion on the FIRB radial weight function which can be ob-tained observationally through the redshift distribution of sources that contribute to FIRB.While unresolved surveys such as Planck will not allow such studies,in the future, targeted studies of resolved FIRB sources,over small but representative patches of sky may provide the necessary information.Constraints on this emissivity as a function of redshift from current data are discussed in Gispert et al. (2000),Chary&Elbaz(2001)and Takeuchi et al.(2001). With an inversion of two-dimensional clustering to three-dimensions one can eventually constrain various aspects of the halo model such as the occupation number(Cooray 2002).While previous studies have motivated the use of FIRB?uctuations alone to understand an important as-pect of the large scale structure and its evolution history, we also suggest that cross-clustering aspects,such as be-tween FIRB and dark matter as traced by gravitational lensing of CMB also plays an important role.

We thank Z.Haiman for the use of emissivity func-tions,ˉj(ν,z),that he calculated.AC is supported at Caltech by a senior research fellowship from the Sherman Fairchild foundation and DOE.LK is supported by NASA Grant NAG5-11098.MZ is supported by NSF grants AST 0098606and PHY0116590,and by the David and Lucille Packard Foundation Fellowship for Science and Engineer-ing.This research was supported in part by the NSF under Grant No.PHY99-07949.

REFERENCES

Almaini,O.,Scott,S.E.,Dunlop,J.S.et al.2001,MNRAS submitted,astro-ph/0108400

Benabed,K.,Bernardeau,F.,van Waerbeke,L.2001,PRD,63, 043501.

Benson,A.J.,Frenck,C.S.,Baugh,C.M.,Cole,S,Lacey,C.G. 2001,MNRAS,327,1041

Blain,A.W.,jameson,A.,Smail,I.,Longair,M.S.,Kneib,J.-P.,& Ivison,R.J.1999,MNRAS309,715

Bond,J.R.,Carr,B.&Hogan,C.1986,ApJ306,428

Bullock,J.S.,Dekel,A.&Kolatt,T.S.2001,MNRAS,321,559 Bunn,E.F.&White,M.1997,ApJ,480,6

Chary,R.&Elbaz,D.2001,ApJ556,562

Cooray,A.2001,PRD,64,043516

Cooray,A.&Hu,W.2000,ApJ,534,533

Cooray,A.,Hu,W.&Termark,M.2000,ApJ,540,1.

Cooray,A.&Kesden,M.2002,PRD submitted,astro-ph/0204068 Cooray,A.&Sheth,R.2002,Physics Reports in press,

astro-ph/0206508.

Cooray,A.2002,ApJL,576,10.

Draine,B.T.,&Lee,H.M.1984,ApJ,285,89

Dwek,A.et al.1998,ApJ,508,106

Eisenstein,D.&Hu,W.1999,ApJ,511,5Fixsen,D.J.,et al.1998,ApJ,508,123

Gispert,R.,Lagache,G.&Puget,J.L.2000,A&A360,1 Goldberg,D.M.&Spergel,D.N.1998,PRD,59,103002 Guiderdoni,B.,Hivon,E.,Bouchet,F.R.&Ma?ei,B.1998, MNRAS,295,877

Guzik,J.,Seljak,U.;,&Zaldarriaga,M.2000,PRD,62,43517 Haiman,Z.,&Knox,L.2000,ApJ,534,11(HK00)

Hauser,M.G.&Dwek,E.,ARA&A39,249

Henry,J.P.2000,ApJ,534,565.

Hu,W.2001a,PRD,64,083005

Hu,W.2001b,PRD,65,023003

Hu,W.&Okamoto,T.2002,ApJ,574,566.

Jing,Y.P.2000,ApJ,535,30

Jing,Y.P.,Mo,H.J.&Boerner,G.1998,ApJ,494,1.

Kaiser,N.,1992,ApJ,388,272.

Kau?mann,G.,Colberg,J.M.,Diaferio,A.,White,S.D.M.1999, MNRAS,303,188

Knox,L.,Cooray,A.,Eisenstein,D.&Haiman,Z.2001,ApJ,550, 7

Lagache,G.,et al.1999,A&A,344,322

Limber,D.1954,ApJ,119,655

Madau,P.1997,in AIP Conf.Ser.393,Seventh Astrophys.Conf., Star Formation Near and Far,ed.S.S.Holt&L.G.Mundy (New York:AIP),481

Magliocchetti,M.,Moscardine,L.,Panuzzo,P.,Granato,G.L.,De Zotti,G.&Danese,L.2001,MNRAS325,1553

Mo,H.J.,&White,S.D.M.1996,MNRAS282,347

Mo,H.J.,Jing,Y.P.,White,S.D.M.1997,MNRAS,284,189 Navarro,J.F.,Frenk,C.S.&White,C.S.1997,ApJ,490,493 Okamoto,T.&Hu,W.2002,PRD submitted,astro-ph/0206155 Peacock,J.A.&Dodds,S.J.1996,MNRAS,280,L19

Press,W.H.,Schechter,P.1974,ApJ,381,349

Puget,J.L.,et al.1996,A&A,308,L5

Risaliti,G.,elvis,M.&Gilli,R.ApJ566L67

Sachs,R.K.&Wolfe,A.M.1967,ApJ,147,73

Scherrer,R.J.&Bertschinger,E.1991,ApJ,381,349

Schlegel,D.J.,Finkbeiner,D.P.&Davis,M.1998,ApJ,500,525 Scoccimarro,R.,Sheth,R.K.,Hui,L&Jain,B.2000,ApJ,546,20 Scott,D.&White,M.1996,A&A346,1

Seljak,U.1996,ApJ,463,1

Seljak,U.2000,MNRAS,318,203

Seljak,U.&Zaldarriaga,M.1999,PRD.60,043504.

Sunyaev,R.A.&Zel’dovich,Y.B.1980,MNRAS,190,413 Takeuchi et al.2001,PASJ53,37

Zaldarriaga,M.&Seljak,U.1999,PRD,59,123507. Zaldarriaga,M.2000,PRD,62,063510

牛津上海版一年级英语上册期末试卷

一年级英语上册期末模拟卷 听力 一Listen and tick (听录音,勾出听到的图片)10分1. 2. ()()( ) ( ) 3. 4. ( ) ( ) ( ) ( ) 5. 6. ( ) ( ) ( ) ( ) 7.8. ( ) ( ) ( ) ( ) 9. 10. ( ) ( ) ( ) ( ) 二Listen and circle. (听录音,圈出听到的内容)10分1.hello hi 2. eye ear 3.four five 4. mouth mother 5.rubber ruler 6. blue brown

7.peach pizza 8. a tall boy a short girl 9.What’s this? It’s a tiger. What’s that? It’s a tiger. 10.Who’s he? He’s Danny. Who’s she? She’s Kitty. 三Listen and number. ( 听录音,根据听到的顺序编号)12分 1. ()()()()()()2.bear blue pencil book pear peach ( ) ( ) ( ) ( ) ( ) ( ) 四Listen and choose ( 听录音,圈出正确的应答句)12分 1.Good morning Hello 2.It’s red. It’s cow. 3.Here you are. Thank you. 4.He is my father. She is my mother. 5.I can dance. Kitty can dance. 6.Yes, it’s a bear. No, it’s a bear. 五Listen and judge. (听录音,判断下列图片是否与录音内容相符,相符的用“√”表示,不符的用“×”表示)10分 1. 2. 3. 4. 5. ( ) ( ) ( ) ( ) ( ) 六Listen and number. (听录音,为句子编号。) 6分

(完整版)人教版小学一年级英语(一起)上册期中测试题

都江堰市七一青城山学校小学一年级 英语上期期中测试题 班级__________ 姓名_____________ 总分_________ 听力部分 一、听录音,给下列图片标序号。(12分) ( ) ( ) ( ) ( ) ( ) ( )二、听录音,选出你所听到的单词选项。(12分) ( )1. A. dog B. bird ( )2. A. ruler B.book ( )3. A. mouth B. ear ( )4. A. monkey B. face ( )5. A.tiger B. touch ( )6. A. pen B.pencil 三、听录音,选出你所听到的句子。(16分) ( )1.A. I have a book. B. I have a ruler. ( )2.A. It’s a bird. B. It’s yellow. ( )3. A. Good night. B. Goodbye! ( )4.A. Stand up! B. Sit down, please. ( )5.A. Touch your ear. B. This is my nose. ( )6.A. Good morning. B. Bye-bye. ( )7.A. Show me your pencil. B. I have a pencil. ( )8. A. Act like a monkey. B. It’s a tiger. 四、听录音,在括号里圈出你所听到的单词。(10分) 1. This is my ( mouth nose ). 2. I have a ( ruler pencil ). 3. Show me your ( schoolbag book ). 4. This is a ( dog cat ). 5. What’s ( this that )?

一年级英语上册期末测试卷

桃李小学2013-2015学年第一学期期末测试卷 一年级英语 听力部分 听老师读单词,将单词与图片用直线连接起来。(20 分) pencil book dog panda bird ?、听读音,涂色(20分) 、听、看图判断或“X”(20分) () () () () () 四、请小朋友们听音看图选择正确的答案并将正确的答案填写在前面的括号里。(16分) ( )1. I am a boy. A. B. )'s a ruler. A. B.

)3. How many It s seve n. A. B. ( )4. It ' s a window. A. B. 笔试部分 一、Look and match.看图连线。(12 分) This is a window . It ' s nine. This is a mon key . It ' s a car.

( )4、别人给你说: 呢 二、情景反应。(根据提示,选出正确的答案)(12分) A Thank you! ( )1、早上你在路上见到了lin gli ng ,与她打 招呼说: ____________ A . Hello , lingling ! B 、Goodbye, lin gli ng ! ( )2、你问别人“你几岁了”应该说什么呢 A、How are you B 、How old are you ( )3、周末你见到了你的奶奶,你想问她最近 好不好,你应该怎么问Happybirthday!你应该说什么B 、How are you !

A、I ' m fine ! B 、How are you !

最新小学一年级英语上册期末考试卷

最新小学一年级英语上册期末考试卷 、听音,排顺序。 A B C 1. two four six 2. pen bag ruler 3. sing read jump 4. eye mouth nose 5. open close sit 二、听音,选择你所听到的单词或句子。 1.A. book B. look 2.A. pen B. pencil 3.A. ruler B. rubber 4.A. ear B. eye 5.A. Raise your hand. B. Put it down. 三、听音,圈出听到的数学数字。 (8 分) 1)4 3 6 2)3 5 2 3)4 6 1 4) 7 2 9 5)1 9 4 6)2 4 9 7)6 3 5 8) 3 2 7 四、听音、补全门牌号。 (5 分) 1) Room 1 4 2) Room 3 2 3) Room 5 3 4) Room 3 __ 五、圈出听到的词。 ( 5 分) 1) ruler face 2) moon doll 3) orange bicycle 4) apple pear 5 ) leaf bean 六、看英语,选中文。 I.read A.读B.写2.danee A.唱歌B.跳舞 3.jump A.跑B.跳 4.draw A.画B.说 5. Touch your arm. A.摸一下你的头。 B.摸一下你的手臂。

6. Wave your hand. A.挥一挥手。。B.挥一挥书。 7.I can sing. A我会唱歌。 B.我会画画。 七、将单词与相应的图片连线。 eye mouth hand nose ear draw write read jump dance

(完整版)人教版一年级上册英语期末试卷

一年级英语上学期期末考试卷 班级姓名 小朋友,紧张的复习已经结束了,下面我们来比比看,谁的收获最大。 听力部分 一、听音排序。14分 ()()()()()()() 二、听音,把单词和图片连线。12分 1、book 2、monkey 3、dog 4、panda 5、cat 6、duck 三、听音判断正误。打√或×。12分 1、2、3、 ()( ) ( )

4、5、6、 ()( ) ( ) 四、听音,判断下列句子对错。10分 1. Hello, I’m Cat. 2. Good morning. 3. This is my book. 4. Hi, I’m Li Yan. 5. Nice to meet you. 五、听一听, 画一画(12分) 1. 2. 3. 4. 六、将句子与小熊相应的位置连起来。(12分) This is my face. This is my eye. This is my mouth. This is my ear. This is my nose.

一、将单词和图片连线(10分) bike balloon eraser doll bear 二、给下面的英语连上正确的汉语意思。(5分) 1. Look at my eye. 你 多大了? 2. This is my pencil. 很高 兴见到你。 3. How old are you? 看我 的眼睛。 4. Nice to meet you. 你叫 什麽名字? 5. What’s your name?这是我的铅笔。 三、看图读单词,请在正确的单词下画笑脸。(15分) 2. 3. 1. pencil-box fox doll ball bird cat

小学一年级英语上册期末考试卷

小学一年级英语上册期末考试卷 这篇《小学一年级英语上册期末考试卷》,是WTT特地为大家整理的,希望对大家有所帮助! 一、听音,排顺序。 A B C 1. two four six 2. pen bag ruler 3. sing read jump 4. eye mouth nose 5. open close sit 二、听音,选择你所听到的单词或句子。 1.A. book B. look 2.A. pen B. pencil 3.A. ruler B. rubber 4.A. ear B. eye 5.A. Raise your hand. B. Put it down. 三、听音,圈出听到的数学数字。(8分) 1)4 3 6 2)3 5 2 3)4 6 1 4)7 2 9 5)1 9 4 6)2 4 9 7)6 3 5 8)3 2 7 四、听音、补全门牌号。(5分) 1)Room 1 4 2)Room 3 2 3)Room 5 3 4)Room 3 __ 五、圈出听到的词。(5分) 1)ruler face 2)moon doll 3)orange bicycle 4)apple pear 5)leaf bean 六、看英语,选中文。 1.read A.读B.写 2.dance A.唱歌B.跳舞 3.jump A.跑B.跳 4.draw A.画B.说 5.Touch your arm. A.摸一下你的头。B. 摸一下你的手臂。 6.Wave your hand. A.挥一挥手。。B.挥一挥书。

7.I can sing. A.我会唱歌。B.我会画画。 七、将单词与相应的图片连线。 eye mouth hand nose ear draw write read jump dance

2020年小学一年级英语上册期末测试题

2016年小学一年级英语上册期末测试题 一、把字母大小写相连20分 D J R N Y B K L S E j b r y d n e s l k 二、写出横线上的英文字母(20分) _____Cc_____ _____Hh_____ _____Mm_____ _____ Oo ______ _____ Uu ______ 三、选出不同类的单词、(只写序号)10分 ()1、A, draw B, cook C、red ()2、A, dance B, grape C、banana ()3、A, box B, blue C、balloon ()4、A, blue B, green C、book ()5、A, cold B ,beanie C、coat 四、选出下列单词的汉语意思、(只写序号)10分 ()1、I A, 我B, 你 ()2、yes A, 不是B, 是的 ()3、red A, 红色B, 绿色 ()4、your A, 你的B, 我的 ()5、robot A, 机器人B ,先生 五、给下列句子选择正确的汉语意思。(只写序号)20分 ()1、good morning A, 早上好B, 下午好 ()2、Thank you . A, 对不起B, 谢谢你 ()3、Oh 、no ! A, 哦、不!B,哦、是的。 ()4、This is Miss Li. A, 这是李老师。B, 这是李先生。 ()5、Look at my balloon.

A, 看我的气球。B ,给我一个气球 ()6、I can dance. A, 我会画画。B, 我会跳舞。 ()7、It’s blue. A, 它是蓝色的。B,它是黑色的。 ()8、great. A, 太棒了。B, 我喜欢。 ()9、Put on your scarf . A,戴上你的围巾B, 穿上你的外套 ()10、It’s cold . A, 天气很冷。B ,天气很热。 六、情景交际、选择正确答案、把序号写在括号里。20分 ()1、早上你遇见了小强、你想和他打招呼、你可以说:________. A, Good morning B, Good night. ()2、你告诉妈妈你喜欢吃葡萄、应该说:________。 A, I like grapes. B,I like bananas . ()3、放学后、你想跟同学说再见、应该说:________ A, Good afternoon . B, Goodbye . ()4、请给我一个粉色的气球、应该说:________ A, A pink balloon,please B, A blue box,please . ()5、夸赞别人的东西漂亮、应该说:________ A, It’s nice . B, Thank you .

一年级上册英语试题-期末测试卷(一) (含答案)

一年级英语上册期末测试卷(一) Part1 Listening(第一部分听力) 一、Listen and number (听录音,按顺序给下列图片编号) 1. A. B. C. D. E. 2. A. B. C. D. E. 二、Listen and circle (听录音,圈出你听到的单词) ( ) 1. A. pen B. pencil ( ) 2. A. apple B. pear

( ) 3. A. mother B. father ( ) 4. A. balloon B. ball ( ) 5. A. seven B. six ( ) 6. A. mouth B. face 三、Listen and circle (听录音,圈出May拥有的东西) A. B. C. D. E. F. G. H. 四、Listen and circle (听录音,圈出正确数量的物品) 1.

2. 3. 4. 5. 6. 五、Listen and choose (听录音,圈出你听到的单词) ( ) 1. I have got a ________. A. mouth B. school

( ) 2. I wash my ________ every day. A. hands B. book ( ) 3. I ________ got a ball. A. have B. has ( ) 4. I like to eat __________. A. mooncakes B. cakes ( ) 5. I have got two _________. A. eyes B. hands 六、Listen and judge (听录音,判断下列图片与录音是“√”否“×”一致) ( ) 1. ( ) 2. ( ) 3. ( ) 4. ( ) 5. ( ) 6. 七、Listen and match (听录音,把他们各自喜欢的食物用线连起来) 1. May A.

北京版小学英语一年级上册期末试题

第一学期一年级英语 班级姓名成绩 听力部分(60分) 一、听单词,与图片相符的画“√”,不相符的画“×”。单词读两遍。10分 1.2.3. 4. ( )( ) ()( ) 5. 6.7 8 () () () () 9 10 ( ) ( ) 二、听单词,将听到的图片圈起来。10分 1. 2. 3. 4.

5. 三、按听到的顺序给单词排序号,单词读两遍。10分 1. ()()() 2. ( ) ()() 3. () ( )()( ) 四、将听到的单词圈起来。单词读两遍。10分 (1)boat coat (2)lakecake(3) gate late (4)wood foot (5) bag bed(6)key knee (7) catbag(8) cuphut (9) kite bike(10) cat kite 五、选出听到的句子,把字母选项写在题前括号内。10分 ( )1. A.Hello,boys andgirls! B.Hi,Lingling! ( )2. A. Good morning, Maomao! B.Goodmorning, Lingling! ( )3. A. My name is Maomao. B. I am Maomao.

( )4. A. Comehere, please. B.Sit down,please. ()5, A. I see a key on his knee. B. Iseeabee on his arm. 六、按听到的顺序给句子排序号。10分 ()Good morning,Lingling! ()Good afternoon, Miss Wang! (1)Hello, boys and girls! ( )Goodbye,Guoguo! ( )What’syour name? ()Goodnight! 笔试部分 一、选择与图片相符的单词,把单词圈起来。10分 1.cat bag 2.wood foot 3.kite bike 4. keybee 5.cake gate 二、把字母选项写在图片下。5分 A.Kate B.Maomao C.Lingling D.wood E. Lala ()() ()()( ) 三.将单词序号写在方框内。6分 1. bag 2. knee 3. bee 4. kite 5. key 6.bike

北京版-一年级英语上册期末试卷

一年级英语期末试卷 二、听力部分 一Listen and tick (听录音,勾出听到的图片)16分1. 2. () ()( ) ( ) ()3. 4. ( ) ( ) ( ) ()5. 6. ()()()()7. 8. ()( )( ) ( ) 二Listen and circle. (听录音,圈出听到的内容)16分 1. fish dish 2. cake lake 3. morning evening 4. car card 5.ear beard 6. boat coat 6.I can jump. I can swim. 7.Happy Chinese New year! Happy New year!

8.This is my uncle. This is my auntie. 三Listen and number. ( 听录音,根据听到的顺序编号)16分1. ()()()() 2. ()()()() 四Listen and choose ( 听录音,圈出正确的应答句)12分 1.Good morning Good afternoon. 2.Fine, thank you. No, I can’t. 3.Merry Christmas. Happy Chinese New year. 4.Goodbye. Hello. 5.I can dance. Kitty can dance. 6.Nice to meet you. I can fly. 五Listen and judge.(听录音,判断下列图片是否与录音内容相符的用“√”表示,不符的用“×”表示)10分 ()()()()

2020小学一年级英语上册期末试题

2017小学一年级英语上册期末试题 一、单选 1. Glad ________ meet you . A.to B.in C.from 3. —Goodbye! —_____________. A .I’m 10.B.Bye.C.My name is Li Ming. 3 ―How are you? ―______________. A.Hi. B.I’m fine, thank you. C.Hello. 4 —Hello! I’m Billy! —___________ A.OK.B .Hello! I’m Li Ming.C.Thank you. 5 –Good morning.– . A.Good morning. B.Good night.C .Goodbye. 二、情景填空 1. 询问别人身体状况时常说: A.I’m fine. B.How are you ? C.Fine. 2.“Hi!”的另一种表达方式是: A.Bye ! B.Hello ! C.OK ! 3. 早晨见到你的老师和同学,应说: A.Goodbye! B.OK ! C.Good morning ! 4. 我们一起玩乒乓球吧! A.let’s play ping-pang. B.OK. C.Excuse me. 5.当你与人分别时,应说: A .Bye.B.Hi.C.Me, too. 三、为下列句子选择正确译文 1.Let’s play a game, OK? A.让我们去做游戏,好吗? B.让我们去打乒乓球,好吗? 2. How are you? A.很高兴见到你。 B.你好吗?

3.Good morning. A.早上好。 B.请起立。 4. what’s your name? A.你好。 B.你叫什么名字? 5 How old are you? A.晚上好。 B.你几岁了?

小学一年级英语上册期末试卷

小学一年级英语上册期末试卷 班级姓名 一、听音,排顺序。 A B C 1. two four six 2. pen bag ruler 3. sing read jump 4. eye mouth nose 5. open close sit 二、听音,选择你所听到的单词或句子。 ( )1.A. book B. look ( )2.A. pen B. pencil ( )3.A. ruler B. rubber ( )4.A. ear B. eye ( )5.A. Raise your hand. B. Put it down. 三、听音,圈出听到的数学数字。(8分) 1)4 3 6 2)3 5 2 3)4 6 1 4) 7 2 9 5)1 9 4 6)2 4 9 7)6 3 5 8) 3 2 7 四、听音、补全门牌号。(5分) 1)Room 1 4 2) Room 3 2 3)Room 5 3 4) Room 3 __ 五、圈出听到的词。 (5分) 1) ruler face 2) moon doll 3) orange bicycle 4) apple pear 5) leaf bean 六、看英语,选中文。 ( ) 1.read A.读 B.写 ( ) 2.dance A.唱歌 B.跳舞( ) 3.jump A.跑 B.跳 ( ) 4.draw A.画 B.说( ) 5.Touch your arm. A.摸一下你的头。 B. 摸一下你的手臂。

( ) 6.Wave your hand. A.挥一挥手。. B.挥一挥书。 ( ) 7.I can sing. A.我会唱歌。 B.我会画画。 七、请对照所给单词,在方框中圈出单词。 sing s i n g o e g n book h n b o b o o k ruler r a r u l e r e face sister d h s i s t e r doll g m d o l l l o melon j l e m e l o n g f e c f a c e 英语字母发音规则 要想学好英语口语,应该学一些语音知识,以下是我总结的一些有关语音的知识, 1 元音: [i:] [i] [A] [e] [[:] [[] [a:] [Q] [R:] [R] [U:] [U] [ei] [ai] [aU] [EU] [Ri] [i[] [Z[] [UE]

一年级上册英语期末测试题

一年级英语期末测试题 一,把字母大小写相连20分 D J R N Y B K L S E j b r y d n e s l k 二,写出横线上的英文字母(20分) Cc Hh Mm ________ Oo _________ ________ Uu 三,选出不同类的单词,(只写序号)10分 ()1,A, draw B, cook C,red ()2,A, dance B, grape C,banana ()3,A, box B, blue C,balloon ()4,A, blue B, green C,book ()5,A, cold B ,beanieC,coat 四,选出下列单词的汉语意思,(只写序号)10分 ()1,I A, 我B, 你 ()2,yes A, 不是B, 是的 ()3,red A, 红色B, 绿色 ()4,your A, 你的B, 我的 ()5,robot A, 机器人 B ,先生 五,给下列句子选择正确的汉语意思。(只写序号)20分 ()1,good morning A, 早上好B, 下午好 ()2,Thank you . A, 对不起B, 谢谢你 ()3,Oh ,no !A, 哦,不!B,哦,是的。()4,This is Miss Li. A, 这是李老师。B, 这是李先生。()5,Look at my balloon. A, 看我的气球。 B ,给我一个气球。()6,I can dance. A, 我会画画。B, 我会跳舞。 ()7,It’s blue. A, 它是蓝色的。B,它是黑色的。 ()8,great. A, 太棒了。B, 我喜欢。 ()9,Put on your scarf . A,戴上你的围巾。B, 穿上你的外套。 ()10,It’s cold . A, 天气很冷。 B ,天气很热。

外研版小学一年级上册英语期末试卷及答案

一年级英语期末测试卷 考试时间:40分钟听力部分:(70分) 一、听录音给下列图片用数字1、2、3、4、5排一排(10分) ()()()() ()二、听音对的画,错的画(10分) 1、2、 Stand up! window 3、4、 dog three 5、 panda 三、听句子给图片用数字1、2、3、4、5排一排(10分) ()()()() () 四、听句子,圈出你所听到的单词(10分) 1、What ’s your ________? (name nine) 2、How are you? I ’m_______. (fine five) 3、That is my_________.(father grandpa) 4、It ’s a yellow_________.(cat dog) 5、What colour? It ’s _____.(balck blue) 学校 班级姓名

五、听音,给图片涂上漂亮的颜色吧。(10分) 六、听一听,把人和带有号码的衣服用线连起来。(10分) two ten seven three eight 七、听一听,给下列句子用1、2、3、4、5标上序号,组成一段完整的对话(10分) ()I’m fine. How are you? ()How are you? ()Hello! I’m Sam. ()I’m fine, too. Thank you. ()Hi! Sam.

笔试部分:(30分) 一、请将图片和对应的单词连线(10分) school bag book eraser pen pencil case 二、选择正确答案的序号填在括号里。(10分) 1.“How old are you ?” 的意思是:() A. 你叫什么名字 B. 你好 C. 你几岁了 2. Sam过生日那天,他的朋友们都对他说:() A. What’s your name? B. Happy birthday. 3.别人对你说Thank you. 你应该客气的回答:() A. Hello. B.You’re welcome. C. Good morning. 4.当你想问问别人的名字时你可以说:() A. What’s your name? B. How are you? 5. 当你想说在远处有一只猫,你可以说:( ) A. This is a cat. B. That is a cat.

人教版一年级上册英语期末试卷

人教版一年级上册英语期末试卷班级姓名 小朋友,紧张的复习已经结束了,下面我们来比比看,谁的收获最大。 听力部分 一、听音排序。14分 ()()()()()()() 二、听音,把单词和图片连线。12分 1、book 2、monkey 3、dog 4、panda 5、cat 6、duck 三、听音判断正误。打√或×。12分 1、2、3、 () ( ) ( )

4、5、 6、 () ( ) ( ) 四、听音,判断下列句子对错。10分 1. Hello, I’m Cat. 2. Good morning. 3. This is my book. 4. Hi, I’m Li Yan. 5. Nice to meet you. 五、听一听, 画一画( 12分) 1. 2. 3. 4. 六、将句子与小熊相应的位置连起来。(12分) This is my face. This is my eye. This is my mouth. This is my ear. This is my nose. 一、将单词和图片连线( 10 bike balloon eraser doll bear 二、给下面的英语连上正确的汉语意思。(5分) 1. Look at my eye. 你 多大了? 2. This is my pencil. 很高兴

见到你。 3. How old are you? 看我 的眼睛。 4. Nice to meet you. 你叫 什麽名字? 5. What’s your name?这是我的铅笔。 三、看图读单词,请在正确的单词下画笑脸 。(15分) 2. 3. 1. 4. 5. 6. 附听力材料: 一、1. bird 2. panda 3. bag 4. ball 5. monkey 6. dog 7. cat 二、略 三、1、This is my glue. 2、This is my knife. 3、This is my pen. 4、This is my pencil. 5、This is my bag. 6、This is my eraser. 四、 1. Hello, I’m Mickey. 2. Good morning. 3. This is my book. 4. Hi, I’m Gao Wei. 5. Nice to meet you. bird ___ cat doll __ ball ___ fox ___ pencil- box____ head ___ hand ___ cat ___ kite ___ panda ____ dog ___

黄冈市一年级上学期英语期末测试

黄冈市一年级上学期英语期末测试 姓名:________ 班级:________ 成绩:________ 小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的! 一、根据图片,选出与图片相符的单词。(共10分,每小题2分) (共5题;共10分) 1. (2分)fan A . B . 2. (2分) Mr Zhang is old. A . B . 3. (2分) leg A . B . 4. (2分) A . Look at the hair. It's long. B . Look at the hair. It's short. 5. (2分) I hear a hen. A . B . 二、看图,填单词。 (共12分,每小题2分) (共1题;共12分) 6. (12分)选词填空

A. last B. few C. Cross D. On E. on (1)— Where is the hotel? —________ the street, there it is. (2) The restaurant is________ the left. (3) It takes a________ minutes go there. (4) I moved to the house ________month. (5) ________ the main street is a school. 三、读句子,选出正确的图片。(共8分,每小题2分) (共4题;共8分) 7. (2分) I like mushrooms. A . B . 8. (2分) (2019六上·龙岗期末) A . Don't use shopping bags. B . Don't throw rubbish into rivers. C . Don't recycle glass and paper. 9. (2分)—What are they doing? —________ A . They're talking. B . They're drawing.

一年级上英语期末测试题及答案

7. 8. 9. 10. 二、听一听,排一排。(8分) ()()()() 三、听音,连一连。(9分) girl panda boy

四、听音,圈yes 或no。(8分) 五、听录音,给图涂上颜色。(15分) 1. 2. 3. 笔试(40分) 一、连一连。(12分) red 黄色 yellow 红色window 门 door 窗户

one 二two 一二、读一读,连一连。(8分) book pencil window pen 三、看一看,连一连。(8分) 1.a panda pandas 2. pen pens 四、找出句子的小伙伴。(4分) 1. How are you ? Hi, I’m Sam. 2. Hello, I’m Daming. I’m fine, thank you 五、数一数,写数字。(8分) ()()() (()() 孩子们,认真检查哦!争取考出好成绩!

答案:听力部分 一、1、2、2、1、2、1、2、1、2、2 二、4213 三、boy、panda、girl 四、1、Is this a bird? Yes. 2、Is it a kite? No. 3、Is that a panda?No. 4、Is this a cat、Yes. 五、red、green、yellow、blue、orange 笔试部分 一、1、红色、黄色2、窗户、门3、一、二 二、铅笔、书、钢笔、窗户 三、1、pandas\panda 2、pens\pen 四、1. How are you ? I’m fine, thank you 2. Hello, I’m Daming. Hi, I’m Sam. 五、3、2、1、4、5、6

一年级英语上册期末教学工作总结

一年级英语上册期末教学工作总结 为了全面提高英语教学的质量,为学生提供丰富的英语资源及环境,探索适合当代少儿英语学习的新思路、新手段,本学期学校按照上级要求,积极引进攀登英语实验项目。经过一学期的探索与实践,取得了预期的效果,现将攀登英语教学工作总结如下: 一、前期工作打基础 1、学校的大力支持是开展攀登英语实验工作的首要前提。 硬件配置:根据攀登英语教材的特点,我校及时为7个实验班配备了电视和EVD为顺利开展教学工作奠定了物质基础。 师资保证:学校安排四名有经验的年轻英语教师担任攀登英语教学,为成功开展攀登英语实验工作提供了人力保障。 2、及时与家长沟通是顺利开展攀登英语实验工作的有 力保障。 攀登英语分课堂学习和家庭学习两部分,在教学中需要家长的密切配合,开学第一周,我校及时召开了攀登英语家长说明会,张校长亲自介绍了攀登英语教学开设情况,陈主任专门介绍了攀登英语教学的理念、特点,以及需要家长配合的方面,并用光盘播放了一节英语示范课,让家长初步了解攀登英语的课堂结构和课堂理念,教会了家长如何使用学生资料

包,同时在家庭学习的时间上,给他们做了一定的要求。通过家长说明会的宣传,家长自愿购买了攀登英语简易包,一年级460名学生都征订了学习资料,为攀登英语教学提供了有力的保障。 二、具体工作显成效 (一)规范管理抓基础 1. 定期召开学校领导和课题组成员会议,研究讨论攀登英语实施中存在的问题和策略。 2. 进一步建立健全各项制度。为了使实验教学有章可循,学习并制定攀登英语课题管理制度,切实强化充实各项制度:例会制度。听课评课制度。培训学习制度。家校联系制度。资料收集建档制度等。 3. 根据本学期的教学内容定期举行攀登英语教师培训。 组织教师观看观摩课光盘,研读《老师指导》,明确学习内 容及相应的重点。 4. 规范课堂常规,坚持攀登英语教学原则。 本学期,科任教师严格按照攀登英语的五步上课模式, 组织多种多样的活动开展教学,激发了学生的学习兴趣,课堂教学中师生始终坚持“ Englishonly ”的原则,使攀登英语教学成为了我校的一大亮点,各科任教师大胆实践,不断创新,开创了攀登英语教学的新局面。 (二)开展活动促教学

(快乐英语)一年级英语上册期末试卷

快乐英语期末试卷 姓名:一、连一连。( 24分) pencil box pen bag book eraser chair knife

ruler 二、选择填空。( 10分) ( )1. Glad ________ meet you . A. to B. in C. from ( ) 3. —Goodbye! —_____________. A . I’m 10. B. Bye. C. My name is Li Ming. ( )3 ―How are you? ―______________. A. Hi. B. I’m fine, thank you. C. Hello. ( )4 —Hello! I’m Billy! —___________ A. OK. B . Hello! I’m Li Ming. C. Thank you. ( )5 –Good morning. –. A. Good morning. B. Good night. C . Goodbye. 三、情景填空。( 10分) ( ) 1. 询问别人身体状况时常说: A.I’m fine. B. How are you ? C.Fine. ( ) 2.“Hi!”的另一种表达方式是: A. Bye ! B. Hello ! C. OK ! ( ) 3. 早晨见到你的老师和同学,应说:

A. Goodbye! B.OK ! C. Good morning ! ( ) 4. 我们一起玩乒乓球吧! A. let’s play ping-pang. B.OK. C. Excuse me. ( ) 5.当你与人分别时,应说: A . Bye. B. Hi. C. Me, too. 四、为下列句子选择正确译文。(每题2分,共10分) ( )1.Let’s play a game, OK? A. 让我们去做游戏,好吗? B. 让我们去打乒乓球,好吗? ( )2. How are you? A. 很高兴见到你。 B. 你好吗? ( )3.Good morning. A. 早上好。 B. 请起立。 ( )4. what’s your name? A. 你好。 B. 你叫什么名字? ( )5 How old are you? A. 晚上好。 B. 你几岁了? 五、连一连。(20分) 1 2 3 4 5 one three five seven nine two four six eight ten 6 7 8 9 10 六、判断,选择正确的单词。(10) ( ) 1嘴巴 A mouth B nose ( ) 2脚 A foot B toes

一年级上册英语期末考试卷 (含答案)

一年级第一学期英语期末检测题 题号一二三四五六七总分等级得分 听力部分 一、听单词选图片。(5*3=15) 1、( ) A B 2、( ) A B 3、( ) A B 4、( ) A B 5、( ) A B

二、听句子选图片。(5*3=15) 1、() A B 2、() A B 3、() A B 4、() A B 5、() A B 三、听音排序. ( 5*2=10 ) ( ) red ( ) black ( ) blue ( ) yellow ( ) green

笔试部分 四、选词填空。( 5*2=10 ) A a B an 1、I have ( ) ruler. 2、I have ( ) apple. 3、I have ( ) book. 4、I have ( ) orange. 5、I have ( ) pear. 五、将下列图片与单词连线。(5*3=15) 1、 A 2、 B 3、 C 4、 D 5、 E ten banan a orang e seven pear

六、根据句子和图片选择答案。( 5*3=15) A One B Two C Five D Six E Eight 1、 How many monkeys are there? ( ) 2、How many dogs are there? ( ) 3、How many tigers are there? ( ) 4、 How many apples are there? ( ) 5、 How many cats are there? ( ) 七、分一分。( 2*10=20) 1、与blue 是一类的是:( ) ( ) ( ) ( ) 2、与pear 是一类的是:( ) ( ) 3、与five 是一类的是:( ) ( ) ( ) ( ) B four C black D two A apple E six F red H green G banana J yellow I nine

2017-2018小学一年级册上英语期末测试题及答案

小学一年级英语期末测试题(上)一,选出与单词相符的图片,(只写序号)10分 ()1,teacher A, B, ()2,mouth A, B , ()3,orange A, B , ()4,seven A, B, ()5,monkey A, B , 二,选择与图片相符的单词。只写序号(10分) ()1,book A, ()2,nose B, ()3,dog C, ()4,pear D, ()5,bird E, 三,选出与句子相符的图片,只写序号。10分 ()1,It’s a ruler . A,

()2,It’s black . B, ()3,This is my eye C, ()4 I like apples . D, ()5,It’s a tiger . E, 四,选出不同类的单词,(只写序号)10分 ()1,A, one B, two C,apple ()2,A, tiger B, orange C,banana ()3,A, pencil B, cat C,schoolbag ()4,A, blue B, green C,book ()5,A, eye B ,six C,ear 五,选出下列单词的汉语意思,(只写序号)10分 ()1,I A, 我B, 你 ()2,yes A, 不是B, 是的 ()3,red A, 红色B, 绿色 ()4,my A, 你的B, 我的 ()5,nine A, 九 B ,十 六,给下列句子选择正确的汉语意思。(只写序号)20分()1,What’s this ? A, 这是什么?B, 他是谁? ()2,Thank you . A, 对不起B, 谢谢你

相关文档
最新文档