水热制备油酸修饰的四氧化三铁及其应用(2015)

水热制备油酸修饰的四氧化三铁及其应用(2015)
水热制备油酸修饰的四氧化三铁及其应用(2015)

纳米四氧化三铁的应用

纳米四氧化三铁的应用一、纳米四氧化三铁的简介 四氧化三铁是一种常用的磁性材料,又称氧化铁黑,呈黑色或灰蓝色。四氧化三铁是一种铁酸盐,即Fe2+Fe3+(Fe3+O4)(即FeFe(FeO4)前面2+和3+代表铁的价态)。在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO〃Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。化学式:Fe3O4,分子量231.54,硬度很大,具有磁性,可以看成是氧化亚铁和氧化铁组成的化合物。逆尖晶石型、立方晶系,密度 5.18g/cm3。熔点1867.5K(1594.5℃)。它不溶于水,也不能与水反应。与酸反应,不溶于碱,也不溶于乙醇、乙醚等有机溶剂。 在外磁场下能够定向 移动,粒径在一定范围之 内具有超顺磁性,以及在 外加交变电磁场作用下能 产生热量等特性,其化学 性能稳定,因而用途相当 广泛。 纳米四氧化三铁置于介质中,采用胶溶化法和添加改性剂及分散剂的方法,通过

在颗粒表面形成吸附双电层结构阻止纳米粒子团聚,制备稳定分散的水基和有机基纳米磁性液体。制备的磁性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。 通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。 二、纳米四氧化三铁的配置方法 由于纳米四氧化三铁特殊的理化学性质 , 使其在实际应用中越来越广泛 , 而其制备方法和性质的研究也得到了深入的进展。磁性纳米微粒的制备方法主要有物理方法和化学方法。物理方法制备纳米微粒一般采用真空冷凝法、物理粉碎法、机械球磨法等。但是用物理方法制备的样品一产品纯度低、颗粒分布不均匀 , 易被氧化 , 且很难制备出10nm 以下的纳米微粒 , 所以在工业生产和试验中很少被采纳。 化学方法主要有共沉淀法、溶胶 - 凝胶法、微乳液法、水解法、水热法等。采用化学方法获得的纳米微粒的粒子一般质量较好 , 颗粒度较小 , 操作方法也较为容易 , 生产成本也较低 , 是目前研究、生产中主要采用的方法。

四氧化三铁制备化学实验

实验一:共沉淀法制备具有超顺磁性的纳米四氧化三铁粒子 一、实验背景 有关纳米粒子的制备方法及其性能研究备受多学者的重视,这不仅因为纳米粒子在基础研究方面意义重大,而且在实际应用中前景广阔。在磁记录材料方面,磁性纳米粒子可望取代传统的微米级磁粉,Fe3O4超细粉体由于化学稳定性好,原料易得,价格低廉,已成为无机颜料中较重要的一种,被广泛应用于涂料,油墨等领域;而在电子工业中超细Fe3O4是磁记录材料,用于高密度磁记录材料的制备;它也是气、湿敏材料的重要组成部分。超细Fe3O4粉体还可作为微波吸收材料及催化剂。另外使用超细Fe3O4粉体可制成磁流体。 Fe3O4纳米粒子的制备方法有很多,大体分为两类:一是物理方法,如高能机械球磨法,二是化学方法,如化学共沉淀法、溶胶-凝胶法、水热合成法、热分解法及微乳液法等。但各种方法各有利弊;物理方法无法进一步获得超细而且粒径分布窄的磁粉,并且还会带来研磨介质的污染问题;溶胶-凝胶法、热分解法多采用有机物为原料,成本较高,且有毒害作用;水热合成法虽容易获得纯相的纳米粉体,但是反应过程中温度的高低,升温速度,搅拌速度以及反应时间的长短等因素均会对粒径大小和粉末的磁性能产生影响。 本实验是采用共沉淀法(将沉淀剂加入Fe2+和Fe3+混合溶液中)制备纳米Fe3O4颗粒。该制备方法不仅原料易得且价格低廉,设备要求简单,反应条件温和(在常温常压下以水为溶剂)等优点。 二、实验目的 1、了解用共沉淀法制备纳米四氧化三铁粒子的原理和方法。 2、了解纳米四氧化三铁粒子的超顺磁性性质。 3、掌握无机制备中的部分操作。 三、实验原理 采用化学共沉淀法制备纳米磁性四氧化三铁是将二价铁盐和三价铁盐溶液按一定比例混合,将碱性沉淀剂加入至上述铁盐混合溶液中,搅拌、反应一段时间即可得纳米磁性Fe3O4粒子,其反应式如下: Fe2++2Fe3++8OH-_________Fe3O4+4H2O 四、仪器与试剂 烧杯、FeCl2·4H2O、FeCl3、氢氧化钠、柠檬酸三钠。 五、实验步骤 1、配置50 ml 1 moL 的NaOH溶液。(2g NaOH+50g H2O) 2、称取0.9925g FeCl3和1.194g FeCl2·4H2O(反应当量比为1:1)溶于30 mL 的蒸馏水中。 3、将反应溶液加热至60℃,恒温下磁力搅拌(转速约为1000rpm)。 4、30 min后缓慢滴加配置的NaOH溶液,待溶液完全变黑后,仍继续滴加

水热法制备纳米材料

实验名称:水热法制备纳米TiO2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1.了解水热法的基本概念及特点。 2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3.熟悉XRD操作及纳米材料表征。 4.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4;蒸馏水;无水乙醇。 四.实验过程 1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。 2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。

发光材料的合成及发光材料制备技术(精)

1 02121289.9 一种有机电致发光材料及其应用 2 02134788. 3 稀土高分子光致发光材料及其合成方法 3 01124165.9 一种纳米级超长余辉硅铝复合盐类发光材料及其制备方法 4 01133301.4 电致发光材料包膜 5 02130973. 6 一种电致发光磷光材料及其应用 6 01136619.2 一种非放射性环保蓄能发光材料及其制备方法 7 02134210.5 含硒杂环化合物的聚合物及其在制备发光材料中的应用 8 02125386.2 一种合成长余辉发光材料的新方法 9 02155860.4 允许由给体转移有机材料以便在有机发光二极管器件内形成层的设备 10 02124569.X 亚甲基吡咯金属络合物、使用该络合物的发光元件材料以及发光元件 11 02132760.2 含有高可见发光效率的CdTe纳米晶透明聚合物体相材料的制备方法 12 01804068.3 发光元件材料和使用该材料的发光元件 13 99816847.5 光致发光的半导体材料 14 02124757.9 脂环式环氧化合物、其制造方法和组成物及发光二极管用密封材料 15 02135615.7 有机电致发光材料8-羟基喹啉铝的制备方法 16 01138882.X 超长余辉高亮度蓝紫色发光材料的制备方法 17 01138883.8 铝酸盐高亮度长余辉发光材料及其制备方法 18 02157031.0 用于转移有机材料以形成有机发光装置中的结构层的方法 19 03112784.3 纳米发光复合材料及其制备方法 20 03113677.X 含镉氧化物长余辉发光材料及其制备方法 21 02103614.4 基于纳米材料的发光气敏传感器及纳米材料的成膜工艺

纳米四氧化三铁的应用

精心整理纳米四氧化三铁的应用 一、纳米四氧化三铁的简介 )前面 显+2与大, 胶溶化法和添加改性剂及分散剂的方 法,通过在颗粒表面形成吸附双电层结 构阻止纳米粒子团聚,制备稳定分散的 水基和有机基纳米磁性液体。制备的磁

性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。 通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。 二、 泛, ,所 ,操 磁性 目前,制备磁性Fe3O4纳米颗粒方法的机理已研究得很透彻,归结起来一般分为两种。一是采用二价和三价铁盐,通过一定条件下的反应得到磁性Fe3O4纳米颗粒;另一种则是用三价铁盐,在一定条件下转变为三价的氢氧化物,最后通过烘干、煅烧等手段得到磁性Fe3O4纳米颗 粒。

(一)共沉淀法 沉淀法是在包含两种或两种以上金属离子的可溶性盐溶液中,加入适当的沉淀剂,使金属离子均匀沉淀或结晶出来,再将沉淀物脱水或热分解而制得纳米微粉。 (二)溶胶-凝胶法 溶胶-凝胶方法(Sol-Gel)是日本科学家Sugimoto等于上世纪90年代发展 ,油(OΠ , 对实验设备和制备条件方面的要求相对高一些,因而大多数也只停留在研究阶段。 三、纳米四氧化三铁的应用 当粒子的尺寸降至纳米量级时,由于纳米粒子的小尺寸效应、表面效

应、量子尺寸效应和宏观量子隧道效应等的影响,使其具有不同于常规体相材料的特殊的磁性质。这也使其在工业、生物医药等领域有着特殊的应用。(一)生物医药 磁性高分子微球(也称免疫磁性微球)是一种由磁性纳米颗粒和高分子骨架材料制备而成的生物医用材料,其中的高分子材料包括聚苯乙烯、硅烷、聚乙烯、聚丙烯酸、淀粉、葡聚糖、明胶、白蛋白、乙基纤维素等,骨架 .用 能长期稳定的存在,不产生沉淀与分离。目前,磁性流体已经广泛应用于选矿技术、精密研磨、磁性液体阻尼装置、磁性液体密封、磁性液体轴承、磁性液体印刷、磁性液体润滑、磁性液体燃料、磁性液体染料、磁性液体速度传感器和加速度传感器、磁性液体变频器、磁性液体陀螺仪、水下低

发光材料制备方法

发光材料的制备方法 随着发光材料基质类型的不断发展,其制备方法也逐渐趋于多样化[7~10]针对各种基质的特点,相应发展出了溶胶-凝胶法、高温固相法、燃烧合成法、微波加热法、水热法、喷雾热解法、化学沉淀法、电弧法等制备技术。这些制备方法的基本原理有着显著的差别,适用性也有所不同,具有较强的针对性。 1、溶胶—凝胶法 溶胶一凝胶法(Sol-Gel)是低温合成材料的一种新工艺,它最早是用来合成玻璃的,但近十多年来,一直是玻璃陶瓷等先进材料合成技术研究的热点,其原理是将组成元素的金属无机或有机化合物作为先驱体,经过水解形成凝胶,这些凝胶经过烘干成为玻璃粉末并进行成型,再在较低温度下进行烧结,形成玻璃陶瓷。溶胶一凝胶法是应用前景非常广泛的合成方法。它是采用特定的材料前驱体在一定条件下水解,形成溶胶,然后经溶剂挥发及加热等处理,使溶胶转变成网状结构的凝胶,再经过适当的后处理工艺形成纳米材料的一种方法。 利用溶胶一凝胶法(Sol-Gel)制备发光材料时,把选好的基质材料制成溶液,配以激活剂、助溶剂等的有机化合物溶液或化合物的水溶液,混合均匀,溶液静化数小时后形成凝胶,经干燥、灼烧除去有机物后,再在一定气氛下烧结成产品,得到发光材料粉体。范恩荣[11]用溶胶一凝胶新工艺制备出硅酸锌、硅酸钙发光材料。 此方法制备发光材料具有均匀性好,烧结温度低,反应容易控制,材料的发光带窄,发光效率高等优点。但存在着要使用金属有机溶剂,成本高、操作繁琐、生产周期长,凝胶在烧结过程中收缩较大,制品易变形,对发光性能有一定影响等缺点。 溶胶-凝胶技术作为一种先进的工艺方法,具有反应温度低、对基材的尺寸与形状没有过高要求、仪器费用低、操作简单、材料性能调节余地大等特点,可以很方便地通过改变参与反应的有机与无机组分的含量来实现纳米涂层性能的调节。 溶胶是分散介质中基本单元尺寸为1~100 nm的固体粒子而形成的分散体系。在Sol-Gel涂层制备中,溶胶的制备可分为有机途径和无机途径两种。有机途径是通过有机醇盐的水解与缩聚而形成溶胶;无机途径则是通过某种方法制得

纳米四氧化三铁制备及其性质研究

纳米四氧化三铁制备及其性质研究 摘要:四氧化三铁是一种具有反尖晶石结构的铁氧体,由于其具有独特的物理、化学性质, 已经引起众多专家学者的关注。纳米四氧化三铁具有超顺磁性、小尺寸效应、量子隧道效应等使其能够区别于一般的四氧化三铁。目前在国内外,磁性纳米四氧化三铁已经在催化剂、造影成像、靶向给药、药物载体、DNA检测等应用领域表现出良好的应用前景。尤其随着纳米技术与高分子工程的快速发展,磁性纳米四氧化三铁在细胞分离、蛋白质分离、生物传感器、重金属吸附等领域越来越受到研究者的重视。同时,合成粒径小、分布窄且具有优良磁性、表面性能稳定、具有生物相容性安全的磁性纳米四氧化三铁也是各专家、学者研究的热点之一。 关键词:纳米四氧化三铁;磁性;合成 近年来,有关磁性纳米粒子的制备方法与性质备受关注。然而,由于磁性纳米粒子之间的作用力,如范德华力以及磁力作用,纳米四氧化三铁粒子极易发生团聚,使得比表面积降低,同时减弱了反应活性。通过添加高分子聚合物或表面活性剂对粒子表面进行改性,可以获得稳定分散的磁性纳米粒子,从而有效克服上述缺点。 1.实验部分 1.1 实验原理 化学共沉淀法是指在包含两种或两种以上金属阳离子的可溶性溶液中,加入适当沉淀剂,将金属离子均匀沉淀或结晶出来。具体反应方程式:Fe2+ +2Fe3+ +8OH-==Fe3O4 +4H2O.通常是把FeⅡ和FeⅢ的硫酸盐或氯化物溶液一物质的量比2比3的比例混合后,用过量的氨水或氢氧化钠在一定温度和pH下,高速搅拌进行沉淀反应,然后将沉淀过滤、洗涤、烘干,制得纳米四氧化三铁。 1.2仪器与试剂 三颈瓶,pH计,高速离心机,恒温水浴箱,真空干燥箱,紫外可见分光光度计,X射线衍射仪等 四水合氯化亚铁,六水合氯化铁,乙醇,十二烷基苯磺酸钠,油酸,氢氧化钠,盐酸等。1.3实验步骤 室温下,将四水合氯化亚铁和六水合氯化铁按物质的量比为1比2的比例混合放入三颈瓶中,加入200mL去离子水,然后加入一定量表面活性剂和油酸。高速搅拌下,向溶液中缓慢滴加0.1mol/L氢氧化钠溶液,至pH>11,继续搅拌1h使反应完全。反应结束后用磁铁进行固液分离,再用去离子水反复冲洗至中性,以除去多余电解质。在60℃下真空干燥24h. 1.5样品检验 相关资料

发光材料的制备

实验三微波法制备蓝色荧光粉Ca1-x Sr x F2:Eu 一、实验目的 1. 掌握共沉淀-微波法制备荧光粉的方法 2. 熟悉微波反应装置以及具体的实验操作 3. 制备纳米复合荧光粉 二、主要仪器与药品 1、仪器 烧杯,胶头滴管,瓷坩埚(100ml、20ml)各一个,分析天平,离心机,烘箱,微波炉,紫外灯 2、药品 硝酸钙,硝酸锶,三氧化二铕(Eu2O3),氟化铵,硝酸,活性炭(炭粒) 三实验原理与技术 共沉淀法是将沉淀剂加入到混合金属盐溶液中,促使各组分均匀混合沉淀,然后加热分解以获得产物的方法。化学共沉淀法的优势在于它不仅可以将原料提纯与细化,而且可以在制备过程中完成反应及掺杂过程。这种方法具有工艺简单、经济,反应物混合均匀,焙烧温度较低、时间较短、产品性能良好等优点。但制备过程中仍有不少问题有待解决,例如过程中易引入杂质,形成的沉淀呈胶体状态导致洗涤和过滤方面的问题,如何选择适宜的沉淀剂和控制制备条件等。 微波合成法是近年来迅速发展起来的一种新合成方法,应用于光致发光材料的制备,已获得了多种粒度细小、分布均匀、色泽纯正、发光效率高的荧光粉。这种方法是将原料按比例混合后研磨,装入特定的反应器,在微波炉中加热反应20—40min,取出后进行简单的后处理即得成品。微波热合成法的显著优点是反应彻底、快速、高效、节能、洁净、经济,使用方法和设备简单,只需家用微波炉即可。用此法合成的产品疏松.粒度小。分布均匀,色泽纯正,发光效率高,有较好的应用价值; 氟化物性能稳定,不易潮解,透光率好,而且生产成本低,有着有机物和硫化物无法比拟的优点。通过对其进行稀土掺杂,可以制备出与植物光合作用所吸收光谱相匹配的新型高效转光剂。但是目前文献报道的大都是通过高温固相法

四氧化三铁能溶解在酸中吗

四氧化三铁能溶解在酸中吗 绍兴一中分校吴文中 【基本信息】 1.化学式:Fe3O4 2.化学键:Fe3O4是由3个铁原子与4个氧原子,通过离子键而组成的复杂离子晶体。 3.名称:四氧化三铁,磁性氧化铁 4.结构特点:在Fe3O4中的Fe具有不同的氧化态,过去曾认为它是FeO和Fe2O3的混合物,但经X射线研究证明,Fe3O4是一种反式尖晶石结构,可写成FeIII[(FeIIFe III)O4] 。晶体结构为六方晶系的永久磁石(硬磁体)和具有化学组成为MII?Fe2O3的尖晶石结构 5.高中阶段涉及到四氧化三铁的一些反应 ①四氧化三铁和盐酸:Fe3O4+8HCl=FeCl2+2FeCl3+4H2O ②四氧化三铁和硝酸:3Fe3O4+28HNO3=9Fe(NO3)3+NO↑+14H2O ③四氧化三铁和氢碘酸:Fe3O4+8HI=3FeI2+4H2O+I2 ④铝热反应:8Al+3Fe3O4=9Fe+4Al2O3 ⑤铁和水蒸气:3Fe+4H2O(g)=Fe3O4+4H2 ⑥铁和氧气:3Fe+2O2=Fe3O4 ⑦氧化亚铁和氧气:3FeO +O2 =2Fe3O4 ⑧铁钝化:钝化成氧化产物FexOy,主要可能是Fe3O4 ⑨“发蓝”处理: 3Fe+NaNO2+5NaOH=3Na2FeO2+NH3↑+H2O8Fe+3NaNO3+5NaOH+2H2O= 4Na2Fe2O4+3NH3↑(不一定用硝酸钠作氧化剂)Na2FeO2+Na2Fe2O4=2H2O+Fe3O4+ 4NaOH ⑩其他 【问题的提出】 1. 溶解磁性氧化铁为什么要用以下方法: 在实验室中常用磁铁矿(Fe3O4)作为制取铁盐的原料。为处理这样的不溶性氧化物,往往采用酸性熔融法,即以K2S2O7(或KHSO4)作为溶剂,熔融时分解放出SO3。 2KHSO4 == K2S2O7 + H2O K2S2O7 == K2SO4 + SO3 生成的SO3能与不溶性氧化物化合,生成可溶性的硫酸盐。 4Fe3O4 + 18SO3 + O2 == 6Fe2(SO4)3 冷却后的溶块,溶于热水中,必要时加些盐酸或硫酸,以抑制铁盐水解。 2.许多资料表明,天然的四氧化三铁不能溶解在酸中。 3.“四氧化三铁:铁丝在氧气里燃烧生成四氧化三铁;铁在空气里加热到500℃,铁跟空气里的氧气起反应也生成四氧化三铁;锻工砧子周围散落的蓝灰色碎屑主要是四氧化三铁;铁跟高温的水蒸汽发生置换反应生成四氧化三铁和氢气;天然磁铁矿的主要成分是四氧化三铁的晶体。四氧化三铁是一种重要的常见铁的化合物。四氧化三铁呈黑色或灰蓝色,密度5.18g/cm3,熔点1594℃,硬度很大,具有磁性,又叫磁性氧化铁。四氧化三铁不溶于水和碱溶液,也不溶于乙醇、乙醚等有机溶剂,但能溶于盐酸。天然的Fe3O4不溶于盐酸。四氧化三铁是一种铁酸盐,即FeIIFeIII[FeIIIO4]。在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO?Fe2O3,而不能说是FeO与Fe2O3组成的混合物。 4.为什么铁被钝化以后不能被浓盐酸或者浓硝酸溶解?除因为浓硫酸酸性弱以外的解释,其他的解释都不"给力"。因为浓硝酸的酸性还是比较强的!

纳米四氧化三铁的制备及表面改性.

纳米四氧化三铁的制备与表面改性 化学与材料科学系 09级应用化学1班刘立君李淑媛 摘要:由于纳米Fe3O4在光学、电学、热学、磁学、力学等方面独特的性质,对它的研究越来越多,且在各个领域的应用也越来越广泛,因此本文详细介绍了纳米四氧化三铁的各种制备方法,对其制备工艺的优缺点、应用前景、产品性能进行了详细的比较;并综述了纳米四氧化三铁的表面改性的方法,如有机改性、无机改性、偶联改性、小分子改性、大分子改性等改性手法,以及表面改性后各种纳米Fe3O4的特征与用途前景。 关键词纳米Fe3O4 综述表面改性 1引言 四氧化三铁的性质:四氧化三铁在常温常压状态下是一种具有强磁性的黑色粉末状晶体,潮湿状态的四氧化三铁在空气中容易氧化成三氧化二铁,二价铁离子被氧化成三价铁离子。四氧化三铁具有强磁性,四氧化三铁固体具有优良的导电性。因为在磁铁矿中,由于Fe2 +与 Fe3 +在八面体位置上基本上是无序排列的,电子可在铁的两种氧化态间迅速发生转移,所以四氧化三铁固体具有优良的导电性能。X 射线研究表明,四氧化三铁是铁( III) 酸盐,即 Fe2 +( Fe3 +O2 -2)2,称为“偏铁酸亚铁”,化学式为Fe( FeO2)2。在四氧化三铁里,铁显两种价态,所以常常将四氧化三铁看成是由 FeO 与 Fe2O3组成的化合物,也可表示为 FeO·Fe2O3,但不能说是 FeO 与Fe2O3组成的混合物,它属于纯净物。常见的天然磁铁矿中主要成分是四氧化三铁的晶体。

磁性纳米粒子的性质:纳米材料指颗粒尺寸在1-100nm间的粒子,及由其聚集而成的纳米固体材料,具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等,使得其与同组成的材料相比,显示独特的光学、电学、热学、磁学、力学及化学性质。当磁性纳米材料的尺寸减小到纳米尺度时,尺寸和形状这两个关键参数强烈影响着其磁性能,使磁性纳米粒子呈现超顺磁性,高矫顽力,低居里温度和高磁化率,同时,磁性纳米粒子具有以下几方面的特性:第一,磁性纳米粒子具有可控性的粒径(从几纳米到几十纳米),小于或相当于细胞(10-100nm),病毒(20-450nm),蛋白质(5-50nm),基因(Znm宽10-100nm长)的尺度,这表明磁性纳米粒子能够接近我们所感兴趣的生物实体.事实上,它们可以被生物分子修饰后连接到生物实体上,由此提供了一种可控的标一记方法;第二,磁性纳米粒子的磁性遵从库仑定律,能够通过外加磁场加以控制;第三,磁性纳米粒子能够对磁场的周期性变化产生响应,从激励场获得能量,由此微粒能够被加热,从而可用于热疗,传输大量的热能到靶区,如肿瘤;第四,磁性纳米粒子可从尿液及大便中排泄,其中经肾脏排出较多,肠道排出较少。这也使其在工业、电子信息、生物医药等领域都有着特殊的应用。常用的磁性纳米材料有金属合金及其金属氧化物,由于镍、钴等存在毒性,在生物、医药等方面受到严格的限制,而铁的氧化物(Fe3O4,γ一Fe2O3)因其低毒(LD50约2000mg/kg体重,远远高于目前临床应用剂量)、易得等特点被广泛推用。 2四氧化三铁纳米粒子的制备方法

四氧化三铁综述

四氧化三铁纳米的制备应用及表征 摘要:总结了磁性纳米Fe3O4粒子的制备方法,有共沉淀法、超声波沉淀法、水热法、微乳液法、水解法、溶胶- 凝胶法,多元醇法等,并讨论了磁性纳米Fe3O4粒子在磁性液体、生物医学、微波吸附材料磁记录材料、催化剂载体等领域的应用。简述了Fe3O4得表征手段,最后对纳米Fe3O4的研究前景进行了展望。 关键词:四氧化三铁;磁性纳米颗粒;制备;应用;表征 The Preparation and Application of Fe3O4 Magnetic Nano- particles 【Abstract】The chemical preparation methods were summarized including co-precipitation,sol-gel method, microemulsion , hydro-thermal method etc. Based on the recent progress , relative meritsof those methods were analyzed. The application of Fe3O4nano-particles in magnetic fluid , magnetic recording materials , catalytical and microwave materials and medicine were introduced. 【Key Words】Fe3O4; magnetic nanoparticle; preparation; progress Fe3O4磁性纳米颗粒由于具有与生物组织的相容性、与尺寸和形貌有关的电学和磁学性能,且具有好的亲水性、生物兼容性、无毒和高的化学稳定性,所以成为生物磁应用方面的理想材料使其在电子与生物敏感材料,尤其是生物医学领域被人们广泛关注【1】。应用于生物技术的纳米颗粒需要优良的物理、化学以及磁学特性【2】:(1)具有高磁化率,使材料的磁性较强,一般为铁磁性纳米颗粒;(2)颗粒尺寸为6~15 nm(当颗粒直径小于15 nm 时,就变为单磁畴磁体而具有超顺磁性并且饱和磁化强度很高),比表面积高;(3)具备超顺磁性等。另一方面,磁性纳米颗粒表面需要被特种有机物质修饰,才能具有独特的生物医学功能。磁性纳米微粒的制备方法主要有物理方法和化学方法【3-4】。物理方法制备纳米微粒一般采用真空冷凝法、物理粉碎法、机械球磨法等。但是用物理方法制备的样品一般产品纯度低、颗粒分布不均匀,易被氧化,且很难制备出10nm以下的纳米微粒,所以在工业生产和试验中很少被采纳。化学方法主要有共沉淀法、超声波沉淀法、水热法、微乳液法、水解法、溶胶- 凝胶法,多元醇法等。采用化学方法获得的纳米微粒的粒子一般质量较好,颗粒度较小,操作方法也较为容易, 生产成本也较低, 是目前研究生产中主要采用的方法【5-8】。 1、制备方法 1.1共沉淀法 共沉淀法是在包含两种或两种以上金属离子的可溶性盐溶液中, 加入适当的沉淀剂, 使金属离子均匀沉淀或结晶出来, 再将沉淀物脱水或热分解而制得纳米微粉. 共沉淀法是目前最普遍使用的方法, 其反应原理是: Fe2++ Fe3++ 8OH==Fe3O4+ 4H2O 付云芝【9】等采用共沉淀法制备出立方晶系的单分散、小粒径Fe3O4 颗粒。通过控制制备最佳条件为:铁盐溶液浓度为0. 5mol /L,沉淀剂溶液浓度为0. 2mo l/L,Fe2+:Fe3 +:OH- = 1. 00 :1. 00 :6. 00, 反应温度为30℃,搅拌速度为1000 r /m in. T. Fried【10】等在80℃氩气保护下将氨水缓慢滴加到FeCl2与FeCl3的混合溶液中得到纳米Fe3O4颗粒, 并使用油酸对其进行包覆,得到了平均粒径为2 nm 的Fe3O4颗粒膜。Yong- kang sun【11】等人采用部分限制共沉淀法,只是向酸化了的磁性纳米悬浮液中通入空气进行氧化的情况下制备了平均粒径为7 ~ 13 nm 的纳米Fe3O4。陈亭汝【12】等在搅拌速度较快的情况下,n ( Fe3+ ) /n( Fe2+ )为1. 8 :1,熟化温度70℃,熟化时间30min,以氨水作沉淀剂最佳pH值是9左右,可制得

纳米四氧化三铁

纳米四氧化三铁 简介 四氧化三铁是一种常用的磁性材料,又称氧化铁黑,呈黑色或灰蓝色。四氧化三铁是一种铁酸盐,即Fe2+Fe3+(Fe3+O4)(即FeFe(FeO4)前面2+和3+代表铁的价态)。在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO-Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。化学式:Fe3O4,分子量,硬度很大,具有磁性,可以看成是氧化亚铁和氧化铁组成的化合物。逆尖晶石型、立方晶系,密度?cm3。熔点℃)。它不溶于水,也不能与水反应。与酸反应,不溶于碱,也不溶于乙醇、乙醚等有机溶剂。? 在外磁场下能够定向移动,粒径在一定范围之内具有超顺磁性,以及在外加交变电磁场作用下能产生热量等特性,其化学性能稳定,因而用途相当广泛。 纳米四氧化三铁置于介质中,采用胶溶化法和添加改性剂及分散剂的方法,通过在颗粒表面形成吸附双电层结构阻止纳米粒子团聚,制备稳定分散的水基和有机基纳米磁性液体。制备的磁性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。?? 通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。 制备方法 1、水热法制备纳米四氧化三铁(2012年) 聚乙二醇6000包被的四氧化三铁颗粒,采用X射线衍射法分析其构,用扫描电镜测量其直径及分布,用振动样品磁强计检测磁学 参数。结果所得样品为四氧化三铁晶体,粒径为200 nm,质量饱 和磁场强度为 em u/g Fe。结论:制备的样品粒径均一,分散性好, 超顺磁性,水溶性好,可用于物理化学溶栓。 2、卟啉一磁性四氧化三铁纳米粒子的制备(2014年) 直接键合成法:卟啉与四氧化三铁纳米粒子表面直接形成化学键的 制备方法。要求卟啉与四氧化三铁纳米粒子成键单元,如中心金属 原子、羟基等。 用一锅高温合成法合成了单分散的油胺包覆四氧化三铁纳米粒子,

发光材料的制备方法及制备的发光材料的制作流程

本技术涉及发光材料技术领域,提供一种发光材料的制备方法及制备的发光材料,所述方法包括:(1)按照化学计量比称取原材料La2O3、4MgCO3·Mg(OH)2·5H2O、H3BO3、Er2O3在研钵中充分研磨,使材料混合均匀;其中,Er3+掺杂的含量为330%;(2)放入坩埚中,在马弗炉中400600℃预烧结1.53h;(3)取出研磨2060min;(4)放入坩埚,置于马弗炉中9001000℃烧结610小时;(5)冷却后,取出烧结体,充分研磨,得到Er3+掺杂的 LaMgB5O10荧光材料。本技术方法简单、成本低廉,所制备的发光材料粒径小、稳定性好,而且发光效率得到了很大提高。 技术要求 1.一种发光材料的制备方法,其特征在于,包括: (1)按照化学计量比称取原材料La2O3、4MgCO3·Mg(OH)2·5H2O、H3BO3、Er2O3在研钵中充分研磨,使材料混合均匀;其中,不同化学计量使Er3+掺杂的含量为3-30%; (2)放入坩埚中,在马弗炉中400-600℃预烧结1.5-3h; (3)取出研磨20-60min; (4)放入坩埚,置于马弗炉中900-1000℃烧结6-10小时; (5)冷却后,取出烧结体,充分研磨,得到Er3+掺杂的LaMgB5O10荧光材料。 2.根据权利要求1所述的发光材料的制备方法,其特征在于,研磨时间为40-90min。 3.根据权利要求1所述的发光材料的制备方法,其特征在于,所述坩埚为氧化铝坩埚。 4.根据权利要求1所述的发光材料的制备方法,其特征在于,预烧结的温度为500℃。 5.根据权利要求1或4所述的发光材料的制备方法,其特征在于,预烧结的时间为2小时。 6.根据权利要求1所述的发光材料的制备方法,其特征在于,烧结的温度为900℃。 7.根据权利要求1或6所述的发光材料的制备方法,其特征在于,烧结时间为8小时。

四氧化三铁制备化学实验

四氧化三铁制备化学实 验 https://www.360docs.net/doc/c36187968.html,work Information Technology Company.2020YEAR

实验一:共沉淀法制备具有超顺磁性的纳米四氧化三铁粒子一、实验背景 有关纳米粒子的制备方法及其性能研究备受多学者的重视,这不仅因为纳米粒子在基础研究方面意义重大,而且在实际应用中前景广阔。在磁记录材料方面,磁性纳米粒子可望取代传统的微米级磁粉,Fe3O4超细粉体由于化学稳定性好,原料易得,价格低廉,已成为无机颜料中较重要的一种,被广泛应用于涂料,油墨等领域;而在电子工业中超细Fe3O4是磁记录材料,用于高密度磁记录材料的制备;它也是气、湿敏材料的重要组成部分。超细Fe3O4粉体还可作为微波吸收材料及催化剂。另外使用超细Fe3O4粉体可制成磁流体。 Fe3O4纳米粒子的制备方法有很多,大体分为两类:一是物理方法,如高能机械球磨法,二是化学方法,如化学共沉淀法、溶胶-凝胶法、水热合成法、热分解法及微乳液法等。但各种方法各有利弊;物理方法无法进一步获得超细而且粒径分布窄的磁粉,并且还会带来研磨介质的污染问题;溶胶-凝胶法、热分解法多采用有机物为原料,成本较高,且有毒害作用;水热合成法虽容易获得纯相的纳米粉体,但是反应过程中温度的高低,升温速度,搅拌速度以及反应时间的长短等因素均会对粒径大小和粉末的磁性能产生影响。 本实验是采用共沉淀法(将沉淀剂加入Fe2+和Fe3+混合溶液中)制备纳米Fe3O4颗粒。该制备方法不仅原料易得且价格低廉,设备要求简单,反应条件温和(在常温常压下以水为溶剂)等优点。 二、实验目的 1、了解用共沉淀法制备纳米四氧化三铁粒子的原理和方法。 2、了解纳米四氧化三铁粒子的超顺磁性性质。 3、掌握无机制备中的部分操作。 三、实验原理 采用化学共沉淀法制备纳米磁性四氧化三铁是将二价铁盐和三价铁盐溶液按一定比例混合,将碱性沉淀剂加入至上述铁盐混合溶液中,搅拌、反应一段时间即可得纳米磁性Fe3O4粒子,其反应式如下: Fe2++2Fe3++8OH-_________Fe3O4+4H2O 四、仪器与试剂 烧杯、FeCl2·4H2O、FeCl3、氢氧化钠、柠檬酸三钠。 五、实验步骤 1、配置50 ml 1 moL 的NaOH溶液。(2g NaOH+50g H2O) 2、称取0.9925g FeCl3和1.194g FeCl2·4H2O(反应当量比为1:1)溶于30 mL 的蒸馏水中。 3、将反应溶液加热至60℃,恒温下磁力搅拌(转速约为1000rpm)。

共沉淀法制备具有超顺磁性的纳米四氧化三铁粒子

实验一:共沉淀法制备具有超顺磁性的纳米四氧化三铁粒子石朔SA13226008 石承伟SA13226024 一、实验背景 有关纳米粒子的制备方法及其性能研究备受多学者的重视,这不仅因为纳米粒子在基础研究方面意义重大,而且在实际应用中前景广阔。在磁记录材料方面,磁性纳米粒子可望取代传统的微米级磁粉,Fe3O4超细粉体由于化学稳定性好,原料易得,价格低廉,已成为无机颜料中较重要的一种,被广泛应用于涂料,油墨等领域;而在电子工业中超细Fe3O4是磁记录材料,用于高密度磁记录材料的制备;它也是气、湿敏材料的重要组成部分。超细Fe3O4粉体还可作为微波吸收材料及催化剂。另外使用超细Fe3O4粉体可制成磁流体。 Fe3O4纳米粒子的制备方法有很多,大体分为两类:一是物理方法,如高能机械球磨法,二是化学方法,如化学共沉淀法、溶胶-凝胶法、水热合成法、热分解法及微乳液法等。但各种方法各有利弊;物理方法无法进一步获得超细而且粒径分布窄的磁粉,并且还会带来研磨介质的污染问题;溶胶-凝胶法、热分解法多采用有机物为原料,成本较高,且有毒害作用;水热合成法虽容易获得纯相的纳米粉体,但是反应过程中温度的高低,升温速度,搅拌速度以及反应时间的长短等因素均会对粒径大小和粉末的磁性能产生影响。 本实验是采用共沉淀法(将沉淀剂加入Fe2+和Fe3+混合溶液中)制备纳米Fe3O4颗粒。该制备方法不仅原料易得且价格低廉,设备要求简单,反应条件温和(在常温常压下以水为溶剂)等优点。 二、实验目的 1、了解用共沉淀法制备纳米四氧化三铁粒子的原理和方法。 2、了解纳米四氧化三铁粒子的超顺磁性性质。 3、掌握无机制备中的部分操作。 三、实验原理 采用化学共沉淀法制备纳米磁性四氧化三铁是将二价铁盐和三价铁盐溶液按一定比例混合,将碱性沉淀剂加入至上述铁盐混合溶液中,搅拌、反应一段时间即可得纳米磁性Fe3O4粒子,其反应式如下: Fe2++2Fe3++8OH- Fe3O4+4H2O 四、仪器与试剂 烧杯、FeCl2·4H2O、FeCl3、氢氧化钠、柠檬酸三钠等。 五、实验步骤 1、配置50 ml 1 moL 的NaOH溶液。(2.006g NaOH+50ml H2O) 2、称取1.057g FeCl3和1.148g FeCl2·4H2O溶于30 mL的蒸馏水中。 3、将反应溶液加热至60℃,恒温下磁力搅拌(转速约为800rpm)。 4、30 min后缓慢滴加配置的NaOH溶液,约25ml左右,待溶液完全变黑

四氧化三铁的制备

四氧化三铁纳米片的制备及其对液体石蜡摩擦学的改性 张锡凤1)刘晓光1)程晓农2)殷恒波1)曹智娟1)郝伟1)严冲2) 1) 江苏大学化学化工学院,江苏镇江212013 2) 江苏大学材料科学与工程学院,江苏镇江212013 摘要:采用液相化学氧化法,在水体系中,以硫酸亚铁为母体,水合肼为氧化剂,加入吐温-80(Tween-80)为修饰剂,合成了厚约20nm、长约152nm的四氧化三铁纳米片。通过X-射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和高浓度激光粒度仪对四氧化三铁纳米片进行了表征。将四氧化三铁纳米片加到基础油液体石蜡(LP)中,在UNT-Ⅱ摩擦磨损实验机上考察其作为LP添加剂后的摩擦磨损性能,采用SEM分析了磨损表面形貌和表面膜元素组成及含量。结果表明:与不加四氧化三铁纳米片的LP相比,添加后较大程度的降低了摩擦系数,并获得较小的磨痕直径,显著改善了LP的摩擦性能。 关键词:四氧化三铁,纳米片,化学还原法,摩擦学 Preparation of Fe3O4 Nanopiece and Modification Tribological Property of Liquid Paraffin as Its Additive ZHANG Xifeng1, LIU Xiaoguang1, CHENG Xiaonong2, YIN Hengbo1, Cao zhijuan1, HAO Wei1, Y AN Chong2 (1. School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013; 2. School of Material Science and Engineering, Jiangsu University, Zhenjiang, 21201 3. ) Abstract: 20nm thick and 152nm length Fe3O4Nanopieces were synthesized using ferrous sulfate as precursor in water systems, hydrazine hydrate as reductant, polyethylene sorbitan monooleate (Tween-80)as modifier. The as-prepared Fe3O4Nanopieces were characterized by transmission electron micrographs (TEM), powder X-ray diffraction (XRD), scanning electron microscope (SEM), high concentration laser granularity scatter analyzer. The anti-wear and friction reducing performance of Fe3O4nanopieces as liquid paraffin additive was investigated on UNT-Ⅱball-on-plate friction and wear testers. The worn surface morphology and composition of surface film were analyzed by means of scanning electron microscope (SEM). Compared with pure liquid paraffin, the results indicate that the tribological property of liquid paraffin with Fe3O4 nanopieces is improved, the friction coefficients are decreased, and the worn diameter is lesser. key words: ferroso-ferric oxide; nanowires; synthesis (chemical); tribological property granularity scatter 纳米金属材料的晶粒尺寸与形貌、表面状态和微结构直接影响到纳米金属的物化性质与用途。目前纳米金属的形貌控制合成与应用研究尚处于起步阶段,通过形貌控制可选择性地合成出四面体、立方体、棒以及三棱柱等形貌、尺寸和结构可控的纳米金属,以及进行纳米分子结构的重组装是人们的研究热点,具有深远的理论意义及应用价值。 纳米Fe3O4具有与生物组织的相容性以及与尺寸和形貌有关的电学和磁学性能,使它在

葡萄糖水热法制备纳米碳球

葡萄糖水热法制备纳米碳球 广州华南农业大学理学院09材化(2)班林勋,200930750211 引言 炭微球材料由于其具有高密度、高强度、高比表面积以及在锂离子电池方面的应用前景,已经引起许多研究人员的兴趣。碳微球的形状和大小显著影响着其电学性能。 葡萄糖在水热条件下会发生许多化学反应,实验结果表明:炭微球的增长似乎符合LaMer 模型(见图1),当0.5 mol·L-1 的葡萄糖溶液在低于140 C 或反应时间小于1h 时不会形成炭球,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。当反应条件为0.5 mol·L-1、160℃、3h 时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响炭球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,这些纳米炭球粒径从150nm(最初核的大小,实验所得到的最小的尺寸)生长到1500 nm。 由葡萄糖水热法制备纳米炭球具有绿色环保无污染的特点,实验过程中没有引入任何引发剂以及有毒溶剂,制备得到的炭球粒径均匀,大小可控,同时表面含有大量活性官能团,具有优良的亲水性和表面反应活性,可应用于生物化学、生物诊断以及药物传输领域,也可以作为制备核壳结构材料或者多孔材料的模板等等,具有令人欣喜的应用前景。 图1 水热法形成炭球的结构变化示意图 1 实验部分 1.1 实验仪器与试剂

葡萄糖,去离子水,95%乙醇,50mL 高压反应釜,鼓风干燥箱,电子天平,抽滤装置(有机滤膜),滤纸,玻璃棒 1.2 纳米碳球的制备 纳米碳球的制备参见文献[1]。用电子天平称取 6g 葡萄糖放入50mL 反应釜内衬(图2)中,用移液管准确移取35mL 去离子水(葡萄糖溶液的浓度为0.952 mol·L -1 )加入到上述反应釜中,用玻璃棒搅拌溶液,使葡萄糖全部溶解,然后装入反应釜中,用扳手拧紧反应釜,放入烘箱中。设定反应条件为:温度 180?C ,反应时间 4~12 h 。待反应结束后,降至室温,取出反应釜,将釜内黑褐色溶液抽滤(用40 um 有机滤膜),并及时清洗反应釜内衬,抽滤时用去离子水和 95% 乙醇清洗至滤液为无色。将样品用滤纸包好放入干燥箱中70℃干燥 4h 。收集样品,称重并计算产率。 图2 反应釜实物与结构示意图 1.3 纳米碳球的表征 1.3.1 X-射线衍射分析 测定所制备碳球的晶型以判断该碳球所属的类型(如普通碳还是石墨型碳) 1.3.2 红外光谱分析 测定碳球的活性官能团,表征不同制备条件下得到的碳球活性官能团变化 2 结果与讨论 2.1 实验数据 实验最终制备得到的纳米碳球的质量为 0.1255 g ,根据下列化学方程式 C 6H 12O 6 6C+6H 2O 可得产率23%.5100%4 .21255.0100%理论产率实际产率ω=?=?=

相关文档
最新文档