信号检测与估值

信号检测与估值
信号检测与估值

1.信号检测与估计理论是现代信息理论的一个分支,研究的对象是信息传输系统中信号的

接收部分。

2.系统信息传输可靠性降低的主要原因:(1)信号经过传输以后,由于通信系统不理想,信

号可能出现畸变或幅值的衰减.通过正确地设计通信系统,可以尽可能地减少信号的畸变,获得满意的接收效果.(2)经过信道传输后,信号不可避免地受到信道噪声的污染,使得接收到的是信号与噪声的混合波形.

3.通信系统的性能要求

系统的有效性:要求系统能高效率地传输信息;

系统的可靠性(抗干扰性):要求系统能可靠地传输信息

4.本课程要学习的主要内容

接收机的任务是要加工处理所接收到的混合波形,尽量减少判决错误.由于信道噪声是个随机过程,同时信号本身也可能带有不确定的参量,因此只能采用数理统计的方法,根据信号和噪声提供的的统计特性,依据某些判决的准则,对信号进行检测,判断,估计它的某些参量,或者复原信号的波形等等.这就是.

5.信号检测与估计的基本任务

研究如何在干扰和噪声的影响下最有效地辨认出有用信号的存在与否,以及估计出未知的信号参量或信号波形本身。它实质上是有意识地利用信号与噪声的统计特性的不同,来尽可能地抑制噪声,从而最有效地提取有用信号的信息。

6.信号的统计处理方法

对随机信号,应用统计学的理论和方法进行处理,称为统计信号处理,这主要体现在如下三个方面:

信号统计特性的统计描述:如信号的概率密度函数(PDF),各阶矩,自相关函数,协方差函数,功率谱密度(PSD)等。

统计意义上的最佳处理:如最佳准则,最佳判决,最佳估计,最佳滤波等,均是在统计意义上的最佳处理。

性能评价用相应的统计平均量:如判决概率,平均代价,平均错误概率,均值,均方误差等。

7.检测:指在接收端检测信号是否存在

估值: 指在接收端估计信号的某些参量: 如幅度的大小,频率的偏移等.(又称为信号的参量估计)

统称为信号的检测和估值

8.信号检测与估值中的三大任务

信号的检测::根据有限观测,最佳区分一个物理系统不同状态;

信号参量的估计:根据有限观测,最佳区分一个物理系统不同参数;

波形估计

9.信号检测与估计研究步骤

10.统计检测理论、估计理论和滤波理论的基本概念、分析研究问题的基本方法和基本运算;

11.噪声:与有用信号无关的一些破坏因素;

12.干扰:与有用信号有关的一些破坏因素;

13.小结:涉及到的基本概念

检测与估计的类型:

1. 根据噪声和干扰过程的类型

参量检测:当噪声或干扰过程可以用有限个实参数所描述,即噪声或干扰过程的统计特性完全确知;

非参量检测:当噪声或干扰过程的分布形式未知,即一组有限数量的参数不足于确定它们;

2. 针对信号的类型

确知信号的检测:被检测的信号的类型、波形、频率等完全确知;如同步或相干数字通信系统;

具有未知参量信号的检测:如非相干数字通信系统的相位是未知,雷达及声纳系统中的相位、频率、到达时间都是未知;

随机信号的检测:如随机时变信道中数字通信系统的信号检测

3. 针对观测值的处理方式

固定观测样本值的检测:

非固定观测样本值的检测:

14.信号检测与估计的应用:雷达测距

15.

16.

平稳随机过程的功率谱密度

1.概念:平稳随机过程不满足绝对可积条件,因而其频谱函数不存在;但其功率通常

P

是有限的,从而引出功率谱密度函数(w)

x

2.

3.

第2章匹配滤波器

1.匹配滤波器(是一种最佳滤波器,是以输出信噪比最大为准则的一种线性系统):在输入为已知信号加白噪声的条件下,使得输出的信噪比最大的最佳线性滤波器。

概括为:

信号波形已知;

线性滤波;

信躁比最大。

匹配滤波器的作用有2个方面:

一是使滤波器输出有用信号成分尽可能强;

二是抑制噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号处理的影响。

2.信号在传递过程中不可避免地要受到自然和人为的各种干扰,信号检测的目的是用一种最优处理的方法,最好地从受扰观察中获得所传递的信息。

3,题

(二)t0时刻应当选择在信号结束之后:

t0时刻是指匹配滤波器输出信号形成值的时刻,这一时刻可以在一定的范围内任意选择. ? t0的最小值是信号的结束时刻

数字信号处理西电

数字信号处理上机第一次实验 实验一: 设给定模拟信号()1000t a x t e -=,的单位是ms 。 (1) 利用MATLAB 绘制出其时域波形和频谱图(傅里叶变换),估计其等效带宽(忽略谱分 量降低到峰值的3%以下的频谱)。 (2) 用两个不同的采样频率对给定的进行采样。 ○1 。 ○2 。 比较两种采样率下的信号频谱,并解释。 实验一MATLAB 程序: (1) ○ 1 clc; fs=5000; ts=1/fs; N=1000; t=(-N:N)*ts; s=exp(-abs(t)); plot(t,s,'linewidth',1.5) xlabel('时间') ylabel('幅度') set(gca,'fontweight','b','fontsize',12) SPL=N*100; figure sp=fftshift(fft(s,SPL)); sp=sp/max(sp)*100; freqb=-fs/2:fs/SPL:fs/2-fs/SPL; plot(freqb,abs(sp)) xlabel('频率') ylabel('频谱幅度') set(gca,'fontweight','b','fontsize',12) yy=abs(abs(sp)-3); [aa,freqind]=min(yy); (freqind-SPL/2)*fs/SPL t ()a x t ()()15000s a f x t x n =以样本秒采样得到。()() 11j x n X e ω画出及其频谱()()11000s a f x t x n =以样本得到。()()11j x n X e ω画出及其频谱

信号检测与估值matlab仿真报告

信号检测与估值 仿真报告 题目信号检测与估值的MATLAB仿真学院通信工程学院 专业通信与信息系统 学生姓名 学号 导师姓名

作业1 试编写程序,画出相干移频键控、非相干移频键控(无衰落)和瑞利衰落信道下非相干移频键控的性能曲线。 (1)根据理论分析公式画性能曲线; (2)信噪比范围(0dB-10dB),间隔是1dB; (3)信噪比计算SNR=10lg(Es/N0) 一、脚本文件 1、主程序 %******************************************************** %二元移频信号检测性能曲线(理论分析) %FSK_theo.m %******************************************************** clear all; clc; SNRindB=0:1:20; Pe_CFSK=zeros(1,length(SNRindB)); Pe_NCFSK=zeros(1,length(SNRindB)); Pe_NCFSK_Rayleigh=zeros(1,length(SNRindB)); for i=1:length(SNRindB) EsN0=exp(SNRindB(i)*log(10)/10); Es_aveN0=exp(SNRindB(i)*log(10)/10); Pe_CFSK(i)=Qfunct(sqrt(EsN0));%相干移频键控系统 Pe_NCFSK(i)=0.5*exp(-EsN0/2);%非相干移频键控系统(无衰落) Pe_NCFSK_Rayleigh(i)=1/(2+Es_aveN0);%非相干移频键控系统(瑞利衰落)end semilogy(SNRindB,Pe_CFSK,'-o',SNRindB,Pe_NCFSK,'-*',SNRindB,Pe_NCFSK_Rayleigh ,'-'); xlabel('Es/No或平均Es/No(dB)'); ylabel('最小平均错误概率Pe'); legend('相干移频','非相干移频(无衰落)','非相干移频(瑞利衰落)'); title('二元移频信号检测性能曲线'); axis([0 20 10^-7 1]); grid on; 2、调用子函数 %******************************************************** %Q函数 %Qfunct.m %********************************************************

信号检测与估计理论简答

信号检测与估计理论简答题 1.维纳滤波器与卡尔曼滤波器的区别 维纳滤波器: 1)只用于平稳随机过程。 2)该系统常称为最佳线性滤波器。它根据全部过去和当前的观测信号来估计信号的波形,它的解是以均方误差最小条件所得到的系统的传递函数H(Z)的形式给出的。 3)信号和噪声是用相关函数表示的。 卡尔曼滤波器: 1)平稳随机过程和不平稳随机过程均适用。 2)该系统常称为线性最优滤波器。它不需要全部过去的观测数据,可根据前一个的估计值和最近的观察数据来估计信号的当前值,它是用状态方程和递推方法进行估计的,其解是以估计的形式给出的。 3)信号和噪声是用状态方程和测量方程表示的。 2.解释白噪声情况下正交函数集的任意性 设)0)(()()(T t t n t s t x ≤≤+=中,噪声n(t)是零均值、功率谱密度为2/)(0N w P n =的白噪声,其自相关函数)(2)(0 u t N u t r n -= -δ。于是,任意取正交函数集)()},({t x t f k 的展 开系数 j x 和 k x (k=1,2,…)的协方差为 )])([(k k j j s x s x E --] )()()()([00??=T k j T du u f u n dt t f t n E ????????=T T k j dt du u f u n t n E t f 00)()]()([)(? ???????-=T T k j dt du u f u t t f N 0 00)()()(2 δjk k T j N dt t f t f N δ2 )()(2 = =? 当k j ≠时,协方差0 )])([(=--k k j j s x s x E ,这说明,在n(t)是白噪声的条件下,取任 意正交函数集)}({t f k 对平稳随机过程k x (k=1,2,…)之间都是互不相关的。这就是白噪声条件下正交函数集的任意性。 3.请说明非随机参量的任意无偏估计量的克拉美-罗不等式去等号成立的条件和用途 克拉美-罗不等式] )),(ln [(1 ])?[(2 2θ θθ θ??≥-x p E E 或 )] ),(ln [(1 ])?[(22 2θθθ θ??-≥-x p E E 当且仅当对 所有的x 和θ 都满足 k x p )?(),(ln θ θθθ-=??时,不等式去等号成立。其中k 是任意非零常 数。 用途:当不等式去等号的条件成立时,均方误差取克拉美-罗界,估计量θ? 是无偏有效的。以此,随机参量下的克拉美-罗不等式和取等号的条件可用来检验随机参量θ的任意无偏估计量θ? 是否有效。若估计量无偏有效,则其均方误差可由计算克拉美-罗界求得。 4.简述最小的均方误差估计与线性最小均方误差估计的关系。 在贝叶斯估计中讨论的随机矢量θ的最小均方误差估计,估计矢量mse θ可以是观测矢

信号检测与估计理论第一章习题讲解

1-9 已知随机变量X 的分布函数为 2 0, 0(),01 1,1 X x F x kx x x ? 求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。 解: 第①问 利用()X F x 右连续的性质 k =1 第②问 {} {}{}()()0.30.70.30 .70.70 .3 0.7P X P X F P X F =<< =<≤-=- 第③问 201()()0 X X x x d F x f x else dx ≤

1-10已知随机变量X 的概率密度为()()x X f x ke x -=-∞<<+∞(拉 普拉斯分布),求: ①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()1 1 2 f x d x k ∞ -∞==? 第②问 { }()( )()2 1 1 221x x P x X x F x F x f x d x <≤ =-=? 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。 {}{}()() 1 0101011 12 P X P X f x dx e -<<=<≤==-? 第③问 ()102 10 2 x x e x f x e x -?≤??=? ?>?? ()00()1100 2 2 111010 2 22 x x x x x x x x F x f x dx e dx x e x e dx e dx x e x -∞ -∞---∞=??≤≤??? ?==????+>->????? ???

西电数字信号处理上机实验报告

数字信号处理上机实验报告 14020710021 张吉凯 第一次上机 实验一: 设给定模拟信号()1000t a x t e -=,t 的单位是ms 。 (1) 利用MATLAB 绘制出其时域波形和频谱图(傅里叶变换),估计其等效带宽(忽略谱分量降低到峰值的3%以下的频谱)。 (2) 用两个不同的采样频率对给定的()a x t 进行采样。 ○1()()15000s a f x t x n =以样本秒采样得到。 ()()11j x n X e ω画出及其频谱。 ○2()()11000s a f x t x n =以样本秒采样得到。 ()() 11j x n X e ω画出及其频谱。 比较两种采样率下的信号频谱,并解释。 (1)MATLAB 程序: N=10; Fs=5; T s=1/Fs; n=[-N:T s:N]; xn=exp(-abs(n)); w=-4*pi:0.01:4*pi; X=xn*exp(-j*(n'*w)); subplot(211) plot(n,xn); title('x_a(t)时域波形'); xlabel('t/ms');ylabel('x_a(t)'); axis([-10, 10, 0, 1]); subplot(212); plot(w/pi,abs(X)); title('x_a(t)频谱图'); xlabel('\omega/\pi');ylabel('X_a(e^(j\omega))');

ind = find(X >=0.03*max(X))*0.01; eband = (max(ind) -min(ind)); fprintf('等效带宽为%fKHZ\n',eband); 运行结果: 等效带宽为12.110000KHZ

《信号检测与估计》第十章习题解答

《信号检测与估计》第十章习题解答 10.1 设线性滤波器的输入信号为()()()t n t s t x +=,其中()[]0E =t s ,()[]0E =t n ,并且已知()τ τ-e =S R , ()τ τ-2e =N R ,()0=τsn R ,求因果连续维纳滤波器的传递函数。 解:连续维纳滤波器与离散维纳滤波器的形式是相同的,即 ()()()()+ ???????? = s B s P s B s H xs w 11 2 opt σ 因此需要求解()t s 的复功率谱和()t x 的时间信号模型。 考虑到信号与噪声不相关,因此观测数据的功率谱就等于信号的复功率谱加上噪声的复功率 谱。对观测数据的复功率谱进行谱分解,就可以得到()t x 的时间信号模型。 ()t s 的复功率谱为 ()()()2 0s -10s 1-s --12 1111e e e e s s s d d d s P S ?= ?++=+==∫∫∫∞?+∞++∞∞?τττττττ ()t n 的复功率谱为 ()2 s -2-44 e e s d s P N ?= =∫+∞ ∞?τττ 因此,观测数据的复功率谱为 ()()()()() ()()()()s s s s s s s s s P s P s P N S X ?+?++=?+?= +=2211-22644112 2 取12 =w σ ()() ()() s s s s B +++= 2126 ()()()()()()() ( ) () s s s s s s s s B s P s B s P N xs +=?==1-2-26 2 -2-1-2612--2 令()()() s B s P s F xs -=,()τf 是()s F 的拉普拉斯反变换。要求()τf 是因果的,可将s 平面右半平面的极点扔掉, ()()()[] 1 2e 61,e Re e 21 -s s += ?== ∫ττ τ πτs F s ds s F j f C 给()τf 取因果,并做拉普拉斯变换,得到 ()s d s F +? += ??+= ∫ ∞ ++111 26 e e 1 260 s --τττ

2017年西电电院数字信号处理教学大纲

《数字信号处理》课程教学大纲 课程代码:IB3123008 课程名称:数字信号处理英文名称:Digital Signal Processing 开课学期:第6学期 学分:3 学时:48 课程类別:必修课,专业基础课 适用专业:电子信息工程、信息对抗技术、遥感科学与技术、电磁场与无线技术、智能科学与技术 开课对象:三年级本科生 先修课程:信号与系统、MATLAB语言 后修课程:雷达原理、数字图像处理、数字音视频处理等 开课单位:电子工程学院 团队负责人:史林责任教授:史林 执笔人:史林核准院长:苏涛 一、课程性质、目的和任务 数字信号处理采用数字技术,研究信号和系统分析、处理、设计的基本原理和方法,是电子信息与电气工程类专业(电子信息工程专业、通信工程专业、信息工程专业等)的专业基础课,具有理论与实践紧密结合的特点。 通过本课程的学习,使学生建立数字信号处理的基本概念,掌握数字信号处理的基本原理、理论和方法,了解数字信号处理的新方法和新技术,熟练应用现代工具进行数字信号处理的仿真、分析和设计,达到能够对数字信号和系统进行分析、处理和设计的能力水平。为学习后续专业课程、进行创新性研究和解决复杂工程问题,奠定坚实的专业基础理论知识和工程实践能力。 本课程对学生达到如下毕业要求有贡献

二、教学内容、基本要求及学时分配 《数字信号处理》课程的教学内容、基本要求、学时分配和毕业要求指标点在教学中的具体体现如下。 (一)绪论 ( 2学时) 1.教学内容 介绍数字信号处理的基本概念、研究的内容及应用领域、发展概况和发展趋势,数字信号处理的基本特点,用数字方法处理信号的基本概念和一般方法。 2.基本要求 (1)了解数字信号处理研究的内容、应用领域、发展概况和发展趋势; (2)熟悉数字信号处理的基本概念和特点; (3)掌握用数字方法处理信号的基本概念和一般方法。 3.重点、难点 重点:数字信号处理的基本概念和特点。 难点:用数字方法处理信号的基本概念和一般方法 4.作业及课外学习要求 作业:分析数字信号处理的特点;熟悉用数字方法处理信号的一般方法,理解其中每个模块单元的作用。 课外学习:学习或复习MATLAB语言,掌握编程方法和技巧,做好后续的上机实验准备。 5.对毕业要求指标点的具体贡献 对指标点2-1的具体贡献:理解复杂工程问题中的数字系统; (二)离散时间信号和系统的时域分析( 4学时+4学时上机) 1.教学内容

数字信号处理设计实验报告 西电

数字信号处理 设计实验报告 一、实验目的 通过实验学会设计IIR和FIR数字滤波器分离多个信号,并用matlab实现。 二、实验内容 用数字信号处理技术实现两个时域重叠信号的分离,及相位检

波,设计分离和检波的方法,编写计算机程序,模拟信号处理过程,绘出时域和频域的处理结果。 三、程序设计 模拟信号的时域波形,频谱 Fs=40000; t=0:1/Fs:4; s1=cos(2*pi*30*t).*cos(2*pi*100*t); s2=cos(2*pi*70*t).*cos(2*pi*700*t); st=s1+s2; S1=abs(fftshift(fft(s1)))/80000; S2=abs(fftshift(fft(s2)))/80000; ST=abs(fftshift(fft(st)))/80000; F = (-80000:80000)*0.25 figure(1) subpl ot(321); pl ot(t,s1);titl e('s1时域波形'); xlabel('时间t');ylabel('幅度');grid on; axis([0 0.1 -1 1]) subpl ot(322); pl ot(F,S1);titl e('s1频谱'); xlabel('频率F');ylabel('幅值');grid on; axis([-1000 1000 0 1]) subpl ot(323);

pl ot(t,s2);titl e('s2时域波形'); xlabel('时间t');ylabel('幅度');grid on; axis([0 0.05 -1 1]) subpl ot(324); pl ot(F,S2);titl e('s2频谱'); xlabel('频率F');ylabel('幅值');grid on; axis([-1000 1000 0 1]) subpl ot(325); pl ot(t,st);titl e('st时域波形'); xlabel('时间t');ylabel('幅度');grid on; axis([0 0.05 -1 1]) subpl ot(326); pl ot(F,ST);titl e('st频谱'); xlabel('频率F');ylabel('幅值');grid on; axis([-1000 1000 0 1]) 采样信号的时域波形,频谱 Fs1=4000; t1=0:1/Fs1:4; N = 0:l ength(t1)-1 s1n=cos(2*pi*30*N/Fs1).*cos(2*pi*100*N/Fs1); s2n=cos(2*pi*70*N/Fs1).*cos(2*pi*700*N/Fs1); sn=s1n+s2n; S1N=abs(fftshift(fft(s1n)))/8000; S2N=abs(fftshift(fft(s2n)))/8000; SN=abs(fftshift(fft(sn)))/8000; F1 = (-8000:8000)*0.25 figure(2) subpl ot(321); stem(t1,s1n);titl e('s1n时域波形'); xlabel('时间t');ylabel('幅度');grid on; axis([0 0.05 -1 1]) subpl ot(322); pl ot(F1,S1N);titl e('S1N频谱'); xlabel('频率F');ylabel('幅值');grid on; axis([-1000 1000 0 1]) subpl ot(323); stem(t1,s2n);titl e('s2n时域波形'); xlabel('时间t');ylabel('幅度');grid on;

信号估值与检测

信号估值与检测 一、信号检测与估值理论的研究对象 信号检测与估值理论是现代信息理论的一个重要分支,是以率论与数理统计为工具,综合系统理论与通信工程的一门学科。它为通信、雷达、声纳、自动控制等技术领域提供理论基础。此外,它在统计识模、射电天文学、雷达天文学、地震学、生物物理学以及医学等领域里,也获得了广泛的应用。 众所同知,通信、雷达、自动控制系统等都是当代重要的信息传输和处理系统,对它们的性能要求,总的说来有两个方面。 一是要求系统能高效率地传输信息,这就是系统的有效性; 二是要求系统能可靠地传输信息,这就是系统的可靠性或抗干扰性。 ? 使系统信息传输可靠性降低的主要原因有: 1.不可避免的外部干扰和内部噪声的影响; 2.传输过程中携带信息的有用信号的畸变。 二.信号检测与估值理论发展的简略回顾 ? 信号检测与估值理论是从40 年代第二次世界大战中逐步形成和发展起来的。整个40 年代是这个理论的初创和奠基时期。在这期间,美国科学家维纳(N.Wiener)和苏联科学家柯尔莫格洛夫(A.H.K)等作出了杰出的贡献。他们将随机过程和数理统计的观点引入到通信①和控制系统中来,揭示了信息传输和处理过程的统计本质,建立了最佳线性滤波理论,后人称之为维纳滤波理论。这样,就把经典的统计判决理论和统计估值理论与通信工程紧密结合起来,为信号检测与估值理论奠定了基础。对于当时的传统观念来说,维纳滤波理论的创立是一次冲击和突破。因此,在20 和30 年代,人们在研究信息传输系统的可靠性问题时,总是习惯于把信号看成是一个确定性的过程(周期过程或瞬态过程),因而具有很大的局限性。

第一章 贝叶斯准则(Bayes Criterion):在假设Hj的先验概率P(Hj)已知,各种判决代价因子cij给定的情况下,使平均代价C最小的准则。根据贝叶斯准则得到似然比检验,将似然比函数(转移概率密度函数之比)λ(x)与最佳似然比门限η(由先验概率和判决代价因子确定)比较来判决哪种假设成立。似然比检测有时可简化为对数似然比检验。还可进一步化简,使判决表达式左边的检验统计量为观测量x的最简函数。贝叶斯准则是信号统计检测理论中的通用准则,对各假设的先验概率P(Hj)和各种判决的代价因子cij做某些约束,则得到它的派生准则,如最小平均错误概率准则(先验等概时即为最大似然(ML)准则),最大后验概率(MAP)准则,极小化极大准则,Neyman-Pearson(N-P)准则。 最小平均错误概率准则(Minimum mean probability of error criterion):使平均错误概率最小的检测准则。在通信系统中,通常有c00=c11=0, c10=c01=1,即正确判决不付出代价,错误判决代价相同,此时平均代价C恰好就是平均错误概率Pe,贝叶斯准则就转化为其特例形式的最小平均错误概率准则,似然比检验的判决门限为η=P(H0)/P(H1),似然比函数仍为λ(x)=P(x|H1)/P(x|H0)。当先验等概时,η=1,判决就表示为两个似然函数P(H0), P(H1)的比较,即转化为最大似然(Maximum Likelihood)准则。 最大后验概率准则(Maximum a posteriori probability (MAP) criterion):最小平均代价的贝叶斯准则在判决代价满足c10?c00=c01?c11的条件下,其判决式成为P(x|H1)/P(x|H0) P(H0)∕P(H1)(上述最小平均错误概率准则也即为此),最终可表示为P(H1|x)><P(H0|x),即比较后验概率的大小,就成为最大后验概率准则。易知,最小平均错误概率准则(因而最大似然准则)是MAP准则的特例,也可以说,在给定的判决代价条件下,两种准则是等价的。 奈曼-皮尔逊准则 在许多情况下,信号的先验概率和代价因子无法知道,如雷达系统要确定目标出现与不出现的概率是困难的,此时无法应用贝叶斯准则,应以检测概率最大为准则,如果用降低检测门限的方法来提高检测概率,但门限降低后又会使虚警概率加大,因此只能在对虚警概率加以限制的条件下,使检测概率最大,这就是奈曼-皮尔逊准则。 极小化极大准则(Minimax Criterion):在已经给定代价因子cij,但先验概率P(Hj)未知时,为避免产生可能过分大的代价,使极大可能代价极小化的信号检测准则。其方法是,猜测一

信号检测与估计模拟试卷

XXX 大学(学院)试卷 《信号检测与估计》试卷 第 1 页 共 2 页 《信号检测与估计》模拟试卷 一、(10分)名词解释(每小题2分) 1.匹配滤波器 2.多重信号 3.序列检测 4.非参量检测 5.最佳线性滤波 二、(10分)简述二元确知信号检测应用贝叶斯、最大后验概率、极大极小、纽曼-皮尔逊及最大似然准则的条件及确定门限的方法。 三、(10分)简述信号参量估计的贝叶斯估计、最大后验估计、最大似然估计、线性最小均方误差估计及最小二乘估计的最佳准则及应用条件。 四、(10分)概述高斯白噪声情况下的信号检测和高斯色噪声情况下信号检测所采用方法的特点。 五、(10分)设线性滤波器的输入为)()()(t n t s t x +=,其中)(t n 是功率谱密度为2/0N 的白噪声,信号为 ???><≤≤=0 0,000)(ττt t t t t s 对输入)(t x 的观测时间为),0(T ,且0τ>T 。(1)试求匹配滤波器的冲激响应及对应于)(t s 的输出信号。(2)求匹配滤波器输出的信噪比。 六、(10分)一个三元通信系统的接收机观测到的样本为n s x i +=,3,2,1=i 。其中,i s 是发射信号,n 是均值为0、方差为的2σ高斯白噪声。i s 取值分别为5、6和7,分别对应假设1H 、2H 和3H ,并且所有假设的先验概率相等。根据一次观测样本进行检测判决,(1)确定检测判决式和判决区域;(2)求最小平均错误概率。 七、(10分)在T t ≤≤0时间范围内,二元通信系统发送的二元信号为0)(0=t s ,)()(1t As t s =,其中,)(t s 是能量归一化确知信号;A 是正的确知常量,并假定发送两种信号的先验概率相等。信号在信道传输中叠加了均值为0、功率谱密度为2/0N 的高斯白噪声)(t n 。(1)试确定信号最佳检测的判决式。(2)画出最佳检测系统的结构。 八、(15分)设观测方程为k k n b a x +=,M k ,,2,1 =,其中a 和b 是非随机参量,k n 是均值为0、方差为1的高斯随机变量,且观测样本M x x x ,,,21 之间互不相关。(1)试求参量a 和b 的最大似然估计ML ?a 和ML ?b ;(2)分析最大似然估计ML ?a 和ML ?b 的有效性。 九、(15分)设目标以匀速度v 从原点开始做直线运动,速度v 受到时变噪声k w 扰动。现以等时间间隙T 对目标的距离r 进行直接测量,并且距离r 测量受到测距的观测噪声k n 的影响。假设在0=t 时刻开始,目标位于原点,观测时间间隔s 2=T 。目标在原点时,距离0r 的均值km 0][0=r E ,方差为220)km (2=r σ;速度0v 的均值km/s 3.0][0=v E ,方差为 220)km/s (2.0=v σ。速度扰动噪声k w 是均值为0、方差为22)km/s (2.0=w σ的白噪声随机序列。观测噪声k n 是均值为0、方差为22)km (8.0=n σ的白噪声随机序列,且与速度扰动噪声k w 不相 关。速度扰动噪声k w 、观测噪声k n 与目标初始状态),(00v r 彼此互不相关。如果运动目标距离的

2017年西电电院数字信号处理上机实验报告三

实验三、信号的频域与Z域分析 班级:学号:姓名:成绩: 1实验目的 (1)理解序列离散傅里叶变换(DTFT)的定义,熟悉序列DTFT的计算及其主要性质; (2)掌握Z变换的计算和主要性质,熟悉Z变换的收敛域及其与序列特性的关系,以及Z变换与DTFT的关系; (3)掌握时域离散线性时不变系统的频域分析方法,深刻理解系统的频率响应。了解系统的稳态响应和暂态响应、相位延迟和群延迟等概念; (4)掌握时域离散线性时不变系统的z域分析方法,深刻理解离散系统的系统函数及其零极点分布,熟悉零极点分布与系统的因果性和稳定性关系、零极点分布对系统频率特性的影响、差分方程的Z变换解法等; 2 实验内容 (1)设计计算机程序,产生序列并计算序列的DTFT,绘制其幅频特性和相频特性曲线; (2)根据系统的单位脉冲响应和差分方程,计算系统的频率响应,绘制系统频率响应的幅频特性和相频特性曲线; (3)根据系统的单位脉冲响应和差分方程,计算系统的系统函数、零极点分布;改变系统的零极点分布,观察系统频率响应的变化。 3实验步骤 (1)设计有限长序列Rn;计算序列的DTFT,绘制幅频特性和相频特性曲线 (2)改变系统的系统函数的零点分布,绘制系统改变前和改变后的频率响应的幅频特性和相频特性曲线 4 程序设计 x=[1,1,1,1];nx=[0:3];%x(n)=R(n) w=linspace(-2.8*pi,2.8*pi,100000);%取100000个点

X=x*exp(-j*nx'*w);%DTFT figure(1); subplot(3,2,1),plot(w/pi,abs(X));xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|') subplot(3,2,2),plot(w/pi,angle(X));xlabel('\omega/\pi');ylabel('\phi(\omega)/\pi') %差分方程求解 a=[1,-0.4];b=[1]; [H,w]=freqz(b,a,'whole'); subplot(3,2,3),plot(w/pi,abs(H));xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|') subplot(3,2,4),plot(w/pi,angle(H));xlabel('\omega/\pi');ylabel('\phi(\omega)/\pi') %零极点分布 a=[1,-1.6,0.9425];%分母 b1=[1,-0.3];b2=[1,-0.8];%分子 [F,w]=freqz(b1,a,'whole'); figure(2); subplot(2,2,1),zplane(b1,a);%零极点分布图 subplot(2,2,3),plot(w/pi,abs(F));xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|') subplot(2,2,4),plot(w/pi,angle(F));xlabel('\omega/\pi');ylabel('\phi(\omega)/\pi') figure(3);%改变零极点分布,观察频率响应变化 [F,w]=freqz(b2,a,'whole'); subplot(2,2,1),zplane(b2,a); subplot(2,2,3),plot(w/pi,abs(F));xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|') subplot(2,2,4),plot(w/pi,angle(F));xlabel('\omega/\pi');ylabel('\phi(\omega)/\pi')

信号检测与估值

1.信号检测与估计理论就是现代信息理论得一个分支,研究得对象就是信息传输系统中信 号得接收部分。 2.系统信息传输可靠性降低得主要原因:(1)信号经过传输以后,由于通信系统不理想,信 号可能出现畸变或幅值得衰减、通过正确地设计通信系统,可以尽可能地减少信号得畸变,获得满意得接收效果、(2)经过信道传输后,信号不可避免地受到信道噪声得污染,使得接收到得就是信号与噪声得混合波形、 3.通信系统得性能要求 系统得有效性:要求系统能高效率地传输信息; 系统得可靠性(抗干扰性):要求系统能可靠地传输信息 4.本课程要学习得主要内容 接收机得任务就是要加工处理所接收到得混合波形,尽量减少判决错误、由于信道噪声就是个随机过程,同时信号本身也可能带有不确定得参量,因此只能采用数理统计得方法,根据信号与噪声提供得得统计特性,依据某些判决得准则,对信号进行检测,判断,估计它得某些参量,或者复原信号得波形等等、这就就是、 5.信号检测与估计得基本任务 研究如何在干扰与噪声得影响下最有效地辨认出有用信号得存在与否,以及估计出未知得信号参量或信号波形本身。它实质上就是有意识地利用信号与噪声得统计特性得不同,来尽可能地抑制噪声,从而最有效地提取有用信号得信息。 6.信号得统计处理方法 对随机信号,应用统计学得理论与方法进行处理,称为统计信号处理,这主要体现在如下三个方面: 信号统计特性得统计描述:如信号得概率密度函数(PDF),各阶矩,自相关函数,协方差函数,功率谱密度(PSD)等。 统计意义上得最佳处理:如最佳准则,最佳判决,最佳估计,最佳滤波等,均就是在统计意义上得最佳处理。 性能评价用相应得统计平均量:如判决概率,平均代价,平均错误概率,均值,均方误差等。 7.检测 :指在接收端检测信号就是否存在 估值 : 指在接收端估计信号得某些参量: 如幅度得大小,频率得偏移等、(又称为信号得参量估计) 统称为信号得检测与估值 8.信号检测与估值中得三大任务 信号得检测::根据有限观测,最佳区分一个物理系统不同状态; 信号参量得估计:根据有限观测,最佳区分一个物理系统不同参数; 波形估计 9.信号检测与估计研究步骤

信号检测与估计课后习题

三、(15分)在二元信号的检测中,若两个假设下的观测信号分别为: 012 2 112 ::H x r H x r r ==+ 其中,1r 和2r 是独立同分布的高斯随机变量,均值为零,方差为1。若似然比检测门限为η,求贝叶斯判决表示式。 解 假设0H 下,观测信号x 的概率密度函数为 1/2 201(|)exp 22x p x H π???? =- ? ????? 假设1H 下,22 12x r r =+, 而12 (0,1),(0,1)r N r N ,且相互统计独立。大家知道, 若(0,1)k r N ,且(1,2, ,)k r k N =之间相互统计独立,则 2 1N k k x x ==∑ 是具有N 个自由度的2 χ分布。现在2N =,所以假设1H 下,观测信号x 的概率密度函数 为 22/21 12/22 1(|)exp() 2(2/2)2 1exp(),022 x p x H x x x -=-Γ=-≥ 当0x <时,1(|)0p x H =。 于是,似然比函数为 1/2210exp ,0 (|)()222(|)0, 0x x x p x H x p x H x πλ??? ??-≥? ? ?==?????? ???-≥? ? ? ??-?? ?

四、(15分)已知被估计参量θ的后验概率密度函数为 2(|)()exp[()],0p x x x θλθλθθ=+-+≥ (1)求θ的最小均方误差估计量^ mse θ 。 (2)求θ 的最大后验估计量^ map θ 。 解 (1)参量θ的最小均方误差估计量^ mse θ是θ的条件均值,即 ^ 0220 221 (|)()[()]1()()2 ,mse p x d x exp x d x x x x θθθθ λθλθθ λλλλ ∞ ∞ +==+-+=++= ≥-+?? ^ 0,mse x θλ=<- (2)由最大后验方程 ^ln (|) |0map p x θθθθ =?=? 得 ^2[ln()ln ()]1 ()|0 map x x x θθλθλθθ λθ =? ++-+?=-+= 解得 ^ ^ 1 ,0, map map x x x θλλθλ = ≥-+=<- 七、(15分)若对未知参量θ进行了六次测量,测量方程和结果如下: 182222202384404384n θ???????????????? =+????????????????????

西安电子科技大学数字信号处理大作业

数字信号处理大作业 班级:021231 学号: 姓名: 指导老师:吕雁

一写出奈奎斯特采样率和和信号稀疏采样的学习报告和体会 1、采样定理 在进行A/D信号的转换过程中,当采样频率fs.max大于信号中最高频 率fmax的2倍时(fs.max>2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定 理又称奈奎斯特定理。 (1)在时域 频带为F的连续信号 f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各 采样值完全恢复原始信号。 (2)在频域 当时间信号函数f(t)的最高频率分量为fmax时,f(t)的值可由一系列 采样间隔小于或等于1/2fo的采样值来确定,即采样点的重复频率fs ≥2fmax。 2、奈奎斯特采样频率 (1)概述 奈奎斯特采样定理:要使连续信号采样后能够不失真还原,采样频率必须 大于信号最高频率的两倍(即奈奎斯特频率)。 奈奎斯特频率(Nyquist frequency)是离散信号系统采样频率的一半,因哈里·奈奎斯特(Harry Nyquist)或奈奎斯特-香农采样定理得名。采样定理指出,只要离散系统的奈奎斯特频率高于被采样信号的最高频率或带宽,就可 以真实的还原被测信号。反之,会因为频谱混叠而不能真实还原被测信号。 采样定理指出,只要离散系统的奈奎斯特频率高于采样信号的最高频率或 带宽,就可以避免混叠现象。从理论上说,即使奈奎斯特频率恰好大于信号带宽,也足以通过信号的采样重建原信号。但是,重建信号的过程需要以一个低 通滤波器或者带通滤波器将在奈奎斯特频率之上的高频分量全部滤除,同时还 要保证原信号中频率在奈奎斯特频率以下的分量不发生畸变,而这是不可能实 现的。在实际应用中,为了保证抗混叠滤波器的性能,接近奈奎斯特频率的分 量在采样和信号重建的过程中可能会发生畸变。因此信号带宽通常会略小于奈 奎斯特频率,具体的情况要看所使用的滤波器的性能。需要注意的是,奈奎斯 特频率必须严格大于信号包含的最高频率。如果信号中包含的最高频率恰好为

信号检测与估计试题——答案(不完整版)

一、概念: 1. 匹配滤波器。 概念:所谓匹配滤波器是指输出判决时刻信噪比最大的最佳线性滤波器。 应用:在数字信号检测和雷达信号的检测中具有特别重要的意义。在输出信噪比最大准则下设计一个线性滤波器是具有实际意义的。 2. 卡尔曼滤波工作原理及其基本公式(百度百科) 首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述: X(k)=A X(k-1)+B U(k)+W(k) 再加上系统的测量值: Z(k)=H X(k)+V(k) 上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。 对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。 首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态: X(k|k-1)=A X(k-1|k-1)+B U(k) (1) 式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。 到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance: P(k|k-1)=A P(k-1|k-1) A’+Q (2) 式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。 现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k): X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3) 其中Kg为卡尔曼增益(Kalman Gain): Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)

西安电子科技大学-数字信号处理-试卷C答案

Answer to “Digital Signal Processing of 2005” Problem 1 (a) even part: };5.0,1,7,7,5,7,7,1,5.0{---=e X odd part: };5.0,1,3,1,0,1,3,1,5.0{----=o X (b) };20,16,11,94,36,40,31 ,16,12,0{-----=y (c) MATLAB Program n=-4:2; x=[1 -2 4 6 -5 8 10]; [x11,n11]=sigshift(x,n,2); [x12,n12]=sigshift(x,n,-1); [x13,n13]=sigfold(x,n); [x13,n13]=sigshift(x13,n13,-2); [x12,n12]=sigmult(x,n,x12,n12); [y,n]=sigadd(2*x11,n11,x12,n12); [y,n]=sigadd(y,n,-1*x13,n13) Problem 2 (a)w j w j w j w j jw jw e e e e e e X 65424210124)(-----++++++=,()j X e ωis periodic in ω with period 2π (b) MATLAB Program : clear; close all; n = 0:6; x = [4,2,1,0,1,2,4]; w = [0:1:1000]*pi/1000; X = x*exp(-j*n'*w); magX = abs(X); phaX = angle(X); % Magnitude Response Plot subplot(2,1,1); plot(w/pi,magX);grid; xlabel('frequency in pi units'); ylabel('|X|'); title('Magnitude Response'); % Phase response plot subplot(2,1,2); plot(w/pi,phaX*180/pi);grid; xlabel('frequency in pi units'); ylabel('Degrees'); title('Phase Response'); axis([0,1,-180,180]) (c) Because the given sequence x (n)={4,2,1,0,1,2,4} (n=0,1,2,3,4,5,6) is symmetric about 1 32 N α-= =,the phase response ()j H e ω < satisfied the condition :()3j H e ω αωω<=-=- so the phase response is a linear function in ω. (d) 150,350Hz Hz Ω=-; (e) The difference of amplitude and magnitude response:

相关文档
最新文档