高中数学典型例题解析:第四章 数列

高中数学典型例题解析:第四章 数列
高中数学典型例题解析:第四章 数列

第四章 数列

§4.1等差数列的通项与求和

一、知识导学

1.数列:按一定次序排成的一列数叫做数列.

2.项:数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….

3.通项公式:一般地,如果数列{a n }的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式.

4. 有穷数列:项数有限的数列叫做有穷数列.

5. 无穷数列:项数无限的数列叫做无穷数列

6.数列的递推公式:如果已知数列的第一项(或前几项)及相邻两项(或几项)间关系可以用一个公式来表示,则这个公式就叫做这个数列的递推公式.递推公式是给出数列的一种重要方法,其关健是先求出a 1,a 2,然后用递推关系逐一写出数列中的项.

7.等差数列:一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.

8.等差中项:如果a,A,b这三个数成等差数列,那么A=2b a +.我们把A=2

b

a +叫做a和b的等差中项.

二、疑难知识导析

1.数列的概念应注意几点:(1)数列中的数是按一定的次序排列的,如果组成的数相同而排列次序不同,则就是不同的数列;(2)同一数列中可以出现多个相同的数;(3)数列看做一个定义域为正整数集或其有限子集({1,2,3,…,n })的函数.

2.一个数列的通项公式通常不是唯一的.

3.数列{a n }的前n 项的和S n 与a n 之间的关系:??

?≥-==-).

2(),1(1

1

n S S n S a n n n 若a 1适合

a n (n>2),则n a 不用分段形式表示,切不可不求a 1而直接求a n .

4.从函数的角度考查等差数列的通项公式:a n = a 1+(n-1)d=d ·n+ a 1-d, a n 是关于n 的一次式;从图像上看,表示等差数列的各点(n,n a )均匀排列在一条直线上,由两点确定一条直线的性质,不难得出,任两项可以确定一个等差数列.

5、对等差数列的前n 项之和公式的理解:等差数列的前n 项之和公式可变形为

n d a n d S n )2(212-+=

,若令A =2d ,B =a 1-2

d

,则n S =An 2+Bn.6、在解决等差数列问题时,如已知,a 1,a n ,d ,n S ,n 中任意三个,可求其余两个。

三、经典例题导讲

[例1]已知数列1,4,7,10,…,3n+7,其中后一项比前一项大3.(1)指出这个数列的通项公式;(2)指出1+4+…+(3n -5)是该数列的前几项之和.

错解:(1)a n =3n+7;

(2) 1+4+…+(3n -5)是该数列的前n 项之和.错因:误把最后一项(含n 的代数式)看成了数列的通项.(1)若令n=1,a 1=10≠1,显然3n+7不是它的通项.

正解:(1)a n =3n -2;

(2) 1+4+…+(3n -5)是该数列的前n -1项的和.

[例2] 已知数列{}n a 的前n 项之和为① n n S n -=22 ② 12++=n n S n 求数列{}n a 的通项公式。

错解: ① 34)1()1(2222-=-+---=n n n n n a n ② n

n n n n a n 21)1()1(122=-----++=错因:在对数列概念的理解上,仅注意了a n =S n -S n-1与的关系,没注意a 1=S 1.正解: ①当1=n 时,1

11==S a 当2≥n 时,34)1()1(2222-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合,∴34-=n a n ②当1=n 时,3

11==S a 当2≥n 时,n n n n n a n 21)1()1(122=-----++= ∴ ??

?=n a n 23

)

2()1(≥=n n [例3] 已知等差数列{}n a 的前n 项之和记为S n ,S 10=10 ,S 30=70,则S 40等于 。

错解:S 30= S 10·2d. ∴ d =30, ∴ S 40= S 30+d =100.

错因:将等差数列中S m , S 2m -S m , S 3m -S 2m 成等差数列误解为S m , S 2m , S 3m 成等差数列.

正解:由题意:???

????=?+=?+70

2293030102

9101011d a d a 得152,521=

=d a 代入得S 40 =120402

39

40401=??+

d a 。[例4]等差数列{}n a 、{}n b 的前n 项和为S n 、T n .若

),(27417+∈++=N n n n T S n n 求7

7b a ;错解:因为等差数列的通项公式是关于n 的一次函数,故由题意令a n =7n+1;b n =4n+27.

11

10277417777=+?+?=∴

b a 错因:误认为

=n

n T S n n

b a 正解:79

92

2713411371313777777=+?+?==++=∴

T S b b a a b a [例5]已知一个等差数列{}n a 的通项公式a n =25-5n ,求数列{}||n a 的前n 项和;错解:由a n ≥0得n ≤5

∴ {}n a 前5项为非负,从第6项起为负,∴ S n =a 1+a 2+a 3+a 4+a 5=50(n ≤5)

当n ≥6时,S n =|a 6|+|a 7|+|a 8|+…+|a n |=

2

)

5)(520(--n n ∴ S n =??

?

??≥--≤6,2)

5)(520(5,50

n n n n 错因:一、把n ≤5理解为n=5,二、把“前n 项和”误认为“从n ≥6起”的和.

正解: ???

????≥+--≤-6,502)5)(520(5,2

)

545(n n n n n n

[例6]已知一个等差数列的前10项的和是310,前20项的和是1220,

由此可以确定求其前n 项和的公式吗?

解:理由如下:由题设: 31010=S 122020=S 得: ??

?=+=+122019020310451011d a d a ??

?==?6

4

1d a ∴ n n n n n S n +=?-+

=2362

)

1(4[例7]已知:n

n a -+=12lg 1024 (3010.02lg =)+∈N n (1) 问前多少项之和为最

大?(2)前多少项之和的绝对值最小? 解:(1) ??

?<-=≥-+=+0

2lg 102402lg )1(10241n a n a n n 3403340112lg 1024

2lg 1024<

∴3402

=n (2) 0)2lg (2

)

1(1024=--+

=n n n S n 当n n S S 或0=近于0时其和绝对值最小 令:0=n S 即 1024+

0)2lg (2

)

1(=--n n 得:99.680412

lg 2048

≈+=

n ∵ +∈N n ∴6805

=n [例8]项数是n 2的等差数列,中间两项为1+n n a a 和是方程02

=+-q px x 的两根,求证此数列的和n S 2是方程 0)lg (lg lg )lg (lg lg 2

222=+++-p n x p n x 的根。 (02>n S ) 证明:依题意p a a n n =++1

∵p a a a a n n n =+=++121 ∴np

a a n S n n =+=

2

)

(2212 ∵0

)lg (lg lg )lg (lg lg 2222=+++-p n x p n x ∴ 0)lg (lg 2

=-np x ∴n S np x 2== (获证)。 四、典型习题导练

1.已知n n n S a a 2311+==-且,求n a 及n S 。

2.设)1(433221+++?+?+?=n n a n ,求证:2

)1(2)1(2

+<<+n a n n n 。3.求和: n

+++++++++++

3211

321121114.求和: )

12()34()9798()99100(2

22

2

2

2

2

2

-+-++-+- 5.已知c b a ,,依次成等差数列,求证:ab c ac b bc a ---2

2

2

,,依次成等差数列.

6.在等差数列{}n a 中, 40135=+a a ,则 =++1098a a a ( )。

A .72

B .60

C .48

D .36

7. 已知{}n a 是等差数列,且满足)(,n m m a n a n m ≠==,则n m a +等于________。8.已知数列?

??

??

?

+21n a 成等差数列,且713,6115

3-=-=a a ,求8a 的值。§4.2等比数列的通项与求和

一、知识导学

1. 等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于 同 一 个 常 数,那 么 这 个 数 列 就 叫 做 等 比 数 列,这个常数叫做等比数列的公比,公比通常用字母q表示.

2. 等比中项:若a,G,b成等比数列,则称G 为a 和b 的等比中项.

3.等比数列的前n 项和公式:??

?

??≠-?-=--=?=)

1(11)1()1(111q q q

a a q q a q a n S n n n

二、疑难知识导析

1.由于等比数列的每一项都可能作分母,故每一项均不为0,因此q 也不为0.

2.对于公比q ,要注意它是每一项与它前一项的比,防止把相邻两项的比的次序颠倒.

3.“从第2项起”是因为首项没有“前一项”,同时应注意如果一个数列不是从第2项起,而是从第3项或第4项起每一项与它前一项的比都是同一个常数,此数列不是等比数列,这时可以说此数列从. 第2项或第3项起是一个等比数列.

4.在已知等比数列的a 1和q 的前提下,利用通项公式a n =a 1q n-1

,可求出等比数列中的任一项.

5.在已知等比数列中任意两项的前提下,使用a n =a m q n-m

可求等比数列中任意一项.

6.等比数列{a n }的通项公式a n =a 1q n-1

可改写为n

n q q

a a ?=

1.当q>0,且q ≠1时,y=q x 是一个指数函数,而x

q q

a y ?=

1是一个不为0 的常数与指数函数的积,因此等比数列{a n }的图象是函数x

q q

a y ?=

1的图象上的一群孤立的点.7.在解决等比数列问题时,如已知,a 1,a n ,d ,n S ,n 中任意三个,可求其余两个。

三、经典例题导讲

[例1] 已知数列{}n a 的前n 项之和S n =aq n

(q q a ,1,0≠≠为非零常数),则{}n a 为( )。

A.等差数列

B.等比数列

C.既不是等差数列,也不是等比数列

D.既是等差数列,又是等比数列

错解:)1(111-=-=-=+++q aq aq aq S S a n n n n n n

)1(11-=-=∴--q aq S S a n n n n q a a n

n =∴

+1

(常数) ∴{}n a 为等比数列,即B 。

错因:忽略了1--=∴n n n S S a 中隐含条件n >1. 正解:当n =1时,a 1=S 1=aq;

当n>1时,)1(11-=-=∴--q aq S S a n n n n

q a a n

n =∴

+1

(常数) 但q q a a ≠-=11

2

∴{}n a 既不是等差数列,也不是等比数列,选C 。

[例2] 已知等比数列{}n a 的前n 项和记为S n ,S 10=10 ,S 30=70,则S 40等于. 错解:S 30= S 10·q 2

. ∴ q 2

=7,q =7±

,∴ S 40= S 30·q =770±.

错因:是将等比数列中S m , S 2m -S m , S 3m -S 2m 成等比数列误解为S m , S 2m , S 3m 成等比数列.

正解:由题意:???????=--=--701)1(101)

1(30

1101q

q a q

q a 得?????-==-=-)

(3210110101舍去或q q q a , ∴S 40=

20011401

=--)(q q

a . [例3] 求和:a+a 2

+a 3

+…+a n

.

错解: a+a 2

+a 3

+…+a n

=a

a n

--11.

错因:是(1)数列{a n

}不一定是等比数列,不能直接套用等比数列前n 项和公式(2)用等比数列前n 项和公式应讨论q 是否等于1.

正解:当a =0时,a+a 2+a 3+…+a n

=0;

当a =1时,a+a 2+a 3+…+a n

=n;

当a ≠1时, a+a 2

+a 3

+…+a n

=a

a n

--11.

[例4]设d c b a ,,,均为非零实数,()

()0222222=+++-+c b d c a b d b a , 求证:c b a ,,成等比数列且公比为d 。 证明:

证法一:关于d 的二次方程()

()0222222=+++-+c b d c a b d b a 有实根,

∴()()

0)(4422222

2≥++-+=?c b b a c a b ,∴()

02

2≥--ac

b

则必有:02

=-ac b ,即ac b =2

,∴非零实数c b a ,,成等比数列 设公比为q ,则aq b =,2aq c =代入

()()

024********=+++-+q a q a d aq a aq d q a a ∵()

0122≠+a q ,即0222=+-q qd d ,即0≠=q d 。 证法二:∵()

()0222222=+++-+c b d c a b d b a ∴()()

022222222=+-++-c bcd d b b abd d a ∴()()02

2

=-+-c bd b ad ,∴b ad =,且c bd =

∵d c b a ,,,非零,∴

d b

c

a b ==。 [例5]在等比数列{}n b 中,34=b ,求该数列前7项之积。 解:()()()45362717654321b b b b b b b b b b b b b b = ∵5362712

4b b b b b b b ===,∴前七项之积()21873

337

3

2==?

[例6]求数列}21

{n n ?

前n 项和 解:n n n S 2

1

813412211?++?+?+?= ①

12

121)1(161381241121+?+?-++?+?+?=n n n n n S ② 两式相减:1122

11)

211(2

1212181412121++---=?-++++=n n n n n n n S

n

n n n n n n S 2212)2211(211--=--

=∴-+ [例7]从盛有质量分数为20%的盐水2kg 的容器中倒出1kg 盐水,然后加入1kg 水,以后每

次都倒出1kg 盐水,然后再加入1kg 水,

问:(1)第5次倒出的的1kg 盐水中含盐多kg ?

(2)经6次倒出后,一共倒出多少kg 盐?此时加1kg 水后容器内盐水的盐的

质量分数为多少?

解:(1)每次倒出的盐的质量所成的数列为{a n },则:

a 1= 0.2 (kg ), a 2=

21×0.2(kg ), a 3= (2

1)2

×0.2(kg ) 由此可见:a n = (21)n -1×0.2(kg ), a 5= (21)5-1×0.2= (2

1)4

×0.2=0.0125(kg )。

(2)由(1)得{a n }是等比数列 a 1=0.2 , q =2

1

)

(003125.0200625.0)

(00625.039375.04.0)(39375.02

11)211(2.01)1(66

16kg kg kg q

q a S =÷=-=--

=--=∴ 答:第5次倒出的的1kg 盐水中含盐0.0125kg ;6次倒出后,一共倒出0.39375kg

盐,此时加1kg 水后容器内盐水的盐的质量分数为0.003125。

四、典型习题导练

1.求下列各等比数列的通项公式:

1) a 1=-2, a 3=-8

2) a 1=5, 且2a n +1=-3a n

3) a 1=5, 且

1

1+=

+n n

a a n n 2.在等比数列{}n a ,已知51=a ,100109=a a ,求18a . 3.已知无穷数列 ,10

,10,10,105

15

25

15

-n ,

求证:(1)这个数列成等比数列 (2)这个数列中的任一项是它后面第五项的

10

1, (3)这个数列的任意两项的积仍在这个数列中。 4.设数列{}n a 为 1

3

2

4,3,2,1-n nx

x x x ()0≠x 求此数列前n 项的和。

5.已知数列{a n }中,a 1=-2且a n +1=S n ,求a n ,S n

6.是否存在数列{a n },其前项和S n 组成的数列{S n }也是等比数列,且公比相同?

7.在等比数列{}n a 中,400,60,364231>=+=n S a a a a ,求n 的范围。

§4.3数列的综合应用

一、知识导学

1. 数学应用问题的教学已成为中学数学教学与研究的一个重要内容.解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型.

2. 应用题成为热点题型,且有着继续加热的趋势,因为数列在实际生活中应用比较广泛,所以数列应用题占有很重要的位置,解答数列应用题的基本步骤:(1)阅读理解材料,且对材料作适当处理;(2)建立变量关系,将实际问题转化为数列模型;(3)讨论变量性质,挖掘题目的条件,分清该数列是等差数列还是等比数列,是求S n 还是求a n .一般情况下,增或减的量是具体体量时,应用等差数列公式;增或减的量是百分数时,应用等比数列公式.若是等差数列,则增或减的量就是公差;若是等比数列,则增或减的百分数,加1就是公比q.

二、疑难知识导析

1.首项为正(或负)的递减(或递增)的等差数列前n 项和的最大(或最小)问题,

转化为解不等式?

??

? ?

????≥≤???≤≥++000011n n n n a a a a 或解决; 2.熟记等差、等比数列的定义,通项公式,前n 项和公式,在用等比数列前n 项和公

式时,勿忘分类讨论思想;

3.等差数列中, a m =a n + (n -m)d, n

m a a d n m --=; 等比数列中,a n =a m q n-m ; m

n m

n a a q =-

4.当m+n=p+q (m 、n 、p 、q ∈+N )时,对等差数列{a n }有:a m +a n =a p +a q ;对等比数列{a n }有:a m a n =a p a q ;

5.若{a n }、{b n }是等差数列,则{ka n +bb n }(k 、b 是非零常数)是等差数列;若{a n }、{b n }是等比数列,则{ka n }、{a n b n }等也是等比数列;

6.等差(或等比)数列的“间隔相等的连续等长片断和序列”(如a 1+a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9…)仍是等差(或等比)数列;

7.对等差数列{a n },当项数为2n 时,S 偶-S 奇=nd ;项数为2n -1时,S 奇-S 偶=a 中(n ∈+N );

8.若一阶线性递推数列a n =ka n -1+b (k ≠0,k ≠1),则总可以将其改写变形成如下形

式:)1

(11-+=-+-k b a k k b a n n (n ≥2),于是可依据等比数列的定义求出其通项公式;

三、经典例题导讲

[例1]设{}n a 是由正数组成的等比数列,S n 是其前n 项和.证明:

12

12

2

12

1log 2

log log +++n n n S S S >。

错解:欲证

12

12

2

12

1log 2

log log +++n n n S S S >

只需证22

12

1log log ++n n S S >212

1log +n S

即证:)(log 22

1+?n n S S >2

12

1log +n S

由对数函数的单调性,只需证)(2+?n n S S <21+n S

2+?n n S S -2

1

+n S

=2

21212221)1()1()1()1)(1(q q a q q q a n n n ---

---++ =-021

∴ 2+?n n S S <2

1+n S

∴ 原不等式成立.

错因:在利用等比数列前n 项和公式时,忽视了q =1的情况.

正解:欲证

12

12

2

12

1log 2

log log +++n n n S S S >

只需证22

12

1log log ++n n S S >212

1log +n S

即证:)(log 22

1+?n n S S >2

12

1log +n S

由对数函数的单调性,只需证)(2+?n n S S <21+n S

由已知数列{}n a 是由正数组成的等比数列,

∴ q >0,01>a .

若1=q ,

则2+?n n S S -21+n S =2

111])1[()2(a n a n na

+-+ =-2

1a <0; 若1≠q ,

2+?n n S S -2

1+n S

2

2

1212221)

1()1()1()1)(1(q q a q q q a n n n ------++ =-02

1

q a

∴ 2+?n n S S <2

1+n S

∴ 原不等式成立.

[例2] 一个球从100米高处自由落下,每次着地后又跳回至原高度的一半落下,当它

第10次着地时,共经过了多少米?(精确到1米)

错解:因球 每次着地后又跳回至原高度的一半,从而每次着地之间经过的路程形成了一公比为

2

1

的等比数列,又第一次着地时经过了100米,故当它第10次着地时,共经过的路程应为前10项之和.

即2

11]

)21

(1[1001010--=S =199(米) 错因:忽视了球落地一次的路程有往有返的情况.

正解:球第一次着地时经过了100米,从这时到球第二次着地时,一上一下共经过

了2

100

2?

=100(米)…因此到球第10次着地时共经过的路程为 8322100

210021002100100100++++++

=2

11]

)21

(1[1001009--+≈300(米) 答:共经过300米。

[例3] 一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一出生就在每年生日,到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁上大学时,将所有存款(含利息)全部取回,则取回的钱的总数为多少?

错解: 年利率不变,每年到期时的钱数形成一等比数列,那18年时取出的钱数应为以a

为首项,公比为1+r 的等比数列的第19项,即a 19=a(1+r)18

. 错因:只考虑了孩子出生时存入的a 元到18年时的本息,而题目要求是每年都要存入a 元. 正解:不妨从每年存入的a 元到18年时产生的本息 入手考虑,出生时的a 元到18年时变

为a(1+r)18

1岁生日时的a 元到18岁时成为a(1+r)17

2岁生日时的a 元到18岁时成为a(1+r)16

, ……

17岁生日时的a 元到18岁时成为a(1+r)1

∴ a(1+r)18+ a(1+r)17+ …+ a(1+r)1

=)

1(1])1(1)[1(18r r r a +-+-+

)]1()1[(19r r r

a

+-+ 答:取出的钱的总数为)]1()1[(19

r r r a +-+。

[例4]求数列 ,)23(1

,,101,71,41,11132-+++++-n a

a a a n 的前n 项和。

解:设数列的通项为a n ,前n 项和为S n ,则 )23(1

1-+=-n a

a n n

)]23(741[)1

111(12-+++++++++

=∴-n a

a a S n n 当1=a 时,2

32)231(2n

n n n n S n +=-++=

当1≠a 时,2)13(12)231(11111n n a a a n n a

a S n n n n n -+--=-++--

=- [例5]求数列

,)

1(6,,436,326,216+???n n 前n 项和 解:设数列的通项为b n ,则)1

1

1(6)1(+-=+6=

n n n n b n

1

6)111(6)]

1

1

1()3121()211[(621+=

+-

=+-++-+-=+++=∴n n

n n n b b b S n n

[例6]设等差数列{a n }的前n 项和为S n ,且)()2

1(

2

+∈+=N n a S n n , 求数列{a n }的前n 项和 解:取n =1,则1)2

1(

12

11=?+=a a a 又由 2)(1n n a a n S +=

可得:

2

1)2

1(2)(+=+n n a a a n 12)

(1*-=∴∈-≠n a N n a n n

2)12(531n n S n =-++++=∴

[例7]大楼共n 层,现每层指定一人,共n 人集中到设在第k 层的临时会议室开会,问

k 如何确定能使n 位参加人员上、下楼梯所走的路程总和最短。(假定相邻两层楼梯长相等)

解:设相邻两层楼梯长为a ,则

]

2)1([)](21[0)121(22

n

n k n k a k n k a S +++-=-+++++-+++=

当n 为奇数时,取2

1

+=n k S 达到最小值

当n 为偶数时,取2

22+=

n n k 或 S 达到最大值 四、典型习题导练

1.在[1000,2000]内能被3整除且被4除余1的整数有多少个?

2.某城市1991年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率

为1%,每年平均新增住房面积为30万m 2,求2000年底该城市人均住房面积为多少m 2

?(精确到0.01)

3.已知数列{}n a 中,n S 是它的前n 项和,并且241+=+n n a S ,11=a

(1) 设n n n a a b 21-=+,求证数列{}n b 是等比数列; (2) 设n

n

n a c 2=

,求证数列{}n c 是等差数列。 4.在△ABC 中,三边c b a ,,成等差数列,c b a ,,也成等差数列,求证△ABC 为正三角形。 5. 三数成等比数列,若将第三个数减去32,则成等差数列,若再将这等差数列的第二个数减去4,则又成等比数列,求原来三个数。

6. 已知

是一次函数,其图象过点

,又

成等差数列,求

)()2()1(n f f f +++ 的值.

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

高中数学典型例题详解和练习- 求分段函数的导数

求分段函数的导数 例 求函数?????=≠=0 ,00 ,1sin )(2 x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当 0≠x 时,)(x f 的关系式是初等函数x x 1 sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1 sin lim ) 0()(lim )0(0200 ===-='→?→?→?x x x x x x f x f f x x x 当 ≠x 时, x x x x x x x x x x x x x x x f 1 cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如 果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为 )(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常

见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,322+-===x x v v u y u ; 4..1,sin ,3x x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果. 求函数的导数 例 求下列函数的导数. 1.43)12(x x x y +-=;2.2 211x y -= ; 3.)3 2(sin 2π +=x y ;4.21x x y +=。 分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数.

等差数列及其性质典型例题及练习(学生)

等差数列及其性质 典型例题: 热点考向一:等差数列的基本量 例1. 在等差数列{n a }中, (1) 已知81248,168S S ==,求1,a 和d (2) 已知6510,5a S ==,求8a 和8S 变式训练: 等差数列{}n a 的前n 项和记为n S ,已知 102030,50a a ==. (1)求通项公式{}n a ; (2)若242n S =,求n . 热点考向二:等差数列的判定与证明. 例2:在数列{}n a 中,11a =,1114n n a a +=- ,221 n n b a = -,其中* .n N ∈ (1)求证:数列{}n b 是等差数列; (2)求证:在数列{}n a 中对于任意的* n N ∈,都有 1n n a a +>. (3 )设n b n c =,试问数列{n c }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,请说明理由. 跟踪训练:已知数列{n a }中,13 5 a = ,数列11 2,(2,)n n a n n N a *-=-≥∈,数列{n b }满足 1()1 n n b n N a *=∈- (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项. 热点考向三:等差数列前n 项和 例3 在等差数列{}n a 的前n 项和为n S . (1)若120a =,并且1015S S =,求当n 取何值时,n S 最大,并求出最大值; (2)若10a <,912S S =,则该数列前多少项的和最小? 跟踪训练3:设等差数列}{n a 的前n 项和为n S ,已知 .0,0,1213123<>=S S a (I )求公差d 的取值范围; (II )指出12321,,,,S S S S 中哪一个最大,并说明理由。 热点考向四:等差数列的综合应用 例4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点列(n ,S n )(n ∈N *)均在函数y =f (x )的图象上. (1)求数列{a n }的通项公式; (2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得 T n +都成立。求证:c 的最大值为 2 9。

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

最全高考复习数列专题及练习答案详解

高考复习数列专题: 数 列(参考答案附后) 第一节 数列的概念与数列的简单表示 一、选择题 1.已知数列{}a n 对任意的p ,q ∈N * 满足a p +q =a p +a q ,且a 2=- 6,那么a 10=( ) A .-165 B .-33 C .-30 D .-21 2.在数列{a n }中,a 1=2,a n +1=a n +ln(1+1 n ),则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 3.若数列{a n }的前n 项积为n 2 ,那么当n ≥2时,{a n }的通项公式为( ) A .a n =2n -1 B .a n =n 2 C .a n = n +12 n 2 D .a n = n 2n -1 2 4.在数列{a n }中,a n +1=a n +2+a n ,a 1=2,a 2=5,则a 6的值是( ) A .-3 B .-11 C .-5 D .19 5.已知数列{a n }中,a n =n -79n -80 (n ∈N *),则在数列{a n }的前50 项中最小项和最大项分别是( ) A .a 1,a 50 B .a 1,a 8 C .a 8,a 9 D .a 9, a 50 二、填空题 6.若数列{}a n 的前n 项和S n =n 2 -10n (n =1,2,3,…),则此数

列的通项公式为________;数列{}na n 中数值最小的项是第__________项. 7.数列35,12,511,37,7 17,…的一个通项公式是 ___________________________. 8.设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =__________. 三、解答题 9.如果数列{}a n 的前n 项和为S n =3 2a n -3,求这个数列的通项 公式. 10.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N + )在函数y =x 2 +1的图象上. (1)求数列{a n }的通项公式; (2)若列数{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2 n +1.

高中数学经典例题错题详解

高中数学经典例题、错 题详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是() M N A M N B M N C M N D 映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应) 映射与函数的区别与联系: 函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。 映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。 映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射方向性 上题答案应选 C 【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。 本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。 【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B 中的对应元素;(2)(2、1)在A中的对应元素 【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1 【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数() 【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8 【例4】若函数f(x)为奇函数,且当x﹥0时,f(x)=x-1,则当x﹤0时,有() A、f(x) ﹥0 B、f(x) ﹤0 C、f(x)·f(-x)≤0 D、f(x)-f(-x) ﹥0 奇函数性质: 1、图象关于原点对称;? 2、满足f(-x) = - f(x)?; 3、关于原点对称的区间上单调性一致;? 4、如果奇函数在x=0上有定义,那么有f(0)=0;? 5、定义域关于原点对称(奇偶函数共有的)

等差数列经典题型

等差数列 第三课时 前N 项和 1、在等差数列{a n }中,已知d =2,a n =11, S n =35,求a 1和n . 2、设{a n }为等差数列, S n 为数列{a n }的前n 项和,已知S 7=7, S 15=75, T n 为数列? ??? ? ? S n n 的前n 项和,求T n . (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ; (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5 b 5 的 值. 3、已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45 n +3,则使 得a n b n 为整数的正整数n 的个数是( ) A.2 B.3 C.4 D.5 4、现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( ) A.9 B.10 C.19 D.29 5、等差数列{a n }中, S 10=4S 5,则a 1 d 等于( ) A.12 B.2 C.1 4 D.4

6、已知等差数列{a n}中,a23+a28+2a3a8=9,且a n<0,则S10为() A.-9 B.-11 C.-13 D.-15 7、设等差数列{a n}的前n项和为S n,若S3=9, S6=36.则a7+a8+a9等于() A.63 B.45 C.36 D.27 8、在小于100的自然数中,所有被7除余2的数之和为() A.765 B.665 C.763 D.663 9、一个等差数列的项数为2n,若a1+a3+…+a2n-1=90,a2+a4+…+a2n=72,且a1-a2n=33,则该数列的公差是() A.3 B.-3 C.-2 D.-1 10、设{a n}是公差为-2的等差数列,如果a1+a4+…+a97=50,那么a3+a6+…+a99=______. 11、在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n的值为______.

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

数列·例题解析

数列·例题解析 【例1】 求出下列各数列的一个通项公式 (1)14(2)23,,,,,…,,,,…38516732964418635863 (3)(4)12--13181151242928252 ,,,,…,,,,… 解 (1)所给出数列前5项的分子组成奇数列,其通项公式为2n -1,而前5项的分母所组成的数列的通项公式为2×2n ,所以,已知数列的 通项公式为:.a =2n 12 n n+1- (2)从所给数列的前四项可知,每一项的分子组成偶数列,其通项公式为2n ,而分母组成的数列3,15,35,63,…可以变形为1×3,3×5,5×7,7×9,…即每一项可以看成序号n 的(2n -1)与2n +1的积,也即(2n -1)(2n +1),因此,所给数列的通项公式为: a n n n n =-+22121()() . (3)从所给数列的前5项可知,每一项的分子都是1,而分母所组成的数列3,8,15,24,35,…可变形为1×3,2×4,3×5,4×6,5×7,…,即每一项可以看成序号n 与n +2的积,也即n(n +2).各项的符号,奇数项为负,偶数项为正.因此,所给数列的通项公式为: a n n n n =-+()() 112·. (4)所给数列可改写为,,,,,…分子组成的数列为124292162252 1,4,9,16,25,…是序号n 的平方即n 2,分母均为2.因此所 给数列的通项公式为.a =n n 2 2 【例2】 求出下列各数列的一个通项公式.

(1)2,0,2,0,2,… (2)10000,,,,,,,, (131517) (3)7,77,777,7777,77777,… (4)0.2,0.22,0.222,0.2222,0.22222,… 解 (1)所给数列可改写为1+1,-1+1,1+1,-1+1,…可以看作数列1,-1,1,-1,…的各项都加1,因此所给数的通项公式a n =(-1)n+1+1. 所给数列亦可看作2,0,2,0…周期性变化,因此所给数列的 通项公式为奇数为偶数这一题说明了数列的通项公式不唯一.a =2(n )0(n )n ??? (2)100012345所给数列,,,,,,,…可以改写成,,,,,,…分母组成的数列为,,,,,,,…是自然13151711021304150617 67 数列n ,分子组成的数列为1,0,1,0,1,0,…可以看作是2, 02020,,,,,…的每一项的构成为,因此所给数列的通项公式为.1211211211()()-+=-+++n n n a n (3)7777777777777779所给数列,,,,,…可以改写成×,79 7979797979 79797979 79 ×,×,×,×…,可以看作×-,×-,×-,×-,×-,…因此所给数列的通项公式为-.99999999999999(101)(1001)(10001)(100001)(1000001)a = (101)n n (4)所给数列0.2,0.22,0.222,0.2222,0.22222,…可以改写 成×,×,×,×,×,…可以看作×-,×-,×-,×-,×-,…因此所给数列的通式公式为.2929292929 2929292929 291110 0.90.990.9990.99990.99999(10.1)(10.01)(10.001)(10.0001)(10.00001)a =n ()-n

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵|sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。

2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与地球 的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的 方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得????? ??+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识

数列教案、考点、经典例题_练习

澳瀚教育 学习是一个不断积累的过程,不积跬步无以至千里,不积小流无以 成江海,在学习中一定要持之以恒,相信自己,你一定可以获得成功! 高中数学 一、定义 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示) 2.等差数列的通项公式: d n a a n )1(1-+= (=n a d m n a m )(-+) 3.有几种方法可以计算公差d ① d=n a -1-n a ② d = 11--n a a n ③ d =m n a a m n -- 定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项 如数列:1,3,5,7,9,11,13…中 5是3和7的等差中项,1和9的等差中项 9是7和11的等差中项,5和13的等差中项 看来,73645142,a a a a a a a a +=++=+ 性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ?q p n m a a a a +=+ (m, n, p, q ∈N ) 二.例题讲解。 一.基本问题 例1:在等差数列{}n a 中 111111(1)(1)2()2, (1)(1)2()2, .m n p q m n p q a a a m d a n d a n m d d a a a p d a q d a p q d d a a a a +=+-++-=++-+=+-++-=++-∴+=+证明:

数列综合练习题以及答案解析

数列综合练习题 一.选择题(共23小题) 1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是() A.[,4)B.(,4)C.(2,4) D.(1,4) 2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞) 3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值() A.恒为正数B.恒为负数C.恒为0 D.可正可负 4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于() A.2 B.lg50 C.10 D.5 5.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是() A.2 B.4 C.6 D.8 6.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为() A.B.C.D. 7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=() A.B.C.D.

8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是() A.(π,)B.[π,]C.[,]D.(,) 9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数: ①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|, 则其中是“等比函数”的f(x)的序号为() A.①②③④B.①④C.①②④D.②③ 10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是() A.③④B.①②④C.①③④D.①③ 11.已知数列{a n}满足a1=1,a n+1=,则a n=() A.B.3n﹣2 C.D.n﹣2 12.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于() A.﹣B.﹣C.﹣D.﹣ 13.如果数列{a n}是等比数列,那么() A.数列{}是等比数列B.数列{2an}是等比数列 C.数列{lga n}是等比数列D.数列{na n}是等比数列 14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D. 15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则() A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C) 16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()

高中数学典型例题分析

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

人教课标版高中数学必修5典型例题剖析:等差数列的通项与求和

等差数列的通项与求和 一、知识导学 1.数列:按一定次序排成的一列数叫做数列. 2.项:数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 3.通项公式:一般地,如果数列{a n }的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式. 4. 有穷数列:项数有限的数列叫做有穷数列. 5. 无穷数列:项数无限的数列叫做无穷数列 6.数列的递推公式:如果已知数列的第一项(或前几项)及相邻两项(或几项)间关系可以用一个公式来表示,则这个公式就叫做这个数列的递推公式.递推公式是给出数列的一种重要方法,其关健是先求出a 1,a 2,然后用递推关系逐一写出数列中的项. 7.等差数列:一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示. 8.等差中项:如果a,A,b这三个数成等差数列,那么A=2b a +.我们把A=2 b a +叫做a和b的等差中项. 二、疑难知识导析 1.数列的概念应注意几点:(1)数列中的数是按一定的次序排列的,如果组成的数相同而排列次序不同,则就是不同的数列;(2)同一数列中可以出现多个相同的数;(3)数列看做一个定义域为正整数集或其有限子集({1,2,3,…,n })的函数. 2.一个数列的通项公式通常不是唯一的. 3.数列{a n }的前n 项的和S n 与a n 之间的关系:???≥-==-).2(),1(1 1n S S n S a n n n 若 a 1适合a n (n>2),则n a 不用分段形式表示,切不可不求a 1而直接求a n .

数列典型例题(含答案)

《2.3 等差数列的前n项和》测试题 一、选择题 1.(2008陕西卷)已知是等差数列,,,则该数列前10项和 等于( ) A.64 B.100 C.110 D.120 考查目的:考查等差数列的通项公式与前项和公式及其基本运算. 答案:B 解析:设的公差为. ∵,,∴两式相减,得,.∴,. 2.(2011全国大纲理)设为等差数列的前项和,若,公差, ,则( ) A.8 B.7 C.6 D.5 考查目的:考查等差数列通项公式的应用、前项和的概念. 答案:D 解析:由得,,即,将, 代入,解得. 3.(2012浙江理)设是公差为的无穷等差数列的前项和,则下列命题错误的是( ) A.若,则数列有最大项 B.若数列有最大项,则 C.若数列是递增数列,则对任意,均有 D.若对任意,均有,则数列是递增数列 考查目的:考查等差数列的前项和公式及其性质. 答案:C 解析:根据等差数列的前项和公式,可得,因为,所以其图像表示的一群孤立的点分布在一条抛物线上. 当时,该抛物线开口向下,所以这群孤立的点中一定有最高点,即数列有最大项;反之也成立,故选项A、B的两个命题是正确的. 选项C的命题是错误的,举出反例:等差数列-1,1,3,5,7,…满足数列是 递增数列,但.对于选项D的命题,由,得, 因为此式对任意都成立,当时,有;若,则,与矛盾,所以一定有,这就证明了选项D的命题为真. 二、填空题

4.(2011湖南理)设是等差数列的前项和,且,,则 . 考查目的:考查等差数列的性质及基本运算. 答案:81. 解析:设的公差为. 由,,得,. ∴,故. 5.(2008湖北理)已知函数,等差数列的公差为. 若 ,则 . 考查目的:考查等差数列的通项公式、前项和公式以及对数的运算性质,考查运算求解能力. 答案:. 解析:∵是公差为的等差数列,∴,∴ ,∴,∴ . 6.(2011广东理)等差数列前9项的和等于前4项的和. 若,,则 ____. 考查目的:考查等差数列的性质及基本运算. 答案:10. 解析:设等差数列前项和为. ∵,∴;∵ ,∴. ∴,故. 三、解答题 7.设等差数列的前项和为,且,求: ⑴的通项公式及前项和; ⑵. 考查目的:考查等差数列通项公式、前项和的基本应用,考查分析问题解决问题的能力. 答案:⑴;.⑵ 解析:设等差数列的公差为,依题意,得,解得. ⑴; ⑵由,得.

高一数学必修三知识点总结及典型例题解析

新课标必修3概率部分知识点总结及典型例题解析 ◆ 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不 可能事件( impossible event ) ? 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()n m A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值 ? 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P ② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件 ()()()B P A P B A P B A +=+:,则有互斥和 ? 古典概率(Classical probability model ):① 所有基本事件有限个 ② 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型 如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n 1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()n m A P = ? 几何概型(geomegtric probability model ):一般地,一个几何区域D 中随机地取一点, 记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为 ()的侧度 的侧度D d A P = ( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 ) 几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多 颜老师说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。 互斥事件(exclusive events):不能同时发生的两个事件称为互斥事件

小学奥数等差数列经典练习题

小学奥数等差数列经 典练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

小学奥数等差数列经典练习题 一、判断下面的数列中哪些是等差数列在等差数列的括号后面打√。0,2,6,12,20,30,36…… 6,12,18,24,30,36,42……700,693,686,679,673…… 90,79,68,57,46,35,24,13…… 1,3,5,7,10,13,16……5,8,11,14,17,20…… 1,5,9,13,17,21,23…90,80,70,60,50,……20,10 二、求等差数列3,8,13,18,……的第30项是多少 三、求等差数列8,14,20,26,……302的末项是第几项 四、一个剧院的剧场有20排座位,第一排有38个座位,往后每排比前一排多2个座位,这个剧院一共有多少个座位五、计算 11+12+13……+998+999+10002+6+3+12+4+18+5+24+6+30 3、求等差数列6,9,12,15,……中第99项是几 4、求等差数列46,52,58……172共有多少项 5、求等差数列245,238,231,224,……中,105是第几项 6、求等差数列0,4,8,12,……中,第31项是几在这个数列中,2000是第几项 7、从35开始往后面数18个奇数,最后一个奇数是多少、已知一个等差数列的第二项是8,第3项是13,这1个等差数列的第10项是多少 1、计算:100+200+300+……21001+79+……+17+15+13 2、有20个同学参加聚会,见面的时候如果每人都和其他同学握手一次,那么参加聚会的同学一共要握手多少次 3、请用被4

相关文档
最新文档