沉淀法制备氧化锌粉体_郑兴芳

沉淀法制备氧化锌粉体_郑兴芳
沉淀法制备氧化锌粉体_郑兴芳

沉淀法制备氧化锌粉体

郑兴芳,郭成花,郑建国

(临沂大学化学化工学院,山东临沂276005)

摘要:以碳酸钠和硫酸锌为原料,采用沉淀法制备前驱体碱式碳酸锌,前驱体经过热分解得到氧化锌粉体。采用热重分析(TG-DTG-DTA)、X射线衍射(XRD)、红外光谱(IR)和扫描电镜(SEM)等方法对前驱体和产品氧化锌进行表征。结果表明:制备的前驱体为碱式碳酸锌Zn

4

(OH)6CO3;以水、乙二醇为溶剂及聚乙二醇(PEG)为分散剂,均可制备出较为纯净的氧化锌;乙二醇为溶剂和PEG为分散剂,改善了氧化锌的形貌和分散性,避免了氧化锌团聚。

关键词:氧化锌;制备;沉淀法

中图分类号:TQ132.4文献标识码:A文章编号:1006-4990(2012)03-0019-03

Preparation of zinc oxide powder by precipitation method

Zheng Xingfang,Guo Chenghua,Zheng Jianguo

(School of Chemistry and Chemical Engineering,Linyi University,Linyi276005,China)

Abstract:The precursor,basic zinc carbonate was obtained by precipitation method with ZnSO4and Na2CO3as raw materials. Then ZnO powders were prepared after pyrolysis of precursor.Precursor and ZnO powders were characterized and analyzed by TG-DTG-DTA,XRD,IR,and SEM respectively.Results showed that the precursor was Zn4(OH)6CO3;pure ZnO can be both prepared by water and ethylene glycol as solvents and by PEG as dispersant;and the morphology and dispersibility of ZnO could be improved and agglomeration could be avoided with ethylene glycol as solvent and PEG as dispersant.

Key words:zinc oxide;preparation;precipitation method

纳米氧化锌由于其粒子尺寸小、比表面积大、具有明显的表面与界面效应等特点,在化学、光学、生物和电学等方面表现出许多独特的优异的物理和化学性能,被广泛应用于变阻器、气体敏感材料、电材料以及光材料等重要领域。人们已经用水热法[1-2]、溶胶-凝胶法[3-4]、沉淀法[5-7]等多种方法制备出纳米氧化锌。其中沉淀法因操作简便、原料廉价易得、对设备要求不太苛刻、反应时间短、生产成本低等优点而倍受人们关注,是一种非常有前途、较易于工业化的制备方法。但是,这种方法的缺点是生成的产品粒子粒径分布较宽。选择合适的沉淀剂可以很好地控制颗粒的形貌和分散性。乙二醇、聚乙二醇在制备粉体过程中可以吸附或包覆在被分散颗粒表面,产生空间位阻,使得颗粒处于均匀分散状态,从而阻止颗粒团聚,因而广泛应用于纳米粉体的制备[8-15]。笔者以ZnSO

4

·7H2O和Na2CO3为原料,以乙二醇和PEG 为分散剂,采用化学沉淀法制备ZnO粉体。

1实验部分

1.1试剂

硫酸锌、碳酸钠、氯化钡、乙二醇、PEG6000,均为分析纯。

1.2样品的制备

配制浓度均为1mol/L的ZnSO

4

水溶液和乙二

醇溶液以及Na

2

CO3水溶液,在ZnSO4水溶液中加入一定量的分散剂。按碳酸钠与硫酸锌物质的量之比为1∶1,将硫酸锌溶液滴加到碳酸钠溶液中,机械搅拌1h。抽滤,用蒸馏水洗涤(用氯化钡溶液检验无SO42-为止)。将滤饼在100℃条件下烘干得到前驱体。前驱体在马弗炉中焙烧4h得到产物。

1.3产物表征

产物XRD分析采用BrukerD8型X射线衍射仪。产物形貌分析采用S-3400N型扫描电镜。产物IR分析采用FT-IR200型傅里叶变换红外光谱仪。产物热重分析采用ZRY-1P型热重分析仪。

2结果与讨论

2.1TG-DTG-DTA分析

图1为以水为溶剂制得前驱体热分析曲线。从图1可以看出:在60~110℃有微量质量损失过程,应为颗粒表面吸附水的脱附造成的;在230~270℃

为主要质量损失阶段,为OH-和CO

3

2-的分解过程,

第44卷第3期2012年3月

无机盐工业

INORGANIC CHEMICALS INDUSTRY19

质量损失率为20%,与Zn

4

(OH)6CO3理论质量损失

率(23.22%)接近,表明前驱体是Zn

4

(OH)6CO3。TG 曲线只有一个平台,DTG曲线和DTA曲线均只在255℃左右有一明显的吸热峰,表明前驱体中OH-

和CO

3

2-的分解基本上是同步进行的,并没有分两个阶段分别分解。

图1以水为溶剂制得前驱体TG-DTG-DTA曲线

2.2XRD分析

碱式碳酸锌的主要存在形式为Zn

5

(OH)6(CO3)2

或Zn

4

(OH)6CO3。鉴定碱式碳酸锌结构与组成的标

准谱图有两种:一种是JCPDS19-1458,Zn

5

(OH)6(CO3)2;

另一种是JCPDS11-287,Zn

4

(OH)6CO3。图2为以水为溶剂制得前驱体XRD谱图。从图2看出,在13.2、32.9、59.2°的碱式碳酸锌的特征峰均已出现,与JCPDS11-287相符合,说明前驱体为碱式碳酸锌Zn4(OH)6CO3,这与TG-DTG表征结果吻合。

图3是以水为溶剂制得前驱体在300、400、500℃焙烧4h所得产物XRD谱图。比较前驱物谱图和焙烧产物谱图发现,二者差别很大,几乎没有相同的峰,表明这是两种截然不同的物质。

图2以水为溶剂制得图3前驱体在不同温度前驱体XRD谱图焙烧所得产物XRD谱图

图3中在300、400、500℃焙烧得到的产物与氧化锌PDF卡36-1451相符合,其中衍射峰出现在31.3、34.0、36.2、47.5、56.6、63.0、68.9°处,分别对应(100)、(002)、(101)、(102)、(110)、(103)、(112)晶面,表明得到的产物为纯相氧化锌。由图3还可以看出:300℃焙烧产物已经完全分解为氧化锌,这与TG-TDG-DTA表征结果相吻合;从300℃到500℃,随着焙烧温度的升高,衍射峰渐趋尖锐,表明氧化锌颗粒逐渐长大,晶形生长更加完整。

2.3IR分析

图4为前驱体及其在300、400、500℃焙烧4h 所得样品IR谱图。从图4看出:前驱体在3380cm-1处有一个宽大吸收峰,是分子间氢键的伸缩振动吸收带,表明在前驱体中存在大量羟基;在1510、1380、833cm-1处的峰是CO32-晶格振动引起的红外吸收。因此推断,前驱体是以锌的碱式碳酸盐的形式存在,这与XRD表征结果一致。

由图4还看出:随着温度的升高,在3380cm-1处的峰逐渐减弱,表明随着温度的升高,羟基大量分解;在a曲线中在450cm-1处没有氧化锌的特征吸收峰,而b、c、d曲线,随着温度的升高,氧化锌的特征峰明显增强(在b曲线中,在450cm-1左右的两个小峰合并为一个比较强的吸收峰,表明已经生成氧化锌;在c曲线中,在450cm-1左右的吸收峰进一步增强;在d曲线中,在450cm-1处的吸收峰继续增强);随着温度的升高,在1510、1380、833cm-1处的峰变得越来越微弱。说明前驱物在300、400、500℃下焙烧已经得到目标产物氧化锌。

图4前驱体及其在不同温度焙烧得到ZnO IR谱图

2.4SEM分析

将以水、乙二醇为溶剂和填加PEG6000分散剂制得的氧化锌白色粉末样品进行扫描电镜分析,结果见图5。由图5可见:以水为溶剂所得样品,微粒大小分布不均匀,有许多大的团聚体;以乙二醇为溶剂所得样品,微粒形状和分布较均匀;加入PEG6000分散剂得到的样品,颗粒分散均匀,呈现网状形貌。聚乙二醇是一种非离子型分散剂,其亲水基主要是由具有一定数量的含氧基团(一般为醚基和羟基)构成,在溶液中稳定性高,不易受强电解质无机盐类的影响,也不易受酸、碱的影响。在原料中加入分散剂,使生成的碱式碳酸锌表面被分散剂包

无机盐工业第44卷第3期20

裹,改变了颗粒的表面状态,在颗粒表面形成一层高分子膜,阻碍了颗粒之间相互接触,增大了颗粒之间的距离,避免了团聚;同时,分散剂的加入还可以降低粒子的表面张力,产生空间位阻效应,当进行干燥时,可以防止团聚的发生。在焙烧过程中,分散剂生成气体逸出时也可以阻止粒子的团聚和生长;焙烧后,包覆的PEG被除去,使氧化锌形成了细小颗粒密堆的网状形貌。因此,分散剂在焙烧过程中能继续起着阻止团聚的作用。

图5制得氧化锌SEM照片

3结论

1)对ZnO的前驱体进行了TG、XRD和IR分析,得出前驱体为Zn

4

(OH)6CO3。2)通过XRD和IR 分析,得出焙烧后的产品为ZnO。当以水为溶剂时,随着焙烧温度的升高,产物X射线衍射峰渐趋尖锐,氧化锌颗粒逐渐长大,晶形生长更加完整。3)通过SEM分析了以水、乙二醇为溶剂和加入PEG6000分散剂对ZnO形貌的影响,结果表明以乙二醇为溶剂得到的产品颗粒均匀,加入PEG6000分散剂可以改善氧化锌的形貌和分散性,避免了团聚。

参考文献:

[1]Zhang Hui,Yang Deren,Ji Yujie,et al.Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process[J].J.Phys.Chem.B,2004,

108(13):3955-3958.

[2]宫丽红.叶彩.安茂忠.一维ZnO纳米棒阵列的水热合成[J].应用化学,2011,28(2):164-167.

[3]沈琳,赵宗彬,邱介山,等.溶胶-凝胶法合成ZnO纳米材料及其抗菌性能研究[J].功能材料,2007,38(11):1908-1911.

[4]Vafaee M,Ghamsari M S.Preparation and characterization of ZnO nanoparticles by a novel sol-gel route[J].Mater.Lett.,2007,61(14/ 15):3265-3268.

[5]张宪玺,王晓娟,翟冠杰,等.碱式碳酸锌煅烧制备纳米氧化锌[J].无机化学学报,2002,18(10):1037-1041.

[6]Chen Changchun,Liu Ping,Lu Chunhua.Synthesis and characteri-zation of nano-sized ZnO powders by direct precipitation method[J].

Chem.Eng.J.,2008,144(3):509-513.

[7]时文中,张昕,朱国才.制备纳米氧化锌前驱体碱式碳酸锌的热解动力学[J].无机盐工业,2004,36(6):19-22.

[8]王卫民,廖列文,张明月.聚合物分散剂对纳米四氧化三钴制备的影响[J].无机盐工业,2005,37(7):28-31.

[9]王维,乔学亮,邱小林,等.PEG对沉淀法制备纳米MgO形貌的影响[J].人工晶体学报,2007,36(6):1399-1402.

[10]邹同征,涂江平,夏正志,等.聚乙二醇为分散剂的沉淀法制备IF-MoS2[J].无机化学学报,2005,21(8):1170-1174.

[11]王香,薛晓花,许小华,等.ZnO粉体在水中的分散及稳定性研究[J].中国粉体技术,2007,13(1):20-22.

[12]李国栋,李本林,陈晓熠,等.无团聚纳米氧化锌的制备与机理研究[J].中国陶瓷,2003,39(4):6-9.

[13]姚根有,李延斌,逯宝娣,等.共沉淀法制备超细LaCoO3中聚乙二醇的作用研究[J].稀有金属,2007,31(2):192-196.[14]温燕梅,卢泽勤.聚乙醇-Fe3O4粒子的制备[J].化学研究与应用,2002,14(5):563-565.

[15]廖列文,张明月,崔英德.聚合物分散剂掺杂制备纳米Co3O4研究[J].稀有金属,2003,27(6):671-675.

收稿日期:2011-09-12

作者简介:郑兴芳(1978—),女,硕士研究生,讲师,从事纳米氧化物的研究。

联系方式:xingfangzheng@https://www.360docs.net/doc/cb5536122.html,

ROC公司拟扩大锂化合物产品产能2012年2月6日,特种化学品制造商洛克伍德控股公司(Rockwood Holdings Inc,以下简称“ROC公司”)宣布,该公司计划投资1.4亿美元在智利修建新的碳酸锂生产厂。该厂拟设在智利北部安托法加斯塔港附近,碳酸锂产能为2万t/a,预计将在2013年建成投产。此外,ROC公司还计划投资7500万美元对美国的生产厂进行扩产。至2013年年底ROC 公司的碳酸锂总生产能力将达到5万t/a。

ROC公司的董事长兼首席执行官Seifi Ghasemi称,“未来电动汽车用锂离子电池领域对高纯锂产品的需求将大幅度增加,为了应对日益增长的需求,公司有必要大幅增加碳酸锂的产能。此外公司还将致力维持中国香港作为世界锂产品领先供应商的地位。将来也可能开发适用于电池、制药、锂合金等领域的高纯锂化合物产品。”

贾磊译自Business Wire.2012-02-06德山化工马来西亚多晶硅二期项目启动

2012年2月16日,德山化工(株式会社トクヤマ)宣布,该公司位于马来西亚沙捞越(Sarawak)州Samalaju工业园的多晶硅项目二期工程正式启动。二期采用西门子的生产技术,投资约79.16亿元(以人民币计),产能为13800t/a,预计将在2014年4月正式投入运营。二期项目与在建的一期项目总产能可达2万t/a。据估计,此后德山化工太阳能电池用多晶硅产品的世界份额可从5%提升至10%左右。

贾磊译自マレーシアナビ.2012-02-17

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 2012年3月郑兴芳等:沉淀法制备氧化锌粉体21

纳米氧化锌制备法

氧化锌制备工艺 2008-06-04 12:21阅读(4)评 论(0) D0208、氧化锌制备工艺(本技术资料含国家发明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺 流程等,全套价格26 0元) (氧化锌*制备氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途 7、超声波-微波联合法

从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌22、改性的超细氧化锌

及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法 39、纳米氧化锌材料的

氮掺杂氧化锌粉末的缺陷研究

Investigation of defects in N-doped ZnO powders prepared by a facile solvothermal method and their UV photocatalytic properties Pengfei Gu a,Xudong Wang a,*,Tao Li b,Huimin Meng a a Institute of Advanced Materials and Technology,University of Science and Technology Beijing,30Xueyuan Road,Beijing100083,People’s Republic of China b Science and Technology on Reliability and Environmental Engineering Laboratory,Beijing Institute of Spacecraft Environment Engineering,104Youyi Road, Beijing100094,People’s Republic of China 1.Introduction ZnO is one of the most promising materials for fabricating optoelectronic devices,owing to its large exciton binding energy of 60meV and wide band gap energy of3.37eV at room temperature. Intrinsic ZnO is an n-type wide bandgap semiconductor with an ultraviolet(UV)absorption property.However,ZnO is still dif?culty in obtaining stable p-type conductivity.As we know, the acceptor dopants in ZnO include lithium[1],copper[2],zinc vacancies[3],and oxygen interstitials[3],but all of these are deep acceptors and do not contribute signi?cantly to hole conduction [4].Until nitrogen(N)is considered to be the most promising p- type dopant for ZnO due to its similar ionic radius to oxygen,large solubility,and low ionization energy[5].In addition,N-doped ZnO shows higher visible-light photocatalytic activity[6,7],therefore N-doped ZnO was focused. And in N-doped ZnO,it is found that nitrogen can form two distinct centers in ZnO material,the molecular nitrogen substitut- ing for oxygen(N2)O and the isolated nitrogen substituting for oxygen(N)O[8,9].The neutral molecular nitrogen charge state (N2)O is a deeper acceptor level[9]than the isolated neutral nitrogen charge state(N)O[8].In other words,the(N)O acceptors begin to?ll before the(N2)O acceptors.Another argument indicates that(N2)O is a shallow double donor electrically[10,11]by theoretical calculations,which leads to the compensation rather than p-type doping as(N)O.It is important for gaining(N)O acceptors in N-doped ZnO. So far,N-doped ZnO has been obtained by direct synthesis or post-synthesis treatments.Direct synthesis means that N-related dopants are incorporated into ZnO lattice during growth process, such as chemical vapor deposition(CVD)methods[11],magnetron sputtering technique[12],and molecular beam epitaxy(MBE)[13] in N2O,NH3or N2atmospheres,mechanochemical methods[14], sol–gel method[15],and hydrothermal[16]or solvothermal synthesis[17].Whereas,post-synthesis treatments mean that as- gained ZnO are treated by N source,such as,with NH3[18]at high temperature heat treatment,or N ions implantation[19].Among the many methods,either direct synthesis or post-synthesis treatments,with N2atmospheres is easy to form(N2)O dopants, due to the high energy of the N B B N bond($9eV)makes it dif?cult for its dissociation to achieve isolated nitrogen incorporation[20]. In addition,direct growth or post-synthesis treatments with NH3 or N2O in high temperature also can gain(N2)O dopants[21].One can expect that using NH3as N source and a low growth temperature would be favorable for(N)O acceptors into ZnO.Thus solution-based processes(such as hydrothermal or solvothermal) favor the fabrication of large scale ZnO crystals at relatively low temperature with low cost.However,N-doped ZnO by hydrother- mal or solvothermal synthesis have rarely been reported so far. Wang et al.[22]reported that hydrothermal growth of N-doped Materials Research Bulletin48(2013)4699–4703 A R T I C L E I N F O Article history: Received19March2013 Received in revised form28June2013 Accepted18August2013 Available online26August2013 Keywords: A.Inorganic compounds B.Crystal growth D.Defects D.Electronic paramagnetic resonance(EPR) D.Catalytic properties A B S T R A C T A facile synthetic procedure for N-doped ZnO powders was proposed.In this work,N-doped ZnO crystals were synthesized in diethylene glycol(DEG)with ammonia solution via solvothermal process. Incorporated N concentration increases with the amount of ammonia solution.In order to con?rm the defects of as-gained ZnO powders,the samples were characterized by XRD,PL,and EPR.In our results,the N-related defects were considered to be(N)O centers as acceptors,other than(N2)O.And,the donors defects were con?rmed to H i.UV photocatalytic activity of the N-doped ZnO crystals was assessed from the photodegradation kinetics of methyl orange(MO).The result shows that the UV photocatalytic activity of N-doped ZnO decreases with the incorporated N concentration.This was caused by abundant acceptors hindered the photoinduced holes generating. Crown Copyright?2013Published by Elsevier Ltd.All rights reserved. *Corresponding author.Tel.:+861062332548;fax:+861080115555741836. E-mail address:xdwang@https://www.360docs.net/doc/cb5536122.html,(X.Wang). Contents lists available at ScienceDirect Materials Research Bulletin j o u rn a l h om e p a ge:w w w.e l s e v i e r.c o m/l o c a t e/m a t r e s b u 0025-5408/$–see front matter.Crown Copyright?2013Published by Elsevier Ltd.All rights reserved. https://www.360docs.net/doc/cb5536122.html,/10.1016/j.materresbull.2013.08.034

氧化锌粉体的制备方法

1.纳米氧化锌的性质 1.1表面效应 表面效应是指纳米粒子表面原子与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化,随着粒径减小,表面原子数迅速增加,另外 ,随着粒径的减小,纳米粒子的表面积、表面能及表面结合都迅速增大这主要是由于粒径越小,处于表面的原子数越多表面原子的晶场环境和结合能与内部原子不同表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质 ,易与其它原子相结合而稳定下来,故具有很大的化学活性 ,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加伴随表面能的增加 ,其颗粒的表面原子数增多 ,表面原子数与颗粒的总原子数的比值被增大 ,于是便产生了“表面效应”,即“表面能”与“体积能”的区分就失去了意义 ,使其表面与内部的晶格振动产生了显著变化 ,导致纳米材料具有许多奇特的性能 1.2体积效应 当纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化剂及熔点等都较普通粒子发生了很大的变化 ,这就是纳米粒子的体积效应这种体积效应为实用开拓了广阔的新领域。 2.纳米氧化锌的制备技术 制备纳米氧化锌的方法主要是物理法和化学法。其中,化学法是常用的方法。 2.1物理法 物理法包括机械粉碎法和深度塑性变形法。机械粉碎法是采用特殊的机械粉碎、电火花爆炸等技术 ,将普通级别的氧化锌粉碎至超细。其中张伟等人利用立 式振动磨制备纳米粉体 ,得到了α-Al 2O 3 ,ZnO、MgSiO 3 等超微粉 ,最细粒度达 到 0. 1μm此法虽然工艺简单 ,但却具有能耗大,产品纯度低 ,粒度分布不均匀 ,研磨介质的尺寸和进料的细度影响粉碎效能等缺点。最大的不足是该法得不到1—100nm 的粉体 ,因此工业上并不常用此法;而深度塑性变形法是使原材料在净静压作用下发生严重塑性形变 ,使材料的尺寸细化到纳米量级。这种独特的方法最初是由 Islamgaliev 等人于 1994 年初发展起来的。该法制得的氧化锌粉体纯度高,粒度可控,但对生产设备的要求却很高。总的说来 ,物理法制备纳米氧化锌存在着耗能大 ,产品粒度不均匀,甚至达不到纳米级,产品纯度不高等缺点,工业上不常采用,发展前景也不大。 2.2化学法 化学法具有成本低 ,设备简单 ,易放大进行工业化生产等特点。主要分为溶胶-凝胶法、醇盐水解法、直接沉淀法、均匀沉淀法等。 2.2.1溶胶-凝胶法 溶胶-凝胶法制备纳米粉体的工作开始于 20 世纪60年代。近年来,用此法制备纳米微粒、纳米薄膜、纳米复合材料等的报道很多。它是以金属醇盐Zn(OR) 2为原料 ,在有机介质中对其进行水解、缩聚反应 ,使溶液经溶胶化得到凝胶 ,凝胶再经干燥、煅烧成粉体的方法。此法生产的产品粒度小、纯度高、反应温度低(可以比传统方法低 400 —500 ℃) ,过程易控制;颗粒分布均匀、团聚少、介电性能较好。但成本昂贵 ,排放物对环境有污染 ,有待改善。

《纳米氧化锌制备法》word版

氧化锌制备工艺2008-06-04 12:21阅读(4)评论 (0) D0208、氧化锌制备工艺(本技术资料含国家发 明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺流程等,全套价格260元) (氧化锌*制备 氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌 研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途

7、超声波-微波联合法从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌

22、改性的超细氧化锌及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法

水热合成法制备纳米氧化锌粉

第37卷第4期 人 工 晶 体 学 报 V o.l 37 N o .4 2008年8月 J OURNA L OF SYNTHET I C CRY STAL S A ugust ,2008 水热合成法制备纳米氧化锌粉 王艳香,孙 健,范学运,余 熙 (景德镇陶瓷学院,景德镇333001) 摘要:采用水热法合成了氧化锌纳米棒,研究了不同合成条件对Zn O 纳米晶的影响。采用碱式碳酸锌作为前驱体, 水为水热介质,可获得氧化锌纳米棒,水热时间的延长和水热温度的提高都使氧化锌纳米棒的长径比减小,其紫外 发射光和近红外发射强度增大。当在体系中加入聚乙二醇时,可获得片状氧化锌结晶。当以0.5m o l/L 的碳酸钠 水溶液为水热介质,可得到长径比超过20,直径为500n m 左右分散均匀的纳米氧化锌棒。以氢氧化锌为前驱体, 也能得到氧化锌纳米棒,其长径比为15左右。 关键词:水热合成;氧化锌;纳米棒 中图分类号:O 753 文献标识码:A 文章编号:1000-985X (2008)04-0866-06 H ydrotherm al Synthesis of N ano m eter Z i nc Oxi de WANG Yan-x iang,SUN J i a n,FAN X ue -yun,YU X i (Ji ngdez hen C era m i c I n stitute ,J i ngdez h en 333001,Ch i na) (R eceive d 8October 2007,acce p te d 14February 2008) Abst ract :Zinc ox ide nanorods w ere prepared by using hydro t h er m a l synthesis m ethod .The effect o f synthesis cond itions on t h e properties o f nano m eter ZnO w as studied .ZnO nanorods were obta i n ed w hen usi n g Zn 4CO 3(OH )6#H 2O and H 2O as precursor and hydrother m alm edia .Leng th -dia m eter ratio o fZnO nanor ods decreases and UV e m ission and near -i n frared e m issi o n i n tensities increase w ith the i n creasi n g o f hydrother m a l ti m e and te m perature .ZnO nanosheets w ere ach iev i n g w hen using Zn 4C O 3(OH )6#H 2O and PEG as precursor and hydrother m a l m edia .ZnO nanorods w ith leng t h -d ia m eter ratio o f 20and dia m eters of ~500nm w ere prepared by using 0.5m o l/L N a 2C O 3as hydrother m alm ed i a .ZnO nanorods w it h length -d ia m eter ratio 15can a lso be obta i n ed by usi n g Zn(OH )2as precurso r . K ey w ords :hydr o ther m al synthesis ;zinc ox i d e ;nanorods 收稿日期:2007-10-08;修订日期:2008-02-14 基金项目:江西省教育厅2006年度科技计划项目(N o .赣教技字[2006]206号) 作者简介:王艳香(1972-),女,河北省人,博士,副教授,硕士生导师。E-m ai:l yxw ang72@163.co m 1 引 言 氧化锌是一种用途十分广泛的功能材料,已被用于气敏、压敏、催化、抗菌等重要领域。ZnO 纳米材料,具有普通ZnO 材料所无法比拟的特性和用途,在陶瓷、电子、光学、化工、生物、医药等许多领域展现出特殊的用途。ZnO 纳米薄膜和一维ZnO 纳米结构在紫外探测器、发光二极管、激光二极管等领域显示出极大的发展潜力,已成为材料领域的研究前沿[1-4] 。尤其是近年来有关一维ZnO 纳米结构的形貌与紫外激光的研究,更是受到了人们的极大关注。一维氧化锌结构(纳米棒、纳米线、纳米带、纳米管等)的湿化学合成主要

实验7--沉淀法制备纳米氧化锌粉体

实验七 沉淀法制备纳米氧化锌粉体 一、实验目的 1、了解沉淀法制备纳米粉体的实验原理。 2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。 二、实验原理 氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV 。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。通常的制备方法有蒸发法、液相法。我们在这里主要讨论沉淀法。 沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH --,CO 32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。 均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO 3)2、氯化锌ZnCl 2、醋酸锌。常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。反应如下: O H NH CO O H NH CO 23222223)(?+→+ (1) OH -的生成: -+ +→?OH NH O H NH 423 (2) CO 32-的生成: O H CO NH CO O H NH 223422322++→+?-+ (3)

纳米氧化锌的制备实验报告

纳米ZnO2的制备 实验报告 班级:应091-4 组号:第九组 指导老师:翁永根老师 成员:任晓洁 1428 邵凯 1429 孙希静 1432 【实验目的】 1.了解纳米氧化锌的基本性质及主要应用 2.通过本实验掌握纳米氧化锌的制备方法

3.对于纳米氧化锌的常见产品掌握制备原理和方法,并学会制备简易产 品。 4.通过本实验复习并掌握EDTA溶液的配制和标定,掌握配位滴定的原 理,方法,基准物质的选择依据以及指示剂的选择和pH的控制。 5.掌握基础常用的缓冲溶液的配制方法和原理。 6.加深对实验技能的掌握及提高查阅文献资料的能力。 【实验原理】 1. 超细氧化锌是一种近年来发展的新型高功能无机产品,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。纳米氧化锌一系列的优异性和十分诱人的应用前景。 2. 纳米氧化锌的制备方法主要有:水热法,均相沉淀法,溶胶一凝胶法,微乳液法,直接沉淀法 3. 本工艺是将锌焙砂(主要成份是ZnO,主要伴生元素及杂质为铁,铜,铅,镍,铬,镍,此外,还含有其它微量杂质,因而用锌焙砂直接酸浸湿法生产活性氧化锌,必须利用合理的酸浸及除杂工艺,分离铅,脱铁、锰,除钙、镁等重金属)与硫酸反应,生产出粗制硫酸锌,加高锰酸钾、锌粉等,经过提纯得到精制硫酸锌溶液后,再经碳化母液沉淀,制得碱式碳酸锌,最后经烘干,煅烧制成活性氧化锌成品。 4. 氧化锌含量的测定采用配位滴定法测定,用NH3-NH4Cl缓冲溶液控 制溶液pH≈10,以铬黑T为指示剂,用EDTA标准溶液进行滴定,其主要反应如下: 在氨性溶液中: Zn2++4NH3?Zn(NH3)42+ 加入EBT(铬黑T)时: Zn(NH3)42++EBT(蓝色)?Zn-EBT(酒红色)+4NH3 滴定开始-计量点前: Zn(NH3)42++EDTA?Zn-EDTA+4NH3 计量点时: Zn-EBT(酒红色)+EDTA?Zn-EDTA+EBT(蓝色)

氧化锌制备方法

将mol·L-1的NaOH乙醇溶液缓慢滴加到含有mol·L-1的Zn(NO3)2·6H2O乙醇溶液中. 将混合溶液转移至高压反应釜中, 在130℃下反应12 h, 将反应产物经二次去离子水、乙醇等洗涤后, 在130 摄氏度下干燥,即可获得纯ZnO纳米棒. 在 ZnCl2 溶液 mol/L) 中加入一定量的 SDS, 搅拌下于 65 ℃将 Na2CO3 溶 液滴加到该溶液中 (120 滴/min, n(Na 2CO 3 )/n(ZnCl2) = 2),恒温反应 h. 将反 应液倒入聚四氟乙烯罐中, 在150~160 ℃进行水热反应 12 h, 自然冷却后离心分离, 用去离子水洗涤到无水Cl?离子, 再用无水乙醇洗涤 2~3 次, 50 ℃真空干燥 2 h, 300 ℃焙烧 3 h, 即制得 ZnO 纳米管. 将0. 1 L0. 1 mo l/ L二水合醋酸锌的乙醇溶液置于带冷凝管和干燥管的0. 5 L 圆底烧瓶中, 在80 ℃搅拌3 h, 不断收集冷凝物, 最后可获得0. 04 L 中间物和0. 06 L 冷凝物. 将中间物迅速用冷的绝对乙醇稀释至0. 1 L, 冷至室温, 得0. 1 mol/ L 中间产物. 氨水沉淀法制备纳米氧化锌 在水——乙醇介质中用氨水沉淀法制备出了纳米Zn(OH) 2 和ZnO材料,讨论了介质组成对沉淀产物ZnO微粒的粒径范围及形貌的影响,并研究出由Zn(OH)2分解为纳米ZnO的最佳干燥脱水条件为200℃、2h。表明本方法不需高温处理就可得到颗粒均匀且分布窄的ZnO纳米材料,粒径可达17~6nm。 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂。 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱。 二、试验方法 以水——乙醇为溶剂,其中醇的体积含量分别为0%(去离子水)、20%、60%、100%。将氯化锌、氨水配制成不同浓度的溶液(不同浓度是多少)。取一定体积(一定体积是多少)的氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度的氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应。控制氨水用量,调节pH值为左右,确定滴定终点。反应得到的白色沉淀物,经抽滤洗涤后自然风干 即为Zn(OH) 2纳米粉,Zn(OH) 2 经干燥(200℃、2h)脱水后,为ZnO纳米粉

氧化锌

ZrO2粉体合成与表征 一前言 ZrO2属于新型陶瓷,由于它具有十分优异的物理、化学性能,不仅在科研领域已经成为研究热点,而且在工业生产中也得到了广泛的应用,是耐火材料、高温结构材料和电子材料的重要原料。在各种金属氧化物陶瓷材料中,ZrO2的高温热稳定性能,热性能最好,最适宜傲陶瓷涂层和高温耐火制品,以ZrO2为主要原料的锆英石基陶瓷颜料,高级釉料的重要成分;ZrO2的热导率在常见的陶瓷材料中最低,而热膨胀系数又与金属材料较为接近,成为重要的结构陶瓷材料;特殊的晶体结构,使之成为重要的电子材料;ZrO2的相变增韧等特性,成为塑性陶瓷材料的宠儿;良好的机械性能和热物理性能,使它能够成为金属基复合材料中性能优异的增强相。目前在各种金属氧化物陶瓷中ZrO2的重要作用仅次于Al2O3由于氧化锆材料具有高硬度,高强度,高韧性,极高的耐磨性及耐化学腐蚀性等等优良的物化性能,氧化锆已经在陶瓷、耐火材料、机械、电子、光学、航空航天、生物、化学等等各种领域获得广泛的应用。 二结构性质 氧化锆是白色固体,含有杂质时会显现灰色或淡黄色,添加显色剂还可显示各种其它颜色。纯氧化锆的分子量为123.22,理论密度是5.89g/cm3,熔点为2715℃。通常含有少量的氧化铪,难以分离,但是对氧化锆的性能没有明显的影响。氧化锆有三种晶体形态:单斜、四方、立方晶相。常温下氧化锆只以单斜相出现,加热到1100℃左右转变为四方相,加热到更高温度会转化为立方相。由于在单斜相向四方相转变的时候会产生较大的体积变化,冷却的时候又会向相反的方向发生较大的体积变化,容易造成产品的开裂,限制了纯氧化锆在高温领域的应用。但是添加稳定剂以后,四方相可以在常温下稳定,因此在加热以后不会发生体积的突变,大大拓展了氧化锆的应用范围。氧化锆(化学式:ZrO2)是锆的主要氧化物,通常状况下为白色无臭无味晶体,难溶于水、盐酸和稀硫酸。一般常含有少量的二氧化铪。化学性质不活泼,但高熔点、高电阻率、高折射率和低热膨胀系数的性质,使它成为重要的耐高温材料、陶瓷绝缘材料和陶瓷遮光剂。能带间隙大约为5-7eV。 二氧化锆的晶体结构 自然界中以少见的斜锆石存在,为单斜晶系结构。高熔点的立方氧化锆也是二氧化锆晶型之一,自然界以等轴钙锆钛矿

纳米氧化锌的制备、表面改性及应用

纳米氧化锌的制备、表面改性及应用 纳米氧化锌是一种面向21世纪的新型高功能精细无机产品,其粒径介于1~100纳米,又称为超微细氧化锌。由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米氧化锌产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。因而,纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面具有一般氧化锌产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。本文将对本公司生产的纳米氧化锌从制备方法、性能表征、表面改性以及目前所开发的应用领域方面进行较为详细的介绍。 一、纳米氧化锌的制备 氧化锌的制备方法分为三类:即直接法(亦称美国法)、间接法(亦称法国法)和湿化学法。目前许多市售氧化锌多为直接法或间接法产品,粒度为微米级,比表面积较小,这些性质大大制约了它们的应用领域及其在制品中的性能。我公司采用湿化学法(NPP-法)制备纳米级超细活性氧化锌,可用各种含锌物料为原料,采用酸浸浸出锌,经过多次净化除去原料中的杂质,然后沉淀获得碱式碳酸锌,最后焙解获得纳米氧化锌。与以往的制备纳米级超细氧化锌工艺技术相比,该新工艺具有以下技术方面的创新之处: 1.平衡条件下反应动力学原理与强化的传热技术结合,迅速完成碱式碳酸锌的焙解。 2.通过工艺参数的调整,可以制备不同纯度、粒度及颜色的各种型号的纳米氧化锌产品。 3.本工艺可以利用多种含锌物料为原料,将其转化为高附加值产品。 4.典型绿色化工工艺,属于环境友好过程。 二、纳米氧化锌的性能表征 纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。 清华大学分析测试中心用透射电镜对产品进行了分析,纳米氧化锌粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。经ST-A表面和孔径测定仪测试,纳米氧化锌粉体的BET比表面积在35m2/g以上。此外,通过调整制备工艺参数,还可以生产出棒状纳米氧化锌。本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米氧化锌,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。 三、纳米氧化锌的表面改性 由于纳米氧化锌具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米氧化锌表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。因此对纳米氧化锌粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。 所谓纳米分散是指采用各种原理、方法和手段在特定的液体介质(如水)中,将干燥纳米粒子构成的各种形态的团聚体还原成一次粒子并使其稳定、均匀分布于介质中的技术。纳米粉体的表面改性则是在纳米分散技术基础上的扩展和延伸,即根据应用场合的需要,在已分散的纳米粒子表面包覆一层适当物质的薄膜或使纳米粒子分散在某种可溶性固相载体中。经过表面改性的纳米干粉体,其吸附、润湿、分散等一系列表面性质都会发生变化,一般可以自动或极易分散在特定的介质中,因此使用非常方便。一般来讲,纳米粒子的改性方法有三种:1.在粒子表面均匀包覆一层其他物质的膜,从而使粒子表面性质发生变化;2.利用电荷转移络合体(如硅烷、钛酸酯等偶联剂以及硬脂酸、有机硅等)作表面改性剂对纳米粒子表面进行化学吸附或化学反应;3.利用电晕放电、紫外线、等离子、放射线等高能量手段对纳米粒子表面进行改性。

沉淀法制备纳米氧化锌粉体讲义

沉淀法制备纳米氧化锌粉体 一、实验目的 1.了解沉淀法制备纳米粉体的实验原理。 2.掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3.了解实验产物粒度的表征手段,掌握激光纳米粒度仪的使用。 4.了解沉淀剂、实验条件对产物粒径分布的影响。 二、实验原理 氧化锌是一种重要的宽带隙(3.37eV)半导体氧化物,常温下激发键能为60meV。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。纳米氧化锌由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点,已经广泛的应用在陶瓷、化工、电子、光学、生物、医药等许多领域。纳米氧化锌的制备方法有物理法和化学法,物理法主要包括机械粉碎法和深度塑形变形法,化学法包括沉淀法、溶胶—凝胶法、水热法、微乳液法等方法。本实验采用沉淀法制备纳米氧化锌粉体。 沉淀法包括直接沉淀法和均匀沉淀法。直接沉淀法是制备纳米氧化锌广泛采用的一种方法。其原理是在包含一种或多种离子的可溶性盐溶液中,加入沉淀剂(如OH-,CO32-等)后,在一定条件下生成沉淀并使其沉淀从溶液中析出,再将阴离子除去,沉淀经热分解最终制得纳米氧化锌。其中选用不同的沉淀剂,可得到不同的沉淀产物。均匀沉淀法是利用某一化学反应使溶液中的构晶离子从溶液中缓慢地、均匀地释放出来,所加入的沉淀剂并不直接与被沉淀组分发生反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO3)2、氯化锌ZnCl2、醋酸锌ZnAc2。常用的沉淀剂有氢氧化钠(NaOH)、氨水(NH3·H2O)、尿素(CO(NH2)2)等。一般情况下,锌盐在碱性条件下只能生成Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体需要进行高温煅烧。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH3·H2O与锌离子反应生成沉淀。反应如下: OH-的生成: CO32-的生成: 形成前驱物碱式碳酸锌的反应: 热处理后得产物ZnO: 用NaOH作沉淀剂一步法直接制备纳米氧化锌的反应式如下: 该实验方法过程简单,不需要后煅烧处理就可以得到氧化锌晶体,而且可以通过调控Zn2+/OH-的摩尔比控制氧化锌纳米材料的形貌。 三、实验仪器与试剂

简单的制备纳米氧化锌的制备方法

在水——乙醇介质中用氨水沉淀法制备出了纳米()和材料,讨论了介质组成对沉淀产物微粒地粒径范围及形貌地影响,并研究出由()分解为纳米地最佳干燥脱水条件为℃、.表明本方法不需高温处理就可得到颗粒均匀且分布窄地纳米材料,粒径可达~. 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂. 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱. 二、试验方法 以水——乙醇为溶剂,其中醇地体积含量分别为(去离子水)、、、.将氯化锌、氨水配制成不同浓度地溶液(不同浓度是多少?).取一定体积(一定体积是多少?)地氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度地氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应.控制氨水用量,调节值为左右,确定滴定终点.反应得到地白色沉淀物,经抽滤洗涤后自然风干即为()纳米粉,()经干燥(℃、)脱水后,为纳米粉体.资料个人收集整理,勿做商业用途 三、不同乙醇浓度对粒径地影响 并且含量越高,这种抑制作用也越强.资料个人收集整理,勿做商业用途 氯化锌地浓度对地粒径影响不大,规律性不强;氨水地浓度对地粒径稍有影响,浓度增大,粒径是减小趋势,浓度为时,粒径为~,浓度为时,粒径为~.资料个人收集整理,勿做商业用途 五、该方法操作简单,条件温和,所用原材料成本低,过程易控制等,是制备纳米粉地好方法,值得推广. 固相合成氧化锌 一、试剂与前驱物地准备 七水硫酸锌、无水草酸纳均为分析纯; 准确称取比为地七水硫酸锌和无水草酸纳,分别研磨后,充分混合,再转入同一研钵中共研磨.热水洗去副产物后,再用无水乙醇淋次,于℃烘干.资料个人收集整理,勿做商业用途二、纳米氧化锌地制备 由前驱物地热分析得地热分解温度为℃.将置于马弗炉中加热升温至分解温度,保持,即得浅黄色纳米氧化锌.资料个人收集整理,勿做商业用途 液相沉淀制备氧化锌 一、单组分锌氨溶液地制备

氧化锌为白色粉末

5. 将足量CO2通入下列各溶液中,所含离子还能大量共存的是() A.K+、SiO32-、Cl-、NO3- B.H+、NH4+、Al3+、SO42- C.Na+、S2-、OH-、SO42- D.Na+、C6H5O-、CH3COO-、HCO3- 考点:离子共存问题. 专题:离子反应专题. 分析:将足量CO2通入溶液中,溶液呈弱酸性,凡是对应的酸比碳酸弱的酸根离子以及OH-不能共存. 解答:解:A.H2SiO3酸性比碳酸弱,通入过量CO2,SiO32-不能大量共存,故A错误; B.通入过量CO2,四种离子在弱酸性条件下不发生任何反应,可大量共存,故B正确; C.OH-与CO2反应而不能大量共存,故C错误; D.C6H5OH酸性比碳酸弱,通入过量CO2,C6H5O-不能大量共存,故D错误. 故选B. 点评:本题考查离子共存问题,题目难度不大,本题注意比碳酸弱的酸的种类即可解答. 针对训练:将足量SO2通入下列各溶液中,所含离子还能大量共存的是() A.Na+、S2-、OH-、AlO2- B.NH4+、CO32-、NO3-、SiO32- C.H+、Br-、Fe2+、SO42- D.Fe3+、Cl-、Ba2+、Al3+ 考点:离子共存问题. 专题:离子反应专题. 分析:足量SO2通入溶液中,溶液中存在大量的氢离子、亚硫酸根离子,利用氢离子与OH-、AlO2-、CO32-、SiO32-,SO2与Fe3+反应来分析共存问题. 解答:解:A、因足量SO2通入溶液时,生成的氢离子与OH-反应生成水,与AlO2-反应生成沉淀,则不能共存,故A错误; B、因足量SO2通入溶液时,生成的氢离子与CO32-反应生成二氧化碳和水,与SiO32-反应生成沉淀,则不能共存,故B错误; C、该组离子不反应,且SO2通入溶液也不反应,则能大量共存,故C正确; D、因足量SO2通入溶液时,SO2与Fe3+发生氧化还原反应,则则不能共存,故D错误; 故选C. 点评:本题考查离子的共存,明确溶液中通入二氧化硫后存在的离子及二氧化硫的性质是解答本题的关键. 6针对训练:以N A表示阿伏伽德罗常数的值,下列说法中正确的是几种() ①58.5g氯化钠固体中含有N A个氯化钠分子; ②5.6g铁粉与酸反应失去的电子数一定为0.3N A; ③4.5g SiO2晶体中含有的共价键数为0.3N A; ④标况下,11.2L SO3所含的分子数为0.5N A; ⑤1mol FeCl3完全水解转化为氢氧化铁胶体后生成N A个胶粒; ⑥常温下,42g C2H4和C4H8的混合物中含有的碳原子数为3N A ⑦10g质量分数为46%的乙醇溶液中,氢原子的总数为1.2N A

相关文档
最新文档