流量与管径、压力、流速的一般关系

流量与管径、压力、流速的一般关系
流量与管径、压力、流速的一般关系

流量与管径、压力、流速的一般关系

2007年03月16日星期五13:21

一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。

流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。

其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。

水头损失计算Chezy 公式

Chezy

这里:

Q ——断面水流量(m3/s)

C ——Chezy糙率系数(m1/2/s)

A ——断面面积(m2)

R ——水力半径(m)

S ——水力坡度(m/m)

根据需要也可以变换为其它表示方法:

Darcy-Weisbach公式

由于

这里:

h f——沿程水头损失(mm3/s)

f ——Darcy-Weisbach水头损失系数(无量纲)

l ——管道长度(m)

d ——管道内径(mm)

v ——管道流速(m/s)

g ——重力加速度(m/s2)

水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。

1.1 管道常用沿程水头损失计算公式及适用条件

管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞

力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。

水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。

沿程水头损失水力计算公式和摩阻系数表1

达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用

于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。

海曾—威廉公式适用紊流过渡区,其中水头损失与流速的1.852次方成比例(过渡区水头损失h∝V1.75~2.0)。该式计算方法简捷,在美国做为给水系统配水管道水力计算的标准式,在欧洲与日本广泛应用,近几年我国也普遍用做配水管网的水力计算。

谢才公式也应是管道沿程水头损失通式,且在我国应用时间久、范围广,积累了较多的工程资料。但由于谢才系数C采用巴甫洛夫公式或曼宁公式计算确定,而这两个公式只适用于紊流的阻力粗糙区,因此谢才公式也仅用在阻力粗糙区。

另外舍维列夫公式,前一段时期也广泛的用做给水管道水力计算,但该公式是由旧钢管和旧铸铁管管材试验资料确定的。而现在国内采用的金属管道已普遍采用水泥砂浆和涂料做内衬,条件已发生变化,因此舍维列夫公式也基本不再采用。

1.2 输配水管道沿程水头损计算的实用公式

输配水管道沿程水头计算时,先采用判别水流的阻力特征用,再选择相应的公式计算,科学合理,但操作麻烦,特别在流速是待求的未知数时,需要采用试算的方法确定雷诺数(Re)很不方便。为了使输配水管道水力计算能满足工程设计的需要,又可以方便的选择计算公式和进行简捷的计算,根据多年来管道水力计算的经验,《室外给水设计规范》GBJ13-86修编报批稿,依据管材的不同和流速的常用范围,确定输配水管道沿程水头损失计算公式如下:

(1)塑料管

(2)混凝土管(渠)及采用水泥砂浆内衬的金属管道

(3)输配水管道、配水管网水力平差计算

2.1 管道摩阻系数的属性及应用条件

每个管道沿程水力计算公式都有相应的摩阻系数和确定方法,表达形式也不一样。摩阻系数是一个未知数,应由试验确定。但实际应用时,一般都依据不同的管材和其不同的内壁光滑程度,参考已有的资料,由设计人员计算时选择采用。该数值非常重要,但随意性很大,而且取值的结果直接影响水力计算成果的精度。因此了解和熟悉摩阻系数的属性,掌握取值的方法和技巧,也同样是做好管道沿程水力计算的关键。

(1)当量粗糙度Δ

当量粗糙度是自然(也有称工业)管道,根据水力试验的成果,运用达西公式和尼古拉兹公式计算出的理论值。每种管材都有一个确定的当量粗糙度,且不因流态不同而改变,在判别水流流态和选择其他计算公式参数时,经常用到当量粗糙度。

(2)摩阻系数λ

摩阻系数λ可应用在不同的阻力特征区,不同区间λ的数值不一样。在紊流的光滑区,λ数值仅与雷诺数(Re)有关,且随雷诺数(Re)的增大而减小;在紊流过渡区,λ与雷诺数(Re)和相对粗糙度(Δ/d)两个因素有关;在紊流粗糙区仅和相对粗糙度(Δ/d)有关,只要管材与管径确定(即相对粗糙度Δ/d确定),在该区λ数值应为定值。

(3)粗糙系数n

粗糙系数n是采用巴甫洛夫公式和曼宁公式计算谢才公式C时的参数,它适用于紊流的粗糙区,在该区可根据管材内壁光滑程度,选择相应的n值,但一般情况n的取值范围宜大于0.010,否则计算成果误差较大。

(4)海曾—威廉系数Ch

海曾—威廉系数适用紊流过渡区,Ch取值范围宜大于120,否则计算成果误差较大。

2.2 相应的紊流阻力特征区内不同摩阻系数间的对应关系

(1)

(2)紊流粗糙区(其中y采用巴甫洛夫公式计算,若y=1/6即为曼宁公式,这时)

3.1 《室外给水设计规范》GBJ13-86修编建议沿程水头损失摩阻系数(△、n、Ch)取值见表2。

管道沿程水头损失(n C h△)值表2

结论:沿程水头损失计算是输配水管道设计的基础,正确的选用计算公式和采用适宜的摩阻系数,计算成果才能真实的反映管道的水力特性。为保证输配水管道工程设计质量,提高工程的经济效益和规范水力计算方法

流量与管径、压力、流速的一般关系

流量与管径、压力、流速的一般关系2007年03月16日星期五13:21 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。水头损失计算Chezy 公式 Chezy 这里:Q ——断面水流量(m3/s)C ——Chezy糙率系数(m1/2 /s)A ——断面面积(m2)R ——水力半径(m)S ——水力坡度(m/m)根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于这里:hf ——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲)l ——管道长度(m)d ——管道内径(mm)v ——管道流速(m/s)g ——重力加速度(m/s2) 2 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1 阻力特征区适用条件水力公式、摩阻系数符号意义水力光滑区>10 雷诺数h:管道沿程水头损失v:平均流速d:管道内径γ:水的运动粘滞系数λ:沿程摩阻系数Δ:管道当量粗糙度q:管道流量Ch:海曾-威廉系数C:谢才系数R:水力半径n:粗糙系数i:水力坡降l:管道计算长度紊流过渡区10< <500 (1)(2)紊流粗糙区>500 达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。海曾—威廉公式适用紊流过渡区,其中水头损失与流速的 1.852次方成比例(过渡区水头损失h∝V1.75~2.0)。该式计算方法简捷,在美国做为给水系统配水管道水力计算的标准式,在欧洲与日本广泛应用,近几年我国也普遍用做配水管网的水力计算。谢才公式也应是管道沿程水头损失通式,且在我国应用时间久、范围广,积累了较多的工程资料。但由于谢才系数C采用巴甫洛夫公式或曼宁公式计算确定,而这两个公式只适用于紊流的阻力粗糙区,因此谢才公式也仅用在阻力粗糙区。另外舍维列夫公式,前一段时期也广泛的用做给水管道水力计算,但该公式是由旧钢管和旧铸铁管 3 管材试验资料确定的。而现在国内采用的金属管道已普遍采用水泥砂浆和涂料做内衬,条件已发生变化,因此舍维列夫公式也基本不再采用。 1.2 输配水管道沿程水头损计算的实用公式输配水管道沿程水头计算时,先采用判别水流的阻力特征用,再选择相应的公式计算,科学合理,但操作麻烦,特别在流速是待求的未知数时,需要采用试算的方法确定雷诺数(Re)很不方便。为了使输配水管道水力计算能满足工程设计的需要,又可以方便的选择计算公式和进行简捷的计算,根据多年来管道水力计算的经验,《室外给水设计规

管径-流速-流量对照表

管径/流速/流量对照表

已知流量、管材,如何求管径? 分两种情形: 1、水源水压末定,根据合理流速V(或经济流速)确定管径d: d=√[4q/(πV)] (根据计算数值,靠近选取标准管径) 2、已知管道长度及两端压差,确定管径 流量q不但与管内径d有关,还与单位长度管道的压力降落(压力坡度)i有关, i=(P1-P2)/L.具体关系式可以推导如下: 管道的压力坡度可用舍维列夫公式计算 i=0.0107V^2/d^1.3——(1) 管道的流量 q=(πd^2/4)V ——(2) 上二式消去流速V得: q = 7.59d^2.65√i (i 以kPa/m为单位)管径:d=0.4654q^0.3774/i^0.1887 (d 以m为单位) 这就是已知管道的流量、压力坡度求管径的公式。 例:某管道长100m,管道起端压力P1=96kPa,末端压力P2=20kPa,要求管道过1.31 L/s的流量,试确定管径

压力坡度 i=(P1-P2)/L=(96-20)/100=0.76kPa/m 流量 q=1.31 L/s=0.00131 m^3/s 管径d=0.4654q^0.3774/i^0.1887 =0.4654*0.00131^0.3774/0.76^0.1887= 0.0400m =400mm 还可用海森威廉公式:i=105C^(-1.85)q ^1.85/d^4.87 ( i 单位为 kPa/m )钢管、铸铁管:C=100,i=0.02095q ^1.85/d^4.87 ,q =8.08d^2.63 i ^0.54 铜管、不锈钢管:C=130,i=0.01289q ^1.85/d^4.87 ,q =10.51d^2.63 i ^0.54 塑料管:C=140,i=0.01124q ^1.85/d^4.87 ,q =11.31d^2.63 i ^0.54 C=150,i=0.009895q ^1.85/d^4.87 ,q =12.12d^2.63 i ^0.54

流量与管径计算书

流量与管径、压力、流速的一般关系 流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 Chezy 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。

管网建模之基本公式篇 一、管渠沿程水头损失 谢才公式 圆管满流,沿程水头损失也可以用达西公式表示: h f——沿程水头损失(mm3/s) λ——Darcy-Weisbach水头损失系数(无量纲)

l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2) C、λ与水流流态有关,一般采用经验公式或半经验公式计算。常用: 1.舍维列夫公式(适用:旧铸铁管和旧钢管满管紊流,水温100C0(给水管道计算)) 2.海曾-威廉公式 适用:较光滑圆管满流紊流(给水管道)

压力、流速、流量与管径的一般关系

一般工程上计算时,水管路,压力常见为,水在水管中流速在1--3米/秒,常取1.5米/秒。流量=管截面积X流速=管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 Chezy 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里:

h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1

管径流速流量对照表

管径/流速/流量对照表 管径(DN)0.4m/s 0.6m/s 0.8m/s 1.0m/s 1.2m/s 1.4m/s 1.6 m/s 1.8 m/s 2.0m/s 2.2m/s 2.4m/s 2.6m/s 2.8m/s 3.0m/s 流速对应流量m3/h 20 0.5 0.7 0.9 1.1 1.4 1.6 1.8 2.0 2.3 2.5 2.7 2.9 3.2 3.4 25 0.7 1.1 1.4 1.8 2.1 2.5 2.8 3.2 3.5 3.9 4.2 4.6 4.9 5.3 32 1.2 1.7 2.3 2.9 3.5 4.1 4.6 5.2 5.8 6.4 6.9 7.5 8.1 8.7 40 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1 9.0 10.0 10.9 11.8 12.7 13.6 50 2.8 4.2 5.7 7.1 8.5 9.9 11.3 12.7 14.1 15.6 17.0 18.4 19.8 21.2 65 4.8 7.2 9.6 11.9 14.3 16.7 19.1 21.5 23.9 26.3 28.7 31.1 33.4 35.8 80 7.2 10.9 14.5 18.1 21.7 25.3 29.0 32.6 36.2 39.8 43.4 47.0 50.7 54.3 100 11.3 17.0 22.6 28.3 33.9 39.6 45.2 50.9 56.5 62.2 67.9 73.5 79.2 84.8 125 17.7 26.5 35.3 44.2 53.0 61.9 70.7 79.5 88.4 97.2 106.0 114.9 123.7 132.5 150 25.4 38.2 50.9 63.6 76.3 89.1 101.8 114.5 127.2 140.0 152.7 165.4 178.1 190.9 200 45.2 67.9 90.5 113.1 135.7 158.3 181.0 208.6 226.2 248.8 271.4 294.1 316.7 339.3 250 70.7 106.0 141.4 176.7 212.1 247.4 282.7 318.1 353.4 388.8 424.1 489.5 494.8 530.1 300 101.8 152.7 208.6 254.5 305.4 386.3 407.1 488.0 508.9 589.8 640.7 661.6 712.5 763.4 350 138.5 207.8 277.1 346.4 415.6 484.9 554.2 623.4 692.7 762.0 831.3 900.5 989.8 1089.1 400 181.0 271.4 381.9 462.4 542.9 633.3 723.8 814.3 904.8 995.3 1085.7 1176.2 1286.7 1357.2 管径(DN) 流速推荐值m/s: 20 25 32 40 50 65 80 100 125 150 200 250 300 350 400 闭式系统0.5-0.6 0.6-0.7 0.7-0.9 0.8-1 0.9-1.2 1.1-1.4 1.2-1.6 1.3-1.8 1.5-2.0 1.6-2.2 1.8-2.5 1.8-2.6 1.9-2.9 1.6-2.5 1.8-2.6 开式系统0.4-0.5 0.5-0.6 0.6-0.8 0.7-0.9 0.8-1.0 0.9-1.2 1.1-1.4 1.2-1.6 1.4-1.8 1.5-2.0 1.6-2.3 1.7-2.4 1.7-2.4 1.6-2.1 1.8-2.3

流量与管径压力流速之间关系计算公式

流量与管径、压力、流速的一般关系一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 这里: Q???——断面水流量(m3/s) C???——Chezy糙率系数(m1/2/s) A???——断面面积(m2) R???——水力半径(m) S???——水力坡度(m/m) 根据需要也可以变换为其它表示方法:

Darcy-Weisbach公式 由于 这里: h f??——沿程水头损失(mm3/s) f ???——Darcy-Weisbach水头损失系数(无量纲) l????——管道长度(m) d????——管道内径(mm) v ????——管道流速(m/s) g ????——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件

管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1 阻力特征 区 适用条件水力公式、摩阻系数符号意义 水力光滑 区>10 雷诺数 h:管道沿程水头损 失 v:平均流速 紊流过渡 区10<<500 (1) (2)

管径流量与压力关系表

管径/流速/流量对照表 200.50.70.9 1.1 1.4 1.6 1.8 2.0 2.3 2.5 2.7 2.9 3.2 3.4 250.7 1.1 1.4 1.8 2.1 2.5 2.8 3.2 3.5 3.9 4.2 4.6 4.9 5.3 32 1.2 1.7 2.3 2.9 3.5 4.1 4.6 5.2 5.8 6.4 6.97.58.18.7 40 1.8 2.7 3.6 4.5 5.4 6.37.28.19.010.010.911.812.713.6 50 2.8 4.2 5.77.18.59.911.312.714.115.617.018.419.821.2 65 4.87.29.611.914.316.719.121.523.926.328.731.133.435.8 807.210.914.518.121.725.329.032.636.239.843.447.050.754.3 10011.317.022.628.333.939.645.250.956.562.267.973.579.284.8 12517.726.535.344.253.061.970.779.588.497.2106. 114. 9 123. 7 132. 5 15025.438.250.963.676.389.1101. 8 114. 5 127. 2 140. 152. 7 165. 4 178. 1 190. 9 20045.267.990.5113. 1 135. 7 158. 3 181. 203. 6 226. 2 248. 8 271. 4 294. 1 316. 7 339. 3 25070.7106. 141. 4 176. 7 212. 1 247. 4 282. 7 318. 1 353. 4 388. 8 424. 1 459. 5 494. 8 530. 1 300101. 8 152. 7 203. 6 254. 5 305. 4 356. 3 407. 1 458. 508. 9 559. 8 610. 7 661. 6 712. 5 763. 4 350138. 5 207. 8 277. 1 346. 4 415. 6 484. 9 554. 2 623. 4 692. 7 762. 831. 3 900. 5 969. 8 1039 .1 400181. 271. 4 361. 9 452. 4 542. 9 633. 3 723. 8 814. 3 904. 8 995. 3 1085 .7 1176 .2 1266 .7 1357 .2 450229. 343. 5 458. 572. 6 687. 1 801. 6 916. 1 1030 .6 1145 .1 1259 .6 1374 .1 1488 .6 1603 .2 1717 .7 500282. 7 424. 1 565. 5 706. 9 848. 2 989. 6 1131 .0 1272 .3 1413 .7 1555 .1 1696 .5 1837 .8 1979 .2 2120 .6 600407. 1 610. 7 814. 3 1017 .9 1221 .4 1425 .0 1628 .6 1832 .2 2035 .7 2239 .3 2442 .9 2646 .5 2850 .0 3053 .6

流量与管径、压力、流速的关系

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 Chezy 这里: Q——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l——管道长度(m) d——管道内径(mm)

v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。水泵输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1 达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。

流量与管径、压力、流速的一般关系

流量与管径、压力、流速的一般关系 2007年03月16日星期五13:21 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。水头损失计算Chezy 公式 Chezy 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2)

水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。 海曾—威廉公式适用紊流过渡区,其中水头损失与流速的 1.852次方成比例(过渡区水头损失h∝V1.75~2.0)。该式计算方法简捷,在美国做为给水系统配水管道水力计算的标准式,在欧洲与日本广泛应用,近几年我国也普遍用做配水管网的水力计算。 谢才公式也应是管道沿程水头损失通式,且在我国应用时间久、范围广,积累了较多的工程资料。但由于谢才系数C采用巴甫洛夫公式或曼宁公式计算确定,而这两个公式只适用于紊流的阻力粗糙区,因此谢才公式也仅用在阻力粗糙区。 另外舍维列夫公式,前一段时期也广泛的用做给水管道水力计算,但该公式是由旧钢管和旧铸铁管

关于流量压力管径 流速的关系

关于流量、压力、管径、流速的关系 2010-04-17 12:43:04| 分类:| 标签:|字号大中小订阅 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5 米/秒。 流量=管截面积X流速=0.002827X管径^2X流速(立方米/小时)^2:平方。管径单位:mm 管径=sqrt(353.68X流量/流速) sqrt:开平方 饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 如果需要精确计算就要先假定流速,再根据水的粘度、密度及管径先计算出雷诺准数,再由雷诺准数计算出沿程阻力系数,并将管路中的管件(如三通、弯头、阀门、变径等)都查表查出等效管长度,最后由沿程阻力系数与管路总长(包括等效管长度)计算出总管路压力损失,并根据伯努利计算出实际流速,再次用实际流速按以上过程计算,直至两者接近(叠代试算法)。因此实际中很少友人这么算,基本上都是根据压差的大小选不同的流速,按最前面的方法计算。 波努力方程好像对于气体等可压缩流体不适用阿 管道横截面积为A A=派D^2/4 Q=A×v 水管管径-流速-流量对照表(轻松解决你算管径问题) 每次画图都要算出管径,你只要对照此表就能看出来! 经验:1.重力流,流速比较小。一般选0.8-1.0 2.压力流,流速比较大,一般选1.0-1.5 管径/流速/流量对照表 200.50.70.9 1.1 1.4 1.6 1.8 2.0 2.3 2.5 2.7 2.9 3.2 3.4 250.7 1.1 1.4 1.8 2.1 2.5 2.8 3.2 3.5 3.9 4.2 4.6 4.9 5.3 32 1.2 1.7 2.3 2.9 3.5 4.1 4.6 5.2 5.8 6.4 6.97.58.18.7

流量、压力、管径、流速的关系

关于流量、压力、管径、流速的关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒, 常取1.5米/秒。 流量=管截面积X流速=0.002827X管径^2X流速(立方米/小时)^2:平方。管径单位:mm 管径=sqrt(353.68X流量/流速) sqrt:开平方 饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 如果需要精确计算就要先假定流速,再根据水的粘度、密度及管径先计算出雷诺准数,再由雷诺准数计算出沿程阻力系数,并将管路中的管件(如三通、弯头、阀门、变径等)都查表查出等效管长度,最后由沿程阻力系数与管路总长(包括等效管长度)计算出总管路压力损失,并根据伯努利计算出实际流速,再次用实际流速按以上过程计算,直至两者接近(叠代试算法)。因此实际中很少友人这么算,基本上都是根据压差的大小选不同的流速,按最前面的方法计算。 波努力方程好像对于气体等可压缩流体不适用阿 管道横截面积为A A=派D^2/4 Q=A×v 水管管径-流速-流量对照表(轻松解决你算管径问题) 每次画图都要算出管径,你只要对照此表就能看出来! 经验:1.重力流,流速比较小。一般选0.8-1.0 2.压力流,流速比较大,一般选1.0-1.5 管径/流速/流量对照表 200.50.70.9 1.1 1.4 1.6 1.8 2.0 2.3 2.5 2.7 2.9 3.2 3.4 250.7 1.1 1.4 1.8 2.1 2.5 2.8 3.2 3.5 3.9 4.2 4.6 4.9 5.3 32 1.2 1.7 2.3 2.9 3.5 4.1 4.6 5.2 5.8 6.4 6.97.58.18.7 40 1.8 2.7 3.6 4.5 5.4 6.37.28.19.010.010.911.812.713.6 50 2.8 4.2 5.77.18.59.911.312.714.115.617.018.419.821.2 65 4.87.29.611.914.316.719.121.523.926.328.731.133.435.8

流量与管径压力流速的一般关系

流量与管径压力流速的一般关系 流量与管径、压力、流速的一般关系 2007年03月16日星期五 13:21 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。水头损失计算Chezy 公式 Chezy 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2 /s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于这里: hf ——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2) 2 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。沿

水系统管径流速流量对照表

管径 流量流速 0.10.110.180.290.450.71 1.19 1.81 2.83 4.42 6.3611.3117.6725.4534.6445.2457.2670.69101.790.20.230.350.580.90 1.41 2.39 3.62 5.658.8412.7222.6235.3450.8969.2790.48114.51141.37203.580.30.340.530.87 1.36 2.12 3.58 5.438.4813.2519.0933.9353.0176.34103.91135.72171.77212.06305.360.40.450.71 1.16 1.81 2.83 4.787.2411.3117.6725.4545.2470.69101.79138.54180.96229.02282.74407.150.50.570.88 1.45 2.26 3.53 5.979.0514.1422.0931.8156.5588.36127.23173.18226.19286.28353.43508.940.60.68 1.06 1.74 2.71 4.247.1710.8616.9626.5138.1767.86106.03152.68207.82271.43343.53424.12610.730.70.79 1.24 2.03 3.17 4.958.3612.6719.7930.9344.5379.17123.70178.13242.45316.67400.79494.80712.510.80.90 1.41 2.32 3.62 5.659.5614.4822.6235.3450.8990.48141.37203.58277.09361.91458.04565.49814.300.9 1.02 1.59 2.61 4.07 6.3610.7516.2925.4539.7657.26101.79159.04229.02311.72407.15515.30636.17916.091 1.13 1.77 2.90 4.527.0711.9518.1028.2744.1863.62113.09176.71254.47346.36452.39572.56706.861017.881.1 1.24 1.94 3.18 4.987.7813.1419.9131.1048.6069.98124.41194.39279.92381.00497.63629.81777.541119.661.2 1.36 2.12 3.47 5.438.4814.3421.7133.9353.0176.34135.72212.06305.36415.63542.87687.07848.231221.451.30 1.47 2.30 3.76 5.889.1915.5323.5236.7657.4382.70147.03229.73330.81450.27588.11744.32918.921323.241.40 1.58 2.47 4.05 6.339.9016.7225.3339.5861.8589.06158.34247.40356.26484.90633.35801.58989.601425.031.50 1.70 2.65 4.34 6.7910.6017.9227.1442.4166.2795.43169.65265.07381.70519.54678.58858.831060.291526.811.60 1.81 2.83 4.637.2411.3119.1128.9545.2470.69101.79180.96282.74407.15554.18723.82916.091130.971628.601.70 1.92 3.00 4.927.6912.0220.3130.7648.0775.10108.15192.27300.41432.60588.81769.06973.341201.661730.391.80 2.04 3.18 5.218.1412.7221.5032.5750.8979.52114.51203.58318.09458.04623.45814.301030.601272.351832.181.90 2.15 3.36 5.508.6013.4322.7034.3853.7283.94120.87214.88335.76483.49658.09859.541087.851343.031933.962.00 2.26 3.53 5.799.0514.1423.8936.1956.5588.36127.23226.19353.43508.94692.72904.781145.111413.722035.752.10 2.38 3.71 6.089.5014.8425.0938.0059.3892.78133.60237.50371.10534.38727.36950.021202.371484.402137.542.20 2.49 3.89 6.379.9515.5526.2839.8162.2097.19139.96248.81388.77559.83761.99995.261259.621555.092239.332.30 2.60 4.06 6.6610.4016.2627.4841.6265.03101.61146.32260.12406.44585.28796.631040.501316.881625.772341.112.40 2.71 4.24 6.95 10.86 16.96 28.67 43.43 67.86 106.03 152.68 271.43 424.12 610.73 831.27 1085.73 1374.13 1696.46 2442.90 500 600 400 450 300 350 250 150 100 65 32 40 20 25 管径/流速/流量对照表1 青岛奥特斯机电系统工程有限公司 管径单位:DN 流速单位:m/s 流量单位:m 3/h 圆周率(π):3.1415926 管 道 管 径 规 格 大 小(DN) 50 80 125 200

管径流量与压力关系表

空气在管道中的流动阻力计算 2007-04-16 13:46 空气在管道中流动有流动阻力h,这个阻力由二部分组成:一部分是空气在管道中流动的沿程摩擦阻力hl;一部分是空气流过弯头、阀门、收缩接头等处的局部阻力hw,这二个阻力的计算如下。 1、沿程摩擦阻力hl的计算 hl= λld2ρ/2D Pa 式中λ:摩擦阻力系数 l :管道长度,m d :管道内直径, m υ:管道截面上流体的平均速度,m/s ρ:流体密度,kg/m3 对于气体来说,其阻力系数可用以下简化公式进行估算: λ=η(0.0125+ 0.0011/D) 式中d的单位为“米”。 若管内壁光滑η=1;新焊接管η=1.3;旧焊接管η=1.6 2、局部阻力hw的计算 hw=Kυ2ρ/2 Pa 式中K:局部阻力系数 υ:管道截面上流体的平均速度,m/s ρ:流体密度,kg/m3 局部阻力系数K一般按下表进行选取 局部阻力系数K 3、通过管束时的阻力hf 当气流通过一组与气流前进方向垂直的管束时,所受阻力的大小,可按如下经验公式计算

hf= Pa 式中:气体在通道内的流速(标准状态下),Nm/s; :气体在标况下密度; K:整个管束的阻力系数。 对于交错的管束,K值为: K=(0.7~0.8)(nsα/b +β') α、β':为实验系数;n:沿气流方向的管排数; s:沿气流方向的管子中心距,m;b:通道截面上管子中心距,m α=0.028(B/δ )2,β'=(B/δ-1 )2。 对于反射炉空气侧的阻力,主要空气在管道中的阻力,换热器的阻力。管道的阻力可参照上述公式计算沿程摩擦阻力hl,局部阻力,换热器管束的阻力。 反射炉换热器管束的n=20,b=0.08m,s=0.07m,δ=0.048m,空气风管道为φ400和φ600,风量按11000Nm3/h计算其阻力,按现场风管的布置方式,经估算其总阻力损失为: hl+hw+hf= 2019.6 P a 注:以上阻力不包含风机入口的阻力损失。

流量与管径、压力、流速之间关系计算公式

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为 0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取 20--40米/秒。 水头损失计算Chezy 公式 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s)

A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2)

水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采 数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数

压力流量关系

流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位为 m/s。 流量与管道断面及流速成正比,三者之间关系: `Q = (∏ D^2)/ 4 · v · 3600 `(`m^3` / h ) 式中 Q —流量(`m ^3` / h 或 t / h ); D —管道内径(m); V —流体平均速度(m / s)。 根据上式,当流速一定时,其流量与管径的平方成正比,在施工中遇到管径替代时,应进行计算后方 可代用。例如用二根DN50的管代替一根DN100的管是不允许的,从公式得知DN100的管道流量是DN50管 道流量的4倍,因此必须用4根DN50的管才能代用DN100的管。 有这样一个问题:如果把水龙头阀门关小的话,则水流变缓,流量也变小了,那为什么阀门不变的时候,用手堵住部分水管口,水流则变急了呢?同样是减少了水管截面积啊,到底流量、流速、截面积、水压之间是什么关系呢? 流量=流速*截面积;从式中可以看出流量与流速和截面积成正比. 1.如果把水龙头阀门关小的话,流量也变小了,而出口的面积没有变,所以流速会变小. 2.用手堵住部分水管口,阀门的截面积没有变,油于压力作用流量基本不变,而出口面积变小,所以小流速度加快. 流量、流速、截面积、水压之间的关系式: Q=μ*A*(2*P/ρ)^0.5 式中Q——流量,m^/S μ——流量系数,与阀门或管子的形状有关;0.6~0.65 A——面积,m^2 P——通过阀门前后的压力差,单位Pa, ρ——流体的密度,Kg/m^3; 参考资料:工程流体力学 流量=3600X流速X截面积 流速=系数X根号下2倍差压除以系数

压力流速管径流量的关系

压力流速管径流量的关系 ); 流量=流速×(管道内径×管道内径×π÷4 压力对于液体来说,对流速、管径、流量没有关系,因为液体认为是不可压缩性的;但对气体来说,影响较大,可用气态方程式去换算P×V=RT; 可压力与管径对管道的壁厚有要求,由简化强度公式:壁厚=P×管道直径÷(2σ)知。 流量、管径、压力之间的关系 单凭这点条件很难较准确地计算出流量。 现只考虑压力能全部转化为动量,可推出: Q=πR^2√(2P/ρ) 式中,Q为流量,R为管半径,P的压力,ρ为液体密度。 1、首先要确定流体是液体还是气体。如是液体,在流速一样的情况下,压力的 变化不会影响流量,但压力高时,可以提高流速,而使流量增加,因为我们认为 液体是不可压缩的。如是气体,当压力增加时,气体的体积为按绝对压力的比例成正比减小,如流速不变,其流量也成比例增加。 2、如果你是在不同压力下、同管径放出流体的话,按V=f×√2gH计算可得(H 为气液柱压力),其压力与流量的关系也相应确定。 管径、压力与流量的计算方法 流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速, 单位为 m/s。 流量与管道断面及流速成正比,三者之间关系: `Q = (∏D^2)/ 4 ·v ·3600 `(`m^3` / h ) 式中Q —流量(`m ^3` / h 或t / h ); D —管道内径(m); V —流体平均速度(m / s)。 根据上式,当流速一定时,其流量与管径的平方成正比,在施工中遇到管径替代时,应进行计算后方 可代用。例如用二根DN50的管代替一根DN100的管是不允许的,从公式得知DN100的管道流量是DN50管 道流量的4倍,因此必须用4根DN50的管才能代用DN100的管。

相关文档
最新文档