黄酮、多酚和抗氧化

黄酮、多酚和抗氧化
黄酮、多酚和抗氧化

1、总黄酮含量(硝酸铝~亚硝酸钠比色法,以芦丁计)

芦丁标准标准溶液的配制:准确称取经105 ℃干燥至恒重的芦丁标准品15.0 mg(精确至0.0001g),用甲醇溶解并定容至100 mL,配成150 μg/mL 的芦丁标准溶液,制备标准曲线。

精密称取一定量的测定样品,用30 %的乙醇溶液溶解定容至100 mL,取1 mL的待测液,加入30 %乙醇溶液至5 mL,加入5%亚硝酸钠溶液0.3 mL,混匀后放置5 min,加入10 %硝酸铝溶液0.3 mL,混匀后放置6 min,加入1.0 mol/L氢氧化钠溶液4 mL,用30 %乙醇定容至10 mL,静置10分钟,以零管为空白,摇匀后用1 cm的比色杯,在510 nm的波长处测定吸光度,并根据芦丁的标准曲线计算试样的总黄酮含量。

2、酚酸含量(福林试剂还原比色法,以没食子酸计)

没食子酸标准溶液的配制:称取经真空干燥至恒重的没食子酸对照品25.0 mg,用30 %的乙醇溶液溶解并定容至100 mL,配成0.250 mg/mL的没食子酸标准溶液,制备标准曲线。

精密称取一定量的测定样品,用30 %的乙醇溶液溶解、定容,并稀释至适宜浓度,记录总体积。取0.1 mL样品,并用水稀释至5.0 mL,各加入0.5 mL 未稀释的福林试剂,混匀后静置8 min,加入1.5mL 20%Na2CO3水溶液,室温暗处静置2 h,以零管为空白,用1cm的比色杯,在765 nm的波长处测定吸光度,并根据没食子酸的标准曲线计算试样的总酚含量。

抗氧化方法

ABTS˙+法

先配制140 mmol/L过硫酸钾(K2S2O8)溶液和7 mmol/L ABTS储备液,然后取176 μL 140 mmol/L过硫酸钾溶液和10 mL 7 mmol/L ABTS储备液混合,在

室温条件下避光储备12-16 h。测定之前加入乙醇将ABTS˙+溶液稀释至吸光值为0.700±0.02(734 nm)下将3.9 mL 的ABTS˙+溶液与0.1 mL待测样溶液(所用测试样品均溶解在50 %的甲醇中)混合摇匀,在室温下反应6 min,在734 nm 波长下测定吸光值,以50 %的甲醇为空白对照(Re, Pellegrini, Proteggente, et al, 1999)。根据下列公式计算每种待测样品对ABTS自由基的清除率∶

抑制率(%)= (A

空白– A

样品

)/A

空白

×100%

以待测样品浓度为横坐标,清除率值为纵坐标绘制待测样品清除ABTS自由基的曲线。根据曲线的线性回归方程,计算得到ABTS自由基清除率为50%时的待测样品浓度,定义为半抑制浓度(IC50),所有实验重复三次。

DPPH·法

准确称取DPPH试剂20 mg,用无水乙醇溶解至500 mL容量瓶中,摇匀得0.101 mmol/L。取待测样溶液0.1 mL(所用测试样品均溶解在50 %的甲醇中)和3.9 mL DPPH溶液混合摇匀,在室温下反应1 h,在517 nm波长下测定吸光度,以50 %甲醇为空白对照(Turkoglu et al, 2007)。根据下列公式计算每种待测样品对DPPH自由基的清除率∶

抑制率(%)= (A

空白– A

样品

)/A

空白

×100%

以待测样品浓度为横坐标,清除率值为纵坐标绘制待测样品清除DPPH自由基的曲线。根据曲线的线性回归方程,计算得到DPPH自由基清除率为50%时的待测样品浓度,定义为半抑制浓度(IC50),所有实验重复三次。

FRAP测定还原力

准确配置0.1mol/L醋酸缓冲液(pH=3.6)、10 mmol/L TPTZ溶液(40 mmol/L 的盐酸溶液配置)和20mmol/L氯化铁溶液,并以10∶1∶1的比例混合(添加小铁钉一枚)。3.9 mL FRAP试剂工作液加入0.1 mL的样品溶液(均已稀释至0.2 mg/mL),混合均匀后,在37 ℃恒温水浴中反应10 min,于593 nm下读取吸光值,以50 %的甲醇为空白对照。

标准曲线的绘制:吸取100 μL系列浓度为75、150、300、450、600、750、1500 μmol/LTrolox,与3.9 mLFRAP溶液混合,在37℃水浴中反应10 min,于593 nm下读取吸光值,以Trolox的浓度为横坐标,吸光值为纵坐标绘制标准曲线。同时结果表达为每克干重相当于Trolox还原力的相当量(mg TEAC/g DW)(Benzie & Strain, 1996)。

全血体系总抗氧化能力试剂盒(T-AOC)法

各测试样品用50 %甲醇配置成适宜浓度,按照总抗氧化能力试剂盒(T-AOC)操作说明进行测试。以Vc作为阳性对照。

全血中总抗氧化能力(TAC)计算方法如下:

TAC (U/mL) = [(A样品-A空白) ×V0]/ [0.01×30×V1]

其中,V0=3.9 mL,V1=0.2 mL。

抑制脂质体过氧化

脂质体PBS分散体系(lecithin liposome system,LLS)制备:将300mg卵磷脂溶于30 mL PBS(10 mmol/L,pH 7.4),于超声发生器中处理数分钟得到均匀的脂质体分散液,冰浴保存备用。三氯乙酸(TCA)-硫代巴比妥酸(TBA)-盐酸(HCl)溶液制备:15 g TCA、0.375 g TBA、2.1 mL浓盐酸,依次溶于100 mL 水中。测定步骤:于样品管中依次加入1 mL LLS、1mL 400μmol/L FeSO4溶液和1 mL试样混匀,避光,37℃水浴60 min,再加入2 mL TCA-TBA-HCl溶液,100℃水浴15 min,迅速冷却,3 000 g离心10 min,取上清液,在波长535 nm 处测定吸光度As。阳性对照为VC,空白管以1 mL双蒸水代替1 mL样品,操作方法同样品管,测得空白管吸光度Ac,平行测定3次,取平均值。计算抑制率及试样抑制脂质体过氧化的IC50。

抑制率(%)=(Ac-As)/Ac×100

清除·OH效果的测定

取0.2 mL的FeSO4-EDTA混合液(10 mmol/L)于具塞试管中,加入0.2 mL的2-脱氧-D-核糖溶液(10 mmol/L),然后再加入一定量的样品溶液,并用磷酸缓冲液(pH7.4, 0.1 mol/L)定容到1.8 mL,最后加入0.2 mL的H2O2(10 mmol/L),混匀后于37℃保温1 h,再加入2.8%三氯乙酸1.00 mL,1.0%硫代巴比妥酸溶液1 mL,混匀后,沸水浴煮沸10 min,冷水冷却[7]。不加DR的反应混合液不发生反应,作为比色时的空白液,测A532,计算清除率(P)。

P=[1-(As-A0)/(Ac-A0)]×100%

As:加样品液并在37℃水浴中反应的吸光值;

Ac:不加样品液,同上操作的吸光值;A0:不加样品液并且不在37℃水浴中反应的吸光值。

O-2·自由基的清除作用

取0.05 mol/L Tris-HCl缓冲溶液(pH 8.2) 4.5mL,置于25℃水浴中预热20 min,分别加入1 mL试样和0.4 mL 25 mmol/L邻苯三酚溶液,混匀后于25℃水浴中反应5 min,加入8 mol/L HCl 1 mL终止反应,299 nm处测定吸光度A,空白对照组A0以相同体积的蒸馏水代替样品。

清除率:P=[(A0-Ai)/A0]×100%

黄酮类化合物——第二次作业

一、填空题 3.中药红花在开花初期,由于主要含有无色的新红花苷及微量红花苷,故花冠呈淡黄色;开花中期主要含的是黄色的红花苷,故花冠显深黄色;开花后期则氧化变成红色的醌式红花苷,故花冠呈红色。 4.黄酮类化合物呈酸性,是由于其多数带有_酚羟基__;黄酮类成分也具有微弱的碱性,是由于其结构中_7-吡喃环上的1位氧原子的存在。 7.不同类型黄酮苷元中水溶性最大的是花色素类,原因是以离子形式存在,具有盐的通性;二氢黄酮的水溶性比黄酮大,原因是系非平面性分子,故分子与分子间排列不紧密,分子间引力降低,有利于水分子进入。 8.黄酮类化合物结构中大多具有酚羟基,故显一定的酸性,不同羟基取代的黄酮其酸性由强至弱的顺序为7,4’-二羟基、7或4'-羟基、一般酚羟基、5-羟基。 9.黄酮类化合物γ-吡喃酮环上的1位氧因有未共享电子对,故表现出微弱的碱性,可与强无机酸生成样盐。 10.锆盐-枸橼酸反应常用于区别3-羟基和5-羟基黄酮,加入2%二氯氧锆甲醇溶液,两者均可生成黄色锆络合物,再加入2%枸橼酸甲醇溶液后,如果黄色不减褪,示有3-羟基黄酮;如果黄色减褪,示有5-羟基黄酮。 11.黄酮类化合物常用的提取方法有水提法、溶剂萃取法、碱提取酸沉淀法等。 12.聚酰胺柱色谱分离黄酮苷和苷元,当用含水溶剂(如乙醇-水)洗脱时,黄酮苷先被洗脱;当用有机溶剂(如氯仿-甲醇)洗脱时,苷元先被洗脱。

.二.单选题: 1.黄酮类化合物的基本碳架是( E ) A .C 6-C 6-C 3 B . C 6-C 6-C 6 C .C 6-C 3-L 6 D .C 6-C 3 E .C 3-C 6-C 3 2.与2ˊ-羟基查耳酮互为异构体的是( A ) A .二氢黄酮 B .花色素 C .黄酮醇 D .黄酮 E .异黄酮 3.水溶性最大的黄酮类化合物是(C ) A .黄酮 B .黄酮醇 C .二氢黄酮 D .查耳酮 E .异黄酮 4.酸性最强的黄酮类化合物是( E ) A .5-羟基黄酮 B .4’-羟基黄酮 C .3-羟基黄酮 D .3’-羟基黄酮 E .4’-羟基二氢黄酮 5.黄酮类化合物色谱检识常用的显色剂是(A ) A .盐酸-镁粉试剂 B .FeCl 3试剂 C .Gibb’s 试剂 D .2%NaBH 4甲醇溶液 E .l %AlCl 3甲醇溶液 6.在碱液中能很快产生红或紫红色的黄酮类化合物是( B ) A .二氢黄酮 B .查耳酮 C .黄酮醇 D .黄酮 E .异黄酮 7.将总黄酮溶于乙醚,用 5%NaHCO 3萃取可得到( E ) A .5,7-二羟基黄酮 B .5-羟基黄酮 C .3’,4’-二羟基黄酮 D .5,8-二羟基黄酮 E .7,4’-二羟基黄酮 8.下列化合物进行聚酰胺柱色谱分离,以浓度从低到高的乙醇洗脱,最先被洗脱的是( D ) A .2’,4’-二羟基黄酮 B .4’-OH 黄酮醇 C .3’,4’-二羟基黄酮 D .4’-羟基异黄酮 E .4’-羟基二氢黄酮醇 8.盐酸-镁粉反应鉴别黄酮类化合物,下列哪项错误( D ) A .多数查耳酮显橙红色 B .多数黄酮苷显橙红-紫红色 C .多数二氢黄酮显橙红-紫红色 D .多数异黄酮不显红色 9.用于鉴别二氢黄酮类化合物的试剂是(A ) A .ZrOCl 2 B .NaBH 4 C .HCl-Mg 粉 D .SrCl 2 10.下列化合物按结构应属于( D ) A. 黄酮类 B. 异黄酮类 C. 查耳酮类 D. 二氢黄酮类 O O OH CH 3 HO H 3C

竹叶黄酮的抗氧化活性研究

食 品 科 技 FOOD SCIENCE AND TECHNOLOGY 2011年 第36卷 第7期 提取物与应用 · 201 · 罗宇倩1,郭 辉1,胡林福2,施林巍2,钱俊青1* (1.浙江工业大学药学院,杭州 310014; 2.浙江竹类资源生物技术研究开发中心,安吉 313300) 摘要:为了有效利用竹叶中黄酮类物质,研究采用不同的方法(DPPH法、邻苯三酚自氧化法(325 nm)和 Fenton法)评价了竹叶黄酮的抗氧化活性,以Vc和茶多酚为阳性对照品。结果表明:竹叶黄酮清除超氧负离子自由基和DPPH自由基的能力比茶多酚强,其EC 50相应为11.7 μg/mL和18.3 μg/mL,分别是Vc的约1.2倍和3.4倍;竹叶黄酮在清除羟自由基效果与茶多酚相当,EC 50 为0.58 mg/mL,比Vc效果好。因此竹叶黄酮具有很强的抗氧化能力,值得深入研究其生理功能及开发利用价值。 关键词:竹叶;黄酮;抗氧化性 中图分类号:TS 202.3 文献标志码:A 文章编号:1005-9989(2011)07-0201-03 Antioxidant activity of ? avonoids from bamboo leaves LUO Yu-qian 1, GUO Hui 1, HU Lin-fu 2, SHI Lin-wei 2, QIAN Jun-qin 1* (1.College of Pharmacognosy of Zhejiang University of Technology Hangzhou 310014; 2.Biological Technology R&D Center of Bamboo Resources, Anji 313300) Abstract: The antioxidant activity of total flavonoids from bamboo leaves was determined by various assays, including DPPH radical-scavenging, self-oxidation of 1, 2, 3-phentriolassay method(325 nm) and Fenton reactions. The results showed that ? avonoids from bamboo leaves have very strong scavenging capabilities for superoxide anion and DPPH free radical, their EC 50 values are 11.7 μg/mL and 18.3 μg/mL respectively, and are approximately 1.2 times and 3.4 times as much as that of vitamin C respectively. The scavenging capability of bamboo leaves ? avonoids for hydroxyl radical is stronger than that of vitamin C, weaker than tea polyphenol, and its EC 50 is 0.58 mg/mL.Key words: bamboo leaves; ? avonoids; antioxidation 收稿日期:2010-11-07 ﹡通讯作者基金项目:浙江省制药工程重中之重开发基金项目。 作者简介:罗宇倩(1986—),女,湖南株洲人,硕士研究生,研究方向为天然药物的提取与纯化以及药理研究。 淡竹叶和淡竹沥是中医一味传统的清热解毒药,早已为我国人们所认识。竹叶中黄酮类物质是主要活性物质,含量平均在2%,主要为黄酮糖苷[1],分别是荭草苷、异荭草苷、牡荆苷和异牡荆苷,以及木犀草素苷、洋芹苷和黄酮苷类。竹叶黄酮具有明显的抗脂质过氧化[2-3]、清除羟自 由基和调节血脂功能及抗过敏、抗炎、抗菌、抗突变、抗肿瘤、抗溃疡、抗病毒、保护心血管疾病[4-5]及保肝等生理活性,是一类极具开发前景的天然有机抗氧化剂[1,6-8]。 我国竹叶资源丰富,因此充分开发利用竹叶中的黄酮类成分具有十分重要的现实经济意义。 竹叶黄酮的抗氧化活性研究

八种天然黄酮类化合物的抗氧化构效关系

文章编号:1000-5641(2002)01-0090-06 八种天然黄酮类化合物的抗氧化构效关系 陈季武, 朱振勤, 杭 凯, 杨晓宁 (华东师范大学生命科学学院,上海 200062) 摘要:采用H 2O 2-CTMAB -Luminol 化学发光体系和Fe 2+诱发脂蛋白PU FA 过氧化比色体系,研究了八种高纯度的天然黄酮类化合物清除H 2O 2、LO ?和LOO ?的构效关系。结果表明,这八种天然黄酮类化合物都能有效地清除H 2O 2、LO ?和LOO ?。根据其清除作用和化学结构分析,得出如下结论:B 环上羟基是清除H 2O 2、LO ?和LOO ?的主要活性基团,A 环上羟基是清除H 2O 2、LO ?和LOO ?的重要基团,并且B 环上羟基相邻清除作用就大大增强;糖甙对清除 H 2O 2、LO ?和LOO ?也有贡献。 关键词:黄酮类化合物; 抗氧化; 构效关系中图分类号:Q505 文献标识码:A 黄酮类化合物是泛指两个芳环(A 与B )通过三碳链相互连接构成的一系列化合物。大多数以植物为原料的中药都含有黄酮类化合物。现已发现黄酮类化合物具有众多生理功能 和药用价值,如保护心脑血管、抗菌消炎、抗辐射和抗肿瘤等[[1-4],其中引人注目的是其抗氧化作用,使该研究成为热门课题之一。由于极高纯度的黄酮类化合物来源及技术等限制,对黄酮类化合物抗氧化的研究主要集中于效用上,对其构效关系进行研究甚少。鉴于黄酮类化合物在药学、保健品、食品和化妆品等方面已有的和潜在的应用前景,有必要对其构效关系进行研究。为此,采用H 2O 2-CTMAB -Luminol 发光体系和Fe 2+诱发的脂蛋白PU 2FA 过氧化的比色体系,研究了八种纯度高达97%以上的天然黄酮类化合物清除H 2O 2、LO ? 和LOO ?的构效关系。 1 材料与方法 1.1材料1.1.1 试剂 鲁米诺系Sigma 产品,十六烷基三甲基溴化铵(CTMAB )系B IB 进口分装,其余试剂均系国产分析纯。1.1.2 药物 槲皮素系Fluka 产品,纯度为99%;金丝桃甙、泽漆新甙、芸香甙、山奈素和橙皮甙均由中科院上海药物研究所朱大元教授惠赠,纯度达98%以上;茶多酚购自浙江农业大学茶叶系;黄芩甙由上海中药一厂提供,纯度高达97%以上。  收稿日期:2001-02  作者简介:(1956-),男,副教授.  第1期2002年3月 华东师范大学学报(自然科学版) Journal of East China Normal University (Natural Science ) No.1 Mar.2002

黄酮类化合物试题

中药化学试题库 第六章黄酮类化合物 一、选择题 (一)A型题(每题有5个备选答案,备选答案中只有1个最佳答案) 1.黄酮类化合物的基本碳架是() A.C6-C6-C3 B.C6-C6-C6 C.C6-C3-C6 D.C6-C3 E.C3-C6-C3 正确答案:C 2.与2’-羟基查耳酮互为异构体的是()A.二氢黄酮B.花色素 C.黄酮醇D.黄酮 E.异黄酮 正确答案:A 3.水溶性最大的黄酮类化合物是() A.黄酮 B.黄酮醇C.二氢黄酮D.查耳酮 E.异黄酮 正确答案:C 6.酸性最强的黄酮类化合物是() A.5-羟基黄酮 B.4’-羟基黄酮 C.3-羟基黄酮 D.3’-羟基黄酮 E.4’-羟基二氢黄酮

正确答案:B 7.酸性最弱的黄酮类化合物是() A.5一羟基黄酮 B.7-羟基黄酮 C.4’-羟基黄酮 D.3’-羟基黄酮 E.6一羟基黄酮 正确答案:A 10.黄酮类化合物色谱检识常用的显色剂是()A.盐酸-镁粉试剂B.FeCl3试剂C.Gibb’s试剂 D.2%NaBH4甲醇溶液 E.l%AlCl3甲醇溶液 正确答案:E 11.在碱液中能很快产生红或紫红色的黄酮类化合物是() A.二氢黄酮B.查耳酮 C.黄酮醇D.黄酮 E.异黄酮 正确答案:B 13.将总黄酮溶于乙醚,用 5%NaHCO3萃取可得到() A.5,7-二羟基黄酮B.5-羟基黄酮C.3’,4’-二羟基黄酮 D.5,8-二羟基黄酮 E.7,4’-二羟基黄酮正确答案:E 15.当药材中含有较多粘液质、果胶时,如用碱液提取黄酮类化合物时宜选用()

A.5%Na2CO3 B.l%NaOH C.5%NaOH D.饱和石灰水 E.氨水 正确答案:D 17.下列化合物进行聚酰胺柱色谱分离,以浓度从低 到高的乙醇洗脱,最先被洗脱的是() A.2’,4’-二羟基黄酮B.4’-OH黄酮醇C.3’,4’-二羟基黄酮 D.4’-羟基异黄酮 E.4’-羟基二氢黄酮醇 正确答案:A 18.黄芩苷可溶于() A.水 B.乙醇C.甲醇 D.丙酮 E.热乙酸 正确答案:E 19.下列化合物属于黄酮碳苷的是 A、芦荟苷 B、葛根素 C、大豆苷 D、芦荟大黄素苷 E、橙皮苷 正确答案:B 20.与查耳酮互为异构体的是 A、黄酮 B、二氢黄酮 C、异黄酮 D、橙酮 E、花色 素 正确答案:B

黄酮类化合物生物活性的研究进展_王慧

黄酮类化合物生物活性的研究进展 王 慧 (山东博士伦福瑞达制药有限公司,山东 济南 250101) 摘 要:黄酮类化合物是广泛存在于自然界的一类多酚化合物,有许多潜在的药用价值。现就黄酮类化合物抗肿瘤、抗心血管疾病、抗氧化抗衰老、抗菌抗病毒、免疫调节等作用的研究进展作一综述,以期为开发利用该类药物提供参考。关键词:黄酮类化合物;生物活性;综述文献 中图分类号:R282.71 文献标识码:A 文章编号:1672-979X (2010)09-0347-04 收稿日期:2010-05-31 作者简介: 王慧(1974-),女,山东临沭人,主管药师,从事质量控制工作 E-mail : wanghui0602@https://www.360docs.net/doc/c08885928.html, Progress in Bioactivity of Flavonoids WANG Hui (Shandong Bausch & Lomb Freda Phar. Co., Ltd., Jinan 250101, China ) Abstract: Flavonoids are polyphenols widely found in nature and they have many potential medicinal values. This paper reviews the progress in anti-tumor, anti-cardiovascular disease, anti-oxidation and anti-aging, antibacterial and antivirus, immunological regulation of flavonoids, which can provide the references for the development and utilization of flavonoids. Key Words: flavonoids; bioactivity; review 黄酮类化合物是一类低分子植物成分,具有C6-C3-C6 基本构型,为植物体多酚类代谢物。主要分为黄酮及黄酮醇类、二氢黄酮及二氢黄酮醇类、黄烷醇类、异黄酮及二氢异黄酮类、双黄酮类,以及查尔酮、花色苷等[1]。黄酮类化合物独特的化学结构使其对哺乳动物和其它类型的细胞有重要的生物活性。黄酮类化合物有高度的化学反应性,例如清除生物体内的自由基;又有抑制酶活性、抗肿瘤、抗菌、抗病毒、抗炎症、抗过敏、抗衰老、抗心血管疾病糖尿病并发症等药理作用,且无毒无害。黄酮类化合物还是茶及黄芩、银杏、沙棘等众多中草药的活性成分。因此受到广泛关注,研究进展很快。1 黄酮类化合物的理化性质 黄酮类化合物多为晶体且有颜色,少数如黄酮苷类为无定形粉末,除二氢黄酮、二氢黄酮醇、黄烷及黄烷醇有旋光性外,余者则无。黄酮类化合物的溶解度因结构及存在状态(苷或苷元、单糖苷、双糖苷或三糖苷)不同而有差异,一般游离态苷元难溶于水,易溶于甲醇、乙醇、乙酸乙酯、乙醚等有机溶剂。其中,黄酮、黄酮醇、查儿酮等平面型分子因堆砌较紧密,分子间引力较大,故更难溶于水;而二氢黄酮及二氢黄酮醇等系非平面型分子,排列不紧密,分子间引力较小,有利于水分子进入,水溶解度稍大[2]。 2 黄酮类化合物的生物活性2.1 抗肿瘤活性 黄酮类对多种肿瘤细胞有明显的抑制作用,主要表现在抑制细胞增殖、诱导细胞凋亡、干预信号转导、影响细胞 [11] Denyer S P, Baird R M. Guide to microbiological control in pharmaceuticals and medical devices[M].2nd ed. Boca Raton: CRC Press, 2006: 325-326. [12] Mao k, Masafumi U, Takeshi K, et al Evaluation of acute corneal barrier change induced by topically applied preservatives using corneal transepithelial electric resistance in vivo [J].Cornea , 2010, 29(1): 80-85. [13] Noecker R. Effects of common ophthalmic preservatives on ocular health[J]. Adv Ther , 2001, 18: 205-215. [14] Kostenbauder H B. Physical factors influencing the activity of antimicrobial agents// Block S S. Disinfection, Sterilization and Preservation[M]. 3rd ed. PhiladelpHia: Lea and Febiger, 1983: 811-828. [15] Berry H, Michaels I. The evaluation of the bactericidal activity of ethylene glycol and some of its monoalkyl ethers against Bacterium coli [J]. J Pharm Pharmacol , 1950, 2: 243-249.

溶剂提取法提取银杏叶中得黄酮实验报告

溶剂提取法提取银杏叶中得黄酮实验报告 小组成员:周璟、胡静、左兵华、刘云飞 2014年5月一、实验目的 ⅰ)掌握传统的溶剂提取法并对银杏中的黄酮进行提取 ⅱ)掌握紫外分光光度计的应用,以及origin软件绘图的基本操作ⅲ)学会自主设计实验,培养团队合作精神 二、实验原理 ⑴关于黄酮:银杏中最具药用价值的成分,有提高人体免疫力的作用;并且抗衰老、调节内分泌,还具有抗炎、抗真菌的作用; ⑵实验需设置空白参比液,由文献资料可知芦丁标准液的最大波长大概为510nm; ⑶本实验采用硝酸铝(氯化铝)法测定银杏叶总黄酮的质量浓度,因 为黄酮类化合物可以与铝盐发生络合显色反应。 其主要原理为:在中性或弱碱性及亚硝酸钠存在的条件下,黄酮类化合物与铝盐发生螯合反应,加入氢氧化钠溶液后,溶液显橙红色,在510nm(左右)处有吸收峰,且符合定量分析的朗伯—比尔定律(即A=kbc)一般与芦丁标准溶液比较定量。先用亚硝酸钠还原黄酮类化合物,再加铝盐络合,最后加氢氧化钠溶液使黄酮类化合物开环,生成2-羟基查尔酮而显色。显色原理发生在黄酮醇类邻位无取代的邻二

酚羟基部位,不具有邻位无取代的邻二酚羟基的黄酮类成分加入上述试剂时是不显色的。(如二氢黄酮类化合物就不发生该显色反应) 三、实验药品及仪器 ⑴药品:银杏叶(阴干碾碎储藏备用),芦丁,无水乙醇,亚硝酸钠,氯化铝和氢氧化钠; ⑵仪器:电子天平,旋转蒸发仪,索氏提取器,uv-1800型紫外分光光度计,研钵,比色皿,容量瓶(10ml*6,50ml*1,100ml*2),移液管,量筒,烧杯,玻璃棒。 四.实验步骤 Ⅰ)配制60%的乙醇溶液(黄酮同时具有水溶和油溶性)。 Ⅱ)准确称取10g银杏叶粉末置于索氏提取器中,加入60%的乙醇溶液10ml,回流提取3h,然后用旋转蒸发仪浓缩并回收乙醇溶液,抽滤得到银杏叶黄酮粗提物。再用60%的乙醇定容到100ml。 Ⅲ)芦丁标准液的配置:准确称取芦丁标准品0.005g,用60%的乙醇溶液加热溶解,并转移到50ml容量瓶内用乙醇溶液定容,摇匀,得质量浓度为0.1mg/ml的芦丁标准液。 Ⅳ)分别吸取上部配制的母液0.0,1.0,2.0,3.0,4.0,5.0ml于6只10ml容量瓶中摇匀,先加入5%的亚硝酸钠0.5ml摇匀,静置6min,再加入10%的氯化铝溶液0.31ml,摇匀,静置6min,再加入4%的氢氧化钠溶液4ml,用60%的乙醇溶液定容到10ml,放置20min。其中,加入

黄酮类抗氧化

Iridoid and ?avone glycosides from Asystasia gangetica subsp.micrantha and Asystasia salicifolia and their antioxidant activities Prateep Worawittayanon a ,Juriratana Ruadreo a ,Wannaporn Disadee a , Poolsak Sahakitpichan a ,Somkid Sitthimonchai a ,Nopporn Thasana a ,b ,Somsak Ruchirawat a ,b ,Tripetch Kanchanapoom a ,c ,* a Chulabhorn Research Institute and Chulabhorn Graduate Institute,Vipavadee-Rangsit Highway,Bangkok 10210,Thailand b The Center of Excellence on Environmental Health,Toxicology and Management of Chemicals,Vipavadee-Rangsit Highway,Bangkok 10210,Thailand c Faculty of Pharmaceutical Sciences,Khon Kaen University,Khon Kaen 40002,Thailand a r t i c l e i n f o Article history: Received 31March 2011Accepted 28August 2011 Available online 26October 2011Keywords: Asystasia gangetica Asystasia salicifolia Acanthaceae Iridoid glycoside Flavone glycoside Antioxidant activities 1.Subject and sources Asystasia ,member of Acanthaceae family,is a genus comprising of about 70species distributed in tropical and subtropical old world regions (Mabberley,1987).In Thailand,three species-two subspecies have been found,one of which,Asystasia salicifolia Craib,is a native species.The introduced species are Asystasia nemorum Nees.(syn.Asystasia intrusa Blume),Asystasia gangetica (L.)T.Anderson subsp.gangetica (L.).T.Anderson and subsp.micrantha (Nees)Ensermu,which are occasionally widespread and cultivated as ornamental plants. Asystasia ganetica (L.)T.Anderson subsp.micrantha (Nees)Ensermu was collected in March 2010from Khon Kaen University,Khon Kaen Province,Thailand.The latter species,A.salicifolia Craib was collected in November 2006from Nam-Nao National Park,Phetchabun Province,Thailand.The plants were identi ?ed by Mr.Nopporn Nontapa,Department of Pharmaceutical Botany and Pharmacognosy,Faculty of Pharmaceutical Sciences,Khon Kaen University.Two voucher speci-mens (TK-PSKKU-0066and TK-PSKKU-0056)were deposited at the Herbarium of the Faculty of Pharmaceutical Sciences,Khon Kaen University. *Corresponding author.Faculty of Pharmaceutical Sciences,Khon Kaen University,Khon Kaen 40002,Thailand.Tel.:t6643202378;fax:t6643202379.E-mail address:trikan@kku.ac.th (T. Kanchanapoom).Contents lists available at SciVerse ScienceDirect Biochemical Systematics and Ecology journal homepage: https://www.360docs.net/doc/c08885928.html,/locate/biochemsyseco 0305-1978/$–see front matter ó2011Elsevier Ltd.All rights reserved.doi:10.1016/j.bse.2011.08.016 Biochemical Systematics and Ecology 40(2012)38–42

第5章-黄酮类化合物-习题

第五章 黄酮类化合物 一、名词解释 1. 黄酮类化合物 2. 盐酸-镁粉反应 3. 锆-枸椽酸反应 二、指出下列化合物属于何种黄酮类型 H O O (1)黄芩甙 H Glu (2)甘草甙 H 3CO O OH O O H O OH O OCH 3OH (3)红花甙 O H OH O H O O OH (4)银杏素 H 23 O H O O OH Glu O H O OH O OH OH OH 三、填空 1. 黄酮类化合物结构中有一个带_____性的氧原子,能与_____形成yang 盐。yang 盐极不稳定,_____即可分解。 2. 黄酮类化合物就整个分子而言,由于具有多个_____基,故呈__ _性,能溶于____性水液中。 3. 用聚酰胺柱层析分离黄酮类成分时,用醇由稀到浓洗脱时,查耳酮往往比相应的二氢黄酮____被洗脱;苷元比其相应的苷____被洗脱;单糖苷比相应的三糖苷___被洗脱。 4.黄酮类化合物的酸性来源于_____,其酸性强弱顺序依次为____>____>____ >____>____。 5.黄酮类化合物的基本骨架为___,其主要结构类型是依据___、_ __及___某特点而分类。 6. 黄酮类化合物的颜色与分子中是否存在__________及__________有关。

7. 30%乙醇、95%乙醇、NaOH 水溶液、尿素水溶液、水,五种溶剂在聚酰胺柱上对黄酮类化合物的洗脱能力由强到弱的顺序为________________________。 8.花色素类化合物的颜色随着____不同而改变,___呈红色,___呈紫色,__呈蓝色。 9.黄酮类化合物分子结构中,凡有______或______时,都可与多种金属试剂生成有色络合物或有色沉淀,有的还产生荧光。 10.黄酮类化合物在240-400nm 区域有两个主要吸收带,带Ⅰ在______区间,由______所引起;带Ⅱ在______之间,起因于_____引起的吸收。 四、选择题 1. 四氢硼钠是一种专属性较高的还原剂,只作用于: A. 黄酮 B. 二氢黄酮 C. 二氢黄酮醇 D. 查耳酮 2.下列化合物在聚酰胺TLC 上,以氯仿-甲醇-丁酮-丙酮(40:20:5:1)展开时,Rf 值的大小应为: O O OH OH OH O O OH OH OH O O OH OH O glc (1) (2) (3) HO rha A. ①②③ B. ③②① C. ②①③ D. ②③① 3. 下列化合物在聚酰胺柱上,用醇作溶剂洗脱时,其先后顺序应为: glcO O OH O O O O O OCH 3 OH OH glcO glcO OH O O O O O O OH OH glcO (1) (2) (3) (4) A. ①②③④ B. ③①②④ C. ①②④③ D. ②①③④ 4.下列化合物用pH 梯度法进行分离时,从EtOAc 中,用5%NaHCO 3、0.2%NaOH 、4%NaOH 的水溶液依次萃取,先后萃取出的顺序应为:

黄酮混合物体外抗氧化活性的相互作用

食 品 科 技FOOD SCIENCE AND TECHNOLOGY 提取物与应用· 198 ·2013年 第38卷 第2期 黄酮类化合物广泛存在于水果、蔬菜、谷物、植物来源的饮料(如红酒、绿茶等)等植物性食品中,具有保护心血管、降血压、降胆固醇、抗收稿日期:2012-08-25 基金项目:宁波职业技术学院2011年院级课题(NZ11022);宁波工程学院“北仑科技创新基金”项目。 作者简介:汤晓(1981—),女,浙江宁波人,硕士研究生,讲师,研究方向为植物有效成分提取与应用。 癌、杀菌、消炎等多种生理活性[1]。黄酮类化合物的基本结构为2个苯环通过中央三碳链连接而成,目前已确认结构的黄酮有5000多种,可划分为10汤 晓1,焦泽武1,龚淑珍1,梁 春1,方振飞1,关亚璠1,仇 丹2 (1.宁波职业技术学院应用化工系,宁波 315800 ; 2.宁波工程学院化学工程学院, 宁波 315016)摘要:测定槲皮素、异槲皮素、杨梅素、山萘酚、儿茶素、表儿茶素、芹菜素、飞燕草素-3-O-葡萄糖苷、矢车菊素-3-O-葡萄糖苷等9种黄酮类化合物及其两两混合物的体外抗氧化活性,以研究黄酮混合物的协同、拮抗与加合作用。以DPPH 清除能力、羟基自由基清除能力、总抗氧化性、还原能力为评价指标。结果表明,含有较多B 环羟基的黄酮类化合物更易发生拮抗作用,可通过调节黄酮单品的比例减小混合物的拮抗作用或是增强其协同作用,不同反应机理的评价指标所得结果不同。 关键词:黄酮;抗氧化活性;协同;拮抗;加合 中图分类号:R 285 文献标志码:A 文章编号:1005-9989(2013)02-0198-09 Interaction of flavonoids mixtures on antioxidant activities in vitro TANG Xiao 1, JIAO Ze-wu 1, GONG Shu-zhen 1, LIANG Chun 1, FANG Zhen-fei 1, GUAN Ya-fan 1, QIU Dan 2 (1.Department of Chemical Engineering, Ningbo Polytechnic College, Ningbo 315800;2.College of Chemical Engineering, Ningbo University of Technology, Ningbo 315016)Abstract: This study investigated in vitro antioxidant activities of quercetin, isoquercetrin, myricetin, kaempferol, catechin, epicatechin, apigenin, delphinidin-3-O-glucoside, cyanidin-3-O-glucoside and their pairwise mixtures to evaluate synergistic, antagonistic, and additive effects of flavonoids mixtures. DPPH radical scavenging activity, hydroxyl radical scavenging activity, total antioxidant activity and reducing power were used as evaluation indicators. The results indicate that flavonoids with more B ring hydroxyls are more influenced by antagonistic effect. Antagonistic effect could be reduced and synergistic effect could be enhanced by changing the ratio of single flavonoid in the mixture. Different reaction mechanisms could induce different experimental results.Key words: flavonoids; antioxidant activity; synergistic; antagonistic; additive 黄酮混合物体外抗氧化活性的相互作用

实验报告(终2)

紫外分光光度法测定槐花中总黄酮含量的方法学验证(实验报告)实验日期温度相对湿度 实验人员学号 一、实验目的 1、掌握比色法测定槐花药材中总黄酮含量的方法及原理 2、掌握方法学验证并证明采用的方法适合于相应的检测要求 二、实验原理 槐花药材的主要有效成分是黄酮类化合物,其中芦丁的含量最高,所以槐花药 材的鉴别及含量测定均以芦丁为指标成分。 黄酮类化合物在碱性条件下与铝盐发生配位反应,生成红色的配位化合物,使 得最大吸收波长红移至可见光区,且具有较高的吸收系数。黄酮类与铝盐的配位 反应是定量完成的,因此可采用比色法测定槐花药材中黄酮的含量,避免其他非 黄酮成分对测定准确度的影响。 药品质量标准分析方法验证的目的是证明采用的方法适合于相应检测要求,在 建立药品质量标准时,分析方法需经验证。本次实验所进行的是槐花总黄酮含量 测定的方法学验证,验证内容包括线性、精密度、重现性、稳定性、准确度(回 收率)。 三、仪器与试剂 仪器:紫外-可见分光光度计,电子天平,玻璃比色皿,超声仪,25ml量瓶(15个),100ml量瓶(10个),150ml锥形瓶(6个),100ml量筒(2个),50ml烧 杯(7个),洗耳球(2个),洗瓶(2个),胶头滴管(2支),药匙(2支),玻棒 (2支),移液枪(2支),移液枪头(若干),长颈漏斗(4个),1ml吸量管(3支),2ml吸量管(2支),5ml吸量管(2支),10ml吸量管(2支),500ml烧杯 (1个) 试剂:槐花药材,芦丁对照品,5%亚硝酸钠溶液,10%硝酸铝溶液,氢氧化 钠试液,甲醇,乙醇 四、实验步骤 1.供试品溶液的制备: 将槐花研碎,取粗粉约1g,精密称定,置于具塞锥形瓶中,精密加入60%(v/v) 乙醇100ml,称定重量,超声30分钟,取出冷却至室温,用60%(v/v)乙醇补 足失重,摇匀,过滤,取续滤液10ml,置100ml量瓶中,加水稀释至刻度,摇匀,即得。 2.对照品溶液的制备: 取芦丁对照品50mg,精密称定,置于25ml量瓶中,加甲醇适量,置水浴上微 热时溶解,放冷,加甲醇至刻度,摇匀。精密量取10ml,至于100ml量瓶中, 加水至刻度,摇匀,即得浓度为0.2mg/ml的芦丁对照品溶液。

第六章-黄酮类化合物

一、填空题: 1.黄酮类化合物是泛指()的一系列化合物,其基本母核为()。 2.酮类化合物的颜色与分子中是否存在()和()有关,如色原酮本身无色,但当2位引入(),即形成()而显现出颜色。 3.一般黄酮、黄酮醇及其苷类显();查耳酮为();而二氢黄酮为()。 4.黄酮、黄酮醇分子中,如果在()位或()位引入()或()等供电子基团,能促使电子移位和重排而使化合物颜色()。 5.花色素及其苷的颜色特点是(),pH﹤7时显(),pH为8.5时显(),pH﹥8.5时显()。 6.游离黄酮类化合物一般难溶或不溶于水,易溶于()、()、()、()等有机溶剂。 7.黄芩根中的主要有效成分是(),其水解后生成的苷元是(),分子中具有()的结构,性质不稳定,易被氧化成()衍生物而显()色。 8.不同类型黄酮苷元中水溶性最大的是(),原因是();二氢黄酮的水溶性比黄酮(),原因是()。 9.黄酮类化合物结构中大多具有(),故显一定的酸

性,不同羟基取代的黄酮其酸性由强至弱的顺序为()、()、()、()。 10.黄酮类化合物γ-吡喃酮环上的()因有未共享电子对,故表现出微弱的碱性,可与强无机酸生成()。 11.具有()、()或()结构的黄酮类化合物,可与多种金属盐试剂反应生成络合物。 12.锆盐-枸橼酸反应常用于区别()和()黄酮,加入2%二氯氧锆甲醇溶液,两者均可生成黄色锆络合物,再加入2%枸橼酸甲醇溶液后,如果黄色不减褪,示有()或()黄酮;如果黄色减褪,示有()黄酮。 13.用pH梯度萃取法分离游离黄酮时,先将样品溶于乙醚,依次用碱性由()至()的碱液萃取,5%NaHCO3可萃取出(),5%Na2CO3可萃取出(),0.2%NaOH可萃取出(),4%NaOH 可萃取出()。 14.聚酰胺的吸附作用是通过聚酰胺分子上的()和黄酮类化合物分子上的()形成()而产生的。不同类型黄酮类化合物与聚酰胺的吸附力由强至弱的顺序为()、()、()、()。

黄酮体外抗氧化活性研究

1. 供试液的制备:将纯化后的黄酮用蒸馏水(可加SDS 促溶)稀释后,分别配 制10、20、30、40、50、60、70 μg/mL 溶液,4℃保存备用。(根据实际情况调整浓度) 2. 总黄酮的测定: 标准曲线的绘制:称取芦丁10.00 mg 至50 mL 容量瓶,加60%乙醇使之溶解定容至刻度,摇匀,即得芦丁标准溶液(0.2 mg/mL )。准确吸取芦丁标准溶液0、0.5、1.0、1.25、1.5、2.0 mL (相当于芦丁0、0.1、0.2、0.25、0.3、0.4 mg ),并用相应60%乙醇溶液相应补足2.0 mL ,移入10 mL 刻度比色管中,加5%亚硝酸钠溶液0.2 mL ,振摇后放置6 min ,加入10%硝酸铝溶液0.2 mL 摇匀后放置6 min ,加1.0 mol/L 氢氧化钠溶液2.0 mL 。摇匀,放置15 min ,于510 nm 波长处测定吸光度,以芦丁含量(mg )为横坐标,以吸光度为纵坐标绘制标准曲线。 样品测定:吸取适当稀释的待测液2.0 mL ,按标准曲线制备操作步骤于 510nm 处进行吸光度的测定(样液如有沉淀,应过滤后测定)。 结果计算:根据标准工作曲线,求出相当于样品吸光度的芦丁含量,按下式求出总黄酮含量: 10010 3121????=V m V m X 式中:X ——样品中总黄酮含量,g/100g ; m 1——根据标准曲线计算出待测液中黄酮的量,mg ; m ——样品质量,g ; V 1——样品提取液测定用体积,mL ; V 2——样品提取液总体积,mL 。 3. 还原能力的测定: 于试管中加入1.0 mL 样液(不同质量浓度的待测物溶液)或蒸馏水,再分别加入1.0 mL 磷酸缓冲溶液(0.2 mol/L, pH6.6)及1.0 mL 铁氰化钾水溶液(1%),50℃水浴20 min 后取出快速冷却,加入1.0 mL 三氯乙酸水溶液(10%),摇匀,5000 rpm/min 离心5 min 。取1.0 mL 上清液,依次加入1.0 mL 蒸馏水,0.5 mL 三氯化铁水溶液(0.1%),充分混匀,10 min 后,在700 nm 波长处测定吸光度,吸光度越大,则说明还原能力越强。以V C 为阳性对照做参照实验。 4. DPPH 自由基清除活性: D PPH 溶液:称取8.00 mg DPPH 用100 mL 无水乙醇溶解,定容于100 mL 容量瓶中,摇匀,倒入棕色磨口瓶,作为储备液保存于4℃冰箱中,浓度为2×10-4 mol/L 。 取100 μl 待测液及100 μl 的2×10-4 mol/L DPPH 溶液加入96孔板中,摇匀。20 min 后用相应溶剂作参比在517 nm 下测定其吸光度A i ,同时测定2×10-4 mol/L

黄酮实验报告

学院:化学化工学院 专业:生物工程 学生姓名:张文实 目录 摘要 (2)

1 绪论 (3) 2 实验原理 (3) 3 实验仪器和药品 (4) 3.1 实验仪器 (4) 3.2 实验药品 (4) 4 实验过程 (4) 4.1 侧柏叶中黄酮的提取及定性分析 (4) 4.2 侧柏黄酮洗发香波的配制及性能定 (6) 4.3 侧柏黄酮雪花膏的配制及性能测定 (7) 5 结果与讨论 (7) 5.1 侧柏叶中黄酮的含量 (7) 5.2 侧柏叶黄酮提取物的紫外—可见分析 (8) 5.3 洗发香波和雪花膏的性能测定 (9) 6 结论 (10) 参考文献 摘要

采用超声波法和索氏提取法从侧柏叶中提取黄酮类化合物。芦丁中也含有黄酮类化合物,根据不同溶度的黄铜提取液对应不同的吸光度,作出标准曲线,得出吸光度关于浓度的方程,然后再测得侧柏提取液的吸光度,根据方程计算黄酮类化合物的含量。黄酮类化合物主要用于激活毛母细胞和促进血液循环,使毛发生长能力衰退的毛囊复活和促进血液循环后补充营养成分而发挥出养发、生发的作用。去屑止痒的机理在于抑制头发表皮细胞蜕化的速度,延迟脱落,减少脂溢性皮肤病的产生。因此,广泛应用于洗发香波的制备中。同时它还有很好的美白效果,可添加到雪花膏中。 关键词:侧柏;黄酮类化合物;洗发香波;雪花膏 1 绪论

侧柏(Platycladus orientalis)系柏科侧柏属常绿乔木,别名扁柏、香柏、片柏、片松。喜生于湿润肥沃的山坡[1],分布于全国大部分地区。现代医学研究证明,侧柏叶对肺炎双球菌、金黄色葡萄球菌、宋内氏痢疾杆菌有明显的抑制作用,能缩短出血和凝血时间,对肺炎、痢疾、高血压等多种疾病有一定的疗效。侧柏叶的疗效作用主要是通过存在其中的黄酮类物质起作用的。 黄酮类化合物(flavonoids)是一类存在于自然界的、具有2-苯基色原酮(flavone)结构的化合物。它们分子中有一个酮式羰基,第一位上的氧原子具碱性,能与强酸成盐,其羟基衍生物多具黄色,故又称黄碱素或黄酮。黄酮类化合物在植物体中通常与糖结合成苷类,小部分以游离态(苷元)的形式存在。绝大多数植物体内都含有黄酮类化合物,它在植物的生长、发育、开花、结果以及抗菌防病等方面起着重要的作用。最初,这类物质的粗制品仅作为染料应用,20世纪20年代,国外把槲皮素、芦丁用于临床后,才引起人们的关注。60年代末,人们发现黄酮类化合物有抗炎、抗病毒、利胆、强心、镇静和镇痛等作用。到70年代,又发现它们有抗氧化、抗衰老、免疫调节和抗肿瘤等作用。 此外,黄酮还有明显的美白功效,其美白功效的药理作用主要在于抑制酪氨酸酶的活性,从而抑制黑色素的合成。侧柏叶总黄酮作为美容护肤化妆品的添加剂,具有药性稳定,药力持久,对皮肤作用温和、刺激性小、安全性高、疗效显著等特点。将其制成水包油型的乳化产品,安全性好,使肌肤自然、美白亮泽[2]。且成本低廉,原料易得,又不会产生副作用,顺应了国际化妆品天然化、营养化、疗效化的发展趋势,具有广阔的市场前景。在雪花膏中加入侧柏叶提取液组分,与表面活性剂等配制成美白雪花膏,是一种兼具美白、保湿功效和调理性能的天然植物功能性雪花膏。同时,黄酮类化合物主要用于激活毛母细胞和促进血液循环,使毛发生长能力衰退的毛囊复活和促进血液循环后补充营养成分而发挥出养发、生发的作用[3]。广泛用于洗发香波的生产中。 2 实验原理

相关文档
最新文档