高一数学必修(1)复习:第二章函数知识点总结

第二章 函数知识点归纳

总论:

知识网络结构图

一、函数的概念与图像

设D 是一个非空的实数集,如果有一个对应规则f ,对每一个D x ∈,都能对应唯一的一个实数y ,则这个对应规则f 称为定义在D 上的一个函数,记以()x f y =,称x 为函数的自变量,y 为函数的因变量或函数值,D 称为函数的定义域,并把实数集 (){}

D x x f y y Z ∈==, 称为函数的值域。 注意点:①定义域 ②对应规则 ③所谓同一函数必须要定义域和对应规则完全一致。 1、求定义域的主要依据:

(1)若函数()x f y =为整式,则定义域为实数集R ; (2)分式的分母不为零;

(3)偶次方根的被开方数不小于零; (4)对数函数的真数必须大于零; (5)若函数()f

x 由几个部分的数学式子构成的,定义域为使各个式子有意义的实数的集合的交集;

(6)如果函数由解决实际问题列出,定义域为符合实际意义的实数集。 例1、下列各对函数中,相同的是( )

A 、x x g x x f lg 2)(,lg )(2

== B 、)1lg()1lg()(,1

1

lg

)(--+=-+=x x x g x x x f C 、 v

v

v g u u u f -+=

-+=

11)(,11)( D 、f (x )=x ,2)(x x f = 例2、}30|{},20|{≤≤=≤≤=y y N x x M 给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( )

A 、 0个

B 、 1个

C 、 2个

D 、3个

例3、(05江苏卷)函数20.5log (43)y x x =

-的定义域为________________________

2、求函数值域的主要方法:

(1)直接法:从自变量x 的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;

x

x

x

x

1 2 1 1 1 2 2 2 1

1

1

1

2 2 2 2 y y y

y 3 O

O

O

O

(2)换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; (3)利用对勾函数;

(4)分离常数:适合分子分母皆为一次式(x 有范围限制时要画图); (5)单调性法:利用函数的单调性求值域;

(6)几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数 例1、2

1

23

y x x =

++ ; 2()2242f x x x =-+- 例2、12-+-=x x y

例3、8

2(4)y x x x =+

≥ 例4、1+=x x y ;31

(24)21x y x x -=

-≤≤+ 例5、3

([1,3])2y x x

=∈- 例6、21y x x =+--

3、重要函数图像

(1)一次函数(正比例函数)图像及其性质:

(2)反比函数图像及其性质:

(3)二次函数图像及其性质:

①二次函数f(x)=ax 2

+bx+c(a ≠0)的图象是一条抛物线,对称轴2b x a -=,顶点坐标2

4(,)24b ac b a a

--

②二次函数与一元二次方程关系:

③闭区间上二次函数的最值问题:

是分类讨论,数形结合,函数方程,转化思想的四个数学思想的集中体现一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般来说首先考虑开口方向。

设f x ax bx c a ()()=++≠2

0,求f x ()在x m n ∈[],上的最大值与最小值。将f x ()配方,得顶点为

24(,)24b ac b a a

--、对称轴为x b a =-2

当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: 最小值:对称轴与区间端点大小比较进行分类讨论

(1)当[]

-∈b a

m n 2,时,f x ()的最小值是2

4()24b ac b f a a --=

当[]

-

?b

a m n 2,时, (2)若-

a m 2,由f x ()在[]m n ,上是增函数则f x ()的最小值是f m (); (3)若2b

m a

->,由f x ()在[

]

m n ,上是减函数则f x ()的最小值是f n ()。 最大值:对称轴与区间中点比较进行分类讨论

(1)当22b m n a +-

≥时,f x ()的最大值是f n (); (2)当22

b m n a +-<时,f x ()的最大值是f m (); 当a <0时,可类比得结论。

例1、设),](1,[,44)(2

R t t t x x x x f ∈+∈--=求函数)(x f 的最小值)(t g 的解析式。

例2、已知二次函数2f (x )ax (2a 1)x 1=+-+在区间3,22??

-

????

上的最大值为3,求实数a 的值。 例3、已知函数2

()2

x f x x =-+在区间[,]m n 上的最小值是3m 最大值是3n ,求m ,n 的值 ④二次方程根分布问题:

点拨:从三个方面进行分析:(1)0?>(有不等实数根);(2)对称轴;(3)端点的函数值 例1、已知方程()2210x m x m -++=有两个不等正实根,求实数m 的取值范围. 例2、方程0122

=++mx mx 有一根大于1,另一根小于1,求实根m 的取值范围是

例3、已知关于x 的方程0122)2(2=+-+-m x x m 至少有一个根在区间(1, 2)内,求实数m 的取值范围. (4)对勾函数图像:

二、函数的表示方法与表达形式

1、函数表示的三大方法:列表法、解析法、图像法

例1、购买某种笔x 支,所需花y 元,若每支笔需2元,试分别用解析法、列表法、图像法将y 表示成x (}{

1,2,3,4x ∈)的函数,并指出函数的值域。 2、函数的表达形式:

(1)一般表达形式:()x f y =

(2)分段函数:如果自变量在定义域内不同的值,函数不能用同一个表达式表示,而要用两个或两个以上的表达式来表示。这类函数称为分段函数。

例如 ()??

???>≤≤--<+==151111

2

x x x x

x x x f y (3)复合函数:设()u f y = 定义域U , ()x g u = 定义域X ,值域*U 。 如果U U ?*,则()[]x g f y =是定义在X 上的一个复合函数。其中u 称为中间变量。 例2、已知()1

-=

x x

x f ,求()??

????-11x f f

例3、()x 已知f 的定义域是[-2,5],求f(2x+3)的定义域。

练习:①(21)x x 已知f -的定义域是[-1,3],求f()的定义域。

②设2()lg

2x f x x +=-,则2

()()2x f f x

+的定义域为__________ 三、函数的简单性质

1、函数表示法的“无关性”:

函数的表示法只与定义域和对应规则有关,而与用什么字母表示无关,即

简称函数表示法的“无关性”。

例1、25y x =+ 与25y u =+ 是否为同一函数?

2、函数的单调性:

如果对于某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2).那么就说f(x)在 这个区间上是增函数。如果对于某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2).那么就是f(x)在这个区间上是减函数。

注意点:设()[]x g f y =是定义在M 上的函数,若f(x)与g(x)的单调性相反,则()[]x g f y =在M 上是减 函数;若f(x)与g(x)的单调性相同,则()[]x g f y =在M 上是增函数。 例1、证明函数)()(3R x x x f ∈-=的单调性

例2、函数)26(log 21.0x x y -+=的单调增区间是________ 例3、已知(31)4,1

()log ,1

a a x a x f x x x -+

>?是(,)-∞+∞上的减函数,那么a 的取值范围是 ( )

(A )(0,1) (B )1(0,)3

(C )11[,)73

(D )1[,1)7

3、函数的奇偶性:

设区间X 关于原点对称,若对X x ∈,都有()()x f x f -=-,则称()x f 在X 上是奇函数;若对X x ∈,都有()()x f x f =-,则称()x f 在X 上是偶函数。

重要性质:(1)奇函数的图象关于原点对称;偶函数图象关于y 轴对称;

(2)若函数f(x)的定义域关于原点对称,则f(0)=0 (3)奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇

判断函数奇偶性的主要方法:①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系

例1、已知定义域为R 的函数12()2x x b

f x a

+-+=+是奇函数。

(Ⅰ)求,a b 的值;(Ⅱ)若对任意的t R ∈,不等式2

2

(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围; 例2、已知函数)(x f 是定义在),(∞+∞-上的偶函数. 当)0,(∞-∈x 时,4)(x x x f -=,则当),0(∞+∈x 时,

=)(x f .

习题:若奇函数))((R x x f ∈满足1)2(=f ,)2()()2(f x f x f +=+,则=)5(f _______

相关文档
最新文档