2010年高考数学一轮复习精品学案(人教版A版)――函数概念与表示.doc

2010年高考数学一轮复习精品学案(人教版A版)――函数概念与表示.doc
2010年高考数学一轮复习精品学案(人教版A版)――函数概念与表示.doc

2010年高考数学一轮复习精品学案(人教版A版)

――函数概念与表示

一.【课标要求】

1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念;

2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;

3.通过具体实例,了解简单的分段函数,并能简单应用;

4.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义;

5.学会运用函数图象理解和研究函数的性质

二.【命题走向】

函数是整个高中数学的重点,其中函数思想是最重要的数学思想方法,函数问题在历年的高考中都占据相当大的比例。

从近几年来看,对本部分内容的考察形势稳中求变,向着更灵活的的方向发展,对于函数的概念及表示多以下面的形式出现:通过具体问题(几何问题、实际应用题)找出变量间的函数关系,再求出函数的定义域、值域,进而研究函数性质,寻求问题的结果。

高考对函数概念与表示考察是以选择或填空为主,以解答题形式出现的可能性相对较小,本节知识作为工具和其他知识结合起来命题的可能性依然很大

预测2010年高考对本节的考察是:

1.题型是1个选择和一个填空;

2.热点是函数概念及函数的工具作用,以中等难度、题型新颖的试题综合考察函数成为新的热点。

三.【要点精讲】

1.函数的概念:

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数。记作:y=f(x),x∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。

注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x

2.构成函数的三要素:定义域、对应关系和值域

(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:

①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);

②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;

③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。

(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题

①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不

等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。

3.两个函数的相等:

函数的定义含有三个要素,即定义域A 、值域C 和对应法则f 。当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。

4.区间 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间;

(3)区间的数轴表示

5.映射的概念

一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。记作“f :A →B ”。

函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射。

注意:(1)这两个集合有先后顺序,A 到B 的射与B 到A 的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述。

(2)“都有唯一”什么意思?

包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思 6.常用的函数表示法

(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;

(2)列表法:就是列出表格来表示两个变量的函数关系; (3)图象法:就是用函数图象表示两个变量之间的关系 7.分段函数

若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;

8.复合函数

若y =f (u),u=g(x ),x ∈(a ,b ),u ∈(m,n),那么y =f [g(x )]称为复合函数,u 称为中间变量,它的取值范围是g(x )的值域

四.【典例解析】

题型1:函数概念

例1.21.(2009天津卷文)设函数???<+≥+-=0

,60

,64)(2x x x x x x f 则不等式)1()(f x f >的解

集是( )

A.),3()1,3(+∞?-

B.),2()1,3(+∞?-

C.),3()1,1(+∞?-

D.)3,1()3,(?--∞

答案 A

解析 由已知,函数先增后减再增 当0≥x ,2)(≥x f 3)1(=f 令,3)(=x f 解得3,1==x x 。

当0

故3)1()(=>f x f ,解得313><<-x x 或

【考点定位】本试题考查分段函数的单调性问题的运用。以及一元二次不等式的求解

(2)请设计一个同时满足下列两个条件的函数y = f (x ):

①图象关于y 轴对称;②对定义域内任意不同两点12x x 、, 都有

12

12()()2(

)2

x x f x f x f ++<答: . 答案不唯一,在定义域内图象上凸的偶函数均可,如

2(),()cos (),()|tan |()2

2

2

2

f x x f x x x f x x x π

π

π

π

=-=-

≤≤

=--

<<

等等.

首先由①知f (x )为偶函数,由②知f (x )在定义域内图象上凸,然后在基本初等函数中去寻找符合这两点的模型函数

【总结点评】本题主要考查函数的图象与性质,问题以开放的形式出现,着重突出对考生数学素质的要求.

点评:讨论了函数的解析式的一些常用的变换技巧(赋值、变量代换、换元等等),这都是函数学习的常用基本功

变式题:(2009北京文)已知函数3,1,

(),1,

x x f x x x ?≤=?->?若()2f x =,则x = .

答案 3log 2

解析 本题主要考查分段函数和简单的已知函数值求x 的值. 属于基础知识、基本运算的考查. 由31

log 232x

x x ≤??=?=?,1

22

x x x >??-=?=-?无解,故应填3log 2.

例2. (1)函数()f x 对于任意实数x 满足条件()()

1

2f x f x +=

,若()15,f =-则()()5f f =__ ________;

(2)函数()f x 对于任意实数x 满足条件()()

1

2f x f x +=

,若()15,f =-则

()()5f f =__________。

解:(1)由()()12f x f x +=

得()()

1

4()2f x f x f x +==+, 所以(5)(1)5f f ==-,则()()11

5(5)(1)(12)5

f

f f f f =-=-=

=--+。

(2)由()()12f x f x +=

得()()

1

4()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()11

5(5)(1)(12)5

f

f f f f =-=-=

=--+。

点评:通过对抽象函数的限制条件,变量换元得到函数解析式,考察学生的逻辑思维能

力。

题型二:判断两个函数是否相同

例3.试判断以下各组函数是否表示同一函数?

(1)f (x )=2x ,g (x )=33x ; (2)f (x )=

x x |

|,g (x )=?

??<-≥;01,01x x

(3)f (x )=1212++n n x ,g (x )=(12-n x )2n -

1(n ∈N *); (4)f (x )=x

1+x ,g (x )=x x +2;

(5)f (x )=x 2-2x -1,g (t )=t 2-2t -1。

解:(1)由于f (x )=2x =|x |,g (x )=33x =x ,故它们的值域及对应法则都不相同,所以它们不是同一函数;

(2)由于函数f (x )=

x x |

|的定义域为(-∞,0)∪(0,+∞),而g (x )=???<-≥;

01,01x x 的定义域为R ,所以它们不是同一函数;

(3)由于当n ∈N *时,2n ±1为奇数,

∴f (x )=1212++n n x =x ,g (x )=(12-n x )2n -

1=x ,它们的定义域、值域及对应法则都相同,

所以它们是同一函数;

(4)由于函数f (x )=x

1+x 的定义域为{x |x ≥0},而g (x )=x x +2的定义域为

{x |x ≤-1或x ≥0},它们的定义域不同,所以它们不是同一函数;

(5)函数的定义域、值域和对应法则都相同,所以它们是同一函数

点评:对于两个函数y =f (x )和y =g (x ),当且仅当它们的定义域、值域、对应法则都相同时,y =f (x )和y =g (x )才表示同一函数若两个函数表示同一函数,则它们的图象完

全相同,反之亦然。

(1)第(5)小题易错判断成它们是不同的函数,原因是对函数的概念理解不透要知道,在函数的定义域及对应法则f 不变的条件下,自变量变换字母,以至变换成其他字母的

表达式,这对于函数本身并无影响,比如f (x )=x 2+1,f (t )=t 2+1,f (u +1)=(u +1)2

+1都可视为同一函数。(2)对于两个函数来讲,只要函数的三要素中有一要素不相同,则这两个函数就不可能是同一函数

题型三:函数定义域问题

例4.求下述函数的定义域:

(1)02

)23()

12lg(2)(x x x x x f -+--=;

(2)).lg()lg()(22a x ka x x f -+-=

解:(1)?????

??≠-≠->-≥-0231

120

12022x x x x x ,解得函数定义域为]2,23()23,1()1,21( .

(2)?

??>>2

2a x ka

x ,(先对a 进行分类讨论,然后对k 进行分类讨论), ①当a =0)(R k ∈时,函数定义域为),0(+∞;

②当0>a 时,得?

??>-<>a x a x ka

x 或,

1)当?

??≥>10

k a 时,函数定义域为),(+∞ka ,

2)当??

?<≤->1

10

k a 时,函数定义域为),(+∞a ,

3)当?

??-<>10k a 时,函数定义域为),(),(+∞-a a ka ;

③当0

?

?-><>a x a x ka

x 或,

1)当?

??-≤<10

k a 时,函数定义域为),(+∞ka ,

2)当??

?≤<-<1

10

k a 时,函数定义域为),(+∞-a ,

3)当??

?><1

k a 时,函数定义域为),(),(+∞-a a ka 。

点评:在这里只需要根据解析式有意义,列出不等式,但第(2)小题的解析式中含有参数,要对参数的取值进行讨论,考察学生分类讨论的能力

例5.已知函数()f x 定义域为(0,2),求下列函数的定义域:

(1) 2

()23f x +;

(2)2y =

解:(1)由0<x 2

<2, 得

点评:本例不给出f (x )的解析式,即由f (x )的定义域求函数f [g (x )]的定义域关键在于理解复合函数的意义,用好换元法;求函数定义域的第三种类型是一些数学问题或实际问题中产生的函数关系,求其定义域,后面还会涉及到

变式题:已知函数f (x )=

3

1

32

3

-+-ax ax x 的定义域是R ,则实数a 的取值范围是( ) A .a >

3

1 B .-12<a ≤0

C .-12<a <0

D .a ≤

3

1 解:由a =0或???<-?-=≠,

0)3(4,

02

a a Δa 可得-12<a ≤0,答案B 。 题型四:函数值域问题

例5.求下列函数的值域: (1)2

32y x x =-+;(2

)y =

;(3)31

2

x y x +=

-; (4

)y x =+5

)y x =+6)|1||4|y x x =-++;

(7)22221

x x y x x -+=++;(8)2211

()212x x y x x -+=>-;(9)1sin 2cos x y x -=-。

解:(1)(配方法)2

2

1

2323323()6

1212

y x x x =-+=-+≥ , ∴2

32y x x =-+的值域为23

[

,)12

+∞

改题:求函数232y x x =-+,[1,3]x ∈的值域。

解:(利用函数的单调性)函数232y x x =-+在[1,3]x ∈上单调增, ∴当1x =时,原函数有最小值为4;当3x =时,原函数有最大值为26 ∴函数232y x x =-+,[1,3]x ∈的值域为[4,26]。

(2)求复合函数的值域:

设265x x μ=---(0μ≥),则原函数可化为y 。

又∵2265(3)44x x x μ=---=-++≤,

∴04μ≤≤[0,2],

∴y =

的值域为[0,2]

(3)(法一)反函数法: 312x y x +=

-的反函数为21

3x y x +=-,其定义域为{|3}x R x ∈≠, ∴原函数31

2

x y x +=

-的值域为{|3}y R y ∈≠ (法二)分离变量法:313(2)77

3222

x x y x x x +-+===+

---, ∵

702x ≠-,∴7

332

x +≠-, ∴函数31

2

x y x +=

-的值域为{|3}y R y ∈≠。

(4)换元法(代数换元法):设0t =≥,则2

1x t =-, ∴原函数可化为22

14(2)5(0)y t t t t =-+=--+≥,∴5y ≤, ∴原函数值域为(,5]-∞

注:总结y ax b =+

变形:2y ax b =++2y ax b =+(5)三角换元法:

∵2

1011x x -≥?-≤≤,∴设cos ,[0,]x ααπ=∈,

则cos sin )4

y π

ααα=+=

+

∵[0,]απ∈,∴5[,]444π

ππα+

∈,∴sin()[4πα+∈,

)[4

π

α+

∈-,

∴原函数的值域为[1-

(6)数形结合法:23(4)|1||4|5

(41)23(1)x x y x x x x x --≤-??

=-++=-<

, ∴5y ≥,∴函数值域为[5,)+∞。

(7)判别式法:∵2

10x x ++>恒成立,∴函数的定义域为R 。

由22221

x x y x x -+=++得:2(2)(1)20y x y x y -+++-= ①

①当20y -=即2y =时,①即300x +=,∴0x R =∈

②当20y -≠即2y ≠时,∵x R ∈时方程2(2)(1)20y x y x y -+++-=恒有实根, ∴△22(1)4(2)0y y =+-?-≥ , ∴15y ≤≤且2y ≠, ∴原函数的值域为[1,5]。

(8)2

121(21)1111

2

121212122

2

x x x x y x x x x x x -+-+=

==+=-++----,

∵12x >

,∴1

02

x ->,

∴112122x x -+≥-

当且仅当1

1

2

122x x -

=

-

时,即12

x =

∴12

y ≥,

∴原函数的值域为1

,)2

+∞。 (9)(法一)方程法:原函数可化为:sin cos 12x y x y -=-,

)12x y ?-=-(其中

cos ??=

=

sin()[1,1]x ?-=

-,

∴|12|y -≤

∴2340y y -≤, ∴403

y ≤≤

, ∴原函数的值域为4[0,]3

点评:上面讨论了用初等方法求函数值域的一些常见类型与方法,在现行的中学数学要求中,求值域要求不高,要求较高的是求函数的最大与最小值,在后面的复习中要作详尽的讨论。

题型五:函数解析式

例6.(1)已知3

3

11

()f x x x

x +=+

,求()f x ; (2)已知2(1)lg f x x

+=,求()f x ;

(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ; (4)已知()f x 满足12()()3f x f x x

+=,求()f x 。 解:(1)∵3

331111()()3()f x x x x x

x x x

+=+

=+-+, ∴3

()3f x x x =-(2x ≥或2x ≤-)。

(2)令

21t x +=(1t >),则2

1x t =-, ∴2()lg 1f t t =-,2

()lg

(1)1

f x x x =>-。 (3)设()(0)f x ax b a =+≠,

则3(1)2(1)333222f x f x ax a b ax a b +--=++-+-5217ax b a x =++=+, ∴2a =,7b =, ∴()27f x x =+。

(4)1

2()()3f x f x x

+= ①,

把①中的x 换成

1x

,得13

2()()f f x x x += ②,

①2?-②得3

3()6f x x x

=-,

∴1

()2f x x x

=-

点评:第(1)题用配凑法;第(2)题用换元法;第(3)题已知一次函数,可用待定系数法;第(4)题用方程组法。

例7. 已知向量 1

(sin , ) , (cos , 1).2

a x

b x ==-

(1)当a b ⊥

时, 求x 的值.

(2)(文科考生做) 求()()

f x a b =+

·b 的最大值与最小值.

(理科考生做)求()()

f x a b =+ ·b , 在, 02π??

-????

上的最大值与最小值.

[解] (1)(文)

|1|111120x x x +≤?-≤+≤?-≤≤ [] B=-2 , 0∴

(理)A={x|

2

10}1

x ->+

21100(1)(1)011x x x x x -->?

11

x

x -+, 则 f (-x )=lg 11x x +-+= lg 11()1x x --+=- lg 11

x

x -+, ∴f (x )是奇函数. (2)B={x|1||0}

x a -+≥

||11111x a x a a x a +≤?-≤+≤?--≤≤-

B=[-1-a ,1-a]

当a ≥2时, -1-a ≤-3, 1-a ≤-1,

由A=(-1,1), B=[-1-a ,1-a], 有A B =?

反之,若A B =? ,可取-a-1=2,则a=-3,a 小于2. (注:反例不唯一) 所以,a ≥2是A B =? 的充分非必要条件。

例8. 据调查,某地区100万从事传统农业的农民,人均收入3000元,为了增加农民的收入,当地政府积极引进资本,建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作,据估计,如果有x (x >0)万人进企业工作,那么剩下从事传统农业的农民的人均收入有望提高2x %,而进入企业工作的农民的人均收入为

3000a 元(a >0)。 (1)在建立加工企业后,要使从事传统农业的农民的年总收入不低于加工企业建立前的

农民的年总收入,试求x 的取值范围;

(2)在(I )的条件下,当地政府应该如何引导农民(即x 多大时),能使这100万农

民的人均年收入达到最大。

解:(I )由题意得(100-x )·3000·(1+2x%)≥100×3000,

即x 2-50x ≤0,解得0≤x≤50, 又∵x >0 ∴0<x≤50; (II )设这100万农民的人均年收入为y 元,

则y= (100-x )×3000×(1+2x %)+3000ax 100 = -60x 2+3000(a +1)x +300000100

=-3

5

[x -25(a +1)]2+3000+475(a +1)2 (0

(i )当0<25(a +1)≤50,即0<a ≤1,当x=25(a +1)时,y 最大;

(ii )当25(a +1)>50,即a >1,函数y 在(0,50]单调递增,∴当x=50时,y 取最大值。

答:在0<a ≤1时,安排25(a +1)万人进入企业工作,在a >1时安排50万人进入企业工作,才能使这100万人的人均年收入最大

例9.北京奥运会纪念章某特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向北京奥组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为x 元(x ∈N *).

(Ⅰ)写出该特许专营店一年内销售这种纪念章所获得的利润y (元)与每枚纪念章的销售价格x 的函数关系式(并写出这个函数的定义域);

(Ⅱ)当每枚纪念销售价格x 为多少元时,该特许专营店一年内利润y (元)最大,并求出这个最大值.

(Ⅰ)依题意[2000400(20)](7),[2000100(20)](7),x x y x x +--?=?---?

*

*

720,2040,x x N x x N <≤∈<<∈

∴ 400(2

5)(7100(4

0)(7),x x y x x --?=?

--?*

*

720,2040,x x N

x x N

<≤∈<<∈ 此函数的定义域为*{|740,}x x x N <<∈

(Ⅱ)22400[(16)81],

271089100[(),24x y x ?--+?

=?--+?

?

**

720,2040,x x N x x N <≤∈<<∈ 当720x <≤,则当16x =时,max 32400y =(元);

当2040x <<,因为x ∈N *,所以当x =23或24时,max 27200y =(元);

综合上可得当16x =时,该特许专营店获得的利润最大为32400元. 15. 已知函数()f x 的定义域为[]0,1,且同时满足:

(1)对任意[]0,1x ∈,总有()2f x ≥; (2)(1)3f =

(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-. (I)求(0)f 的值; (II)求()f x 的最大值;

(III)设数列{}n a 的前n 项和为n S ,且满足*

12

(3),n n S a n N =--∈. 求证:1231123

32()()()()2n n f a f a f a f a n -?++++≤+- .

解:(I )令120x x ==,由(3),则(0)2(0)2,(0)2f f f ≥-∴≤

由对任意[]0,1x ∈,总有()2,(0)2f x f ≥∴= (2分) (II )任意[]12,0,1x x ∈且12x x <,则212101,()2x x f x x <-≤∴-≥

22112111()()()()2()f x f x x x f x x f x f x ∴=-+≥-+-≥

max ()(1)3f x f ∴== (6分)

(III)*

12

(3)()n n S a n N =--∈ 1112(3)(2)n n S a n --∴=--≥ 1

11

1133(2),10n n n n a a n a a --∴=≥=≠∴= (8分) 1

1

1112113333333()(

)()()()23()4n n n n n n n

n f a f f f f f -∴==+≥+-≥-+ 111143333()()n n f f -∴≤+,即

11433

())(n n f a f a +≤+。 2211221

14144144441

12133333333333()()()()2n n n n n n n f a f a f a f a ------∴≤+≤++≤≤+++++=+ 故1

13

()2n n f a -≤+ 1213

13

1()1()()()2n n

f a f a f a n --∴+++

≤+ 即原式成立。 (14分)

点评:本题贴近生活。要求考生读懂题目,迅速准确建立数学模型,把实际问题转化为数学问题并加以解决。该题典型代表高考的方向 题型7:课标创新题

例10.(1)设d cx bx ax x x f ++++=2

3

4

)(,其中a 、b 、c 、d 是常数。 如果,30)3(,20)2(,10)1(===f f f 求的值)6()10(-+f f ;

(2)若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的取值范围。

解:(1)构造函数,10)()(x x f x g -=则,0)3()2()1(===g g g 故:

.810460)6)(36)(26)(16(100)10)(310)(210)(110()6()10(=---------++----=-+r m f f

(2)原不等式可化为

.0)12()1(2

<---x m x

构造函数)22)(12()1()(2

≤≤----=m x m x m f ,其图象是一条线段。 根据题意,只须:

?????<---=<----=-,0)12()1(2)2(,0)12()1(2)2(22

x x f x x f

即?????<-->-+.0122,032222x x x x

解得

23

1271+<<+-x 。 点评:上面两个题目通过重新构造函数解决了实际问题,体现了函数的工具作用

例11.(2009四川卷文)设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a 。若映射:f V V →满足:对所有a b V ∈、及任意实数,λμ都有

()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换。现有下列命题:

①设f 是平面M 上的线性变换,a b V ∈、,则()()()f a b f a f b +=+

②若e 是平面M 上的单位向量,对,()a V f a a e ∈=+设,则f 是平面M 上的线性变换;

③对,()a V f a a ∈=-设,则f 是平面M 上的线性变换;

④设f 是平面M 上的线性变换,a V ∈,则对任意实数k 均有()()f ka kf a =。 其中的真命题是 (写出所有真命题的编号)

答案 ①③④

解析 ①:令1==μλ,则)()()(b f a f b a f +=+故①是真命题 同理,④:令0,==μλk ,则)()(a kf ka f =故④是真命题 ③:∵a a f -=)(,则有b b f -=)(

)()()()()()(b f a f b a b a b a f μλμλμλμλ+=-?+-?=+-=+是线性变换,故③是

真命题

②:由e a a f +=)(,则有e b b f +=)(

e b

f a f e e b e a e b a b a f -+=-+?++?=++=+)()()()()()(μλμλμλμλ

∵e 是单位向量,e ≠0,故②是假命题

【备考提示】本小题主要考查函数,对应及高等数学线性变换的相关知识,试题立意新 颖,突出创新能力和数学阅读能力,具有选拔性质

五.【思维总结】

“函数”是数学中最重要的概念之一,学习函数的概念首先要掌握函数三要素的基本内容与方法。由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x 的取值范围它依赖于对各种式的认识与解不等式技能的熟练。

1.求函数解析式的题型有:

(1)已知函数类型,求函数的解析式:待定系数法;

(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;

(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法;

(5)应用题求函数解析式常用方法有待定系数法等。 2.求函数定义域一般有三类问题:

(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;

(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;

(3)已知()f x 的定义域求[()]f g x 的定义域或已知[()]f g x 的定义域求()f x 的定义域: ①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域; ②若已知()f x 的定义域[],a b ,其复合函数[]()f g x 的定义域应由()a g x b ≤≤解出。 3.求函数值域的各种方法

函数的值域是由其对应法则和定义域共同决定的。其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域。

①直接法:利用常见函数的值域来求

一次函数y =ax +b (a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=

k x

k

y 的定义域为{x |x ≠0},值域为{y |y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,

当a >0时,值域为{a b ac y y 4)4(|2

-≥

}; 当a <0时,值域为{a

b a

c y y 4)4(|2

-≤

}。 ②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:

),(,)(2n m x c bx ax x f ∈++=的形式;

③分式转化法(或改为“分离常数法”)

④换元法:通过变量代换转化为能求值域的函数,化归思想;

⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:)0(>+

=k x

k

x y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域

集合与函数概念单元测试题-有答案

高一数学集合与函数测试题 一、选择题(每题5分,共60分) 1、下列各组对象:?2008年北京奥运会上所有的比赛项目;②《高中数学》必修1中的所有难题;③所有质数;⑷平面上到点(1,1)的距离等于5的点的全体;⑤在数轴上与原点O非常近的点。其中能构成集合的有() A . 2组B. 3组C. 4组 D . 5组 2、下列集合中与集合{x x 2k 1, k N }不相等的是( ) A. {x x 2k 3,k N} B. {x x 4k 1,k N } C. {x x 2k 1,k N} D. {x x 2k 3, k 3,k Z} 2 3、设f(x)学」,则半等于()X 1f(1) A . 1 B . 1 C . 3 D 3 5 5 4、已知集合 A {xx24 0},集合B {x ax 1},若B A ,则实数a的值是() A . 0 B . 1 C . 0 或—D.0或1 2 2 2 5、已知集合 A {( x, y) x y 2} , B {(x,y)x y 4},则AI B() A . {x 3,y 1} B .(3, 1) C . {3, 1} D.{(3, 1)} 6、下列各组函数 f (x)与g(x)的图象相同的 是 ( ) (A) f (x) x,g(x) (.x)2(B) 2 2 f(x) x ,g(x) (x 1) (C)f(x) 1,g(x) x0 x (D) f(x) |x|,g(x) (x 0) x (x 0) 7;l是定义在'■上的增函数则不等式畑"厮一劭的解集

是() (A)(0 ,+ OO)(B)(0,2)(C)(2 , + OO )(D) (2,兰) 7 8已知全集U R,集合A {x x 1或x 2},集合B {x 1 x 0},则AU C U B() A. {x x 1或x 0} B. {x x 1或 x 1} C. {x x 2或x 1} D. {x x 2或 x 0} 9、设A 、B为两 个 -非空集 合, 定义A B { (a,b) a A,b B} ,若A {1,2,3}, B {2,3 ,4},则 A B中的兀素个数为() A. 3 B.7 C.9 D.12 10、已知集合 A {yy x21},集合 B {xy22x 6},则Al B ( ) A ? {(x,y) x 1,y 2} B. {x1 x 3} C. {x| 1 x 3} D. 11、若奇函数f x在1,3上为增函数,且有最小值0,则它在3, 1上 () A.是减函数,有最小值0 B.是增函数,有最小值0 C.是减函数,有最大值0 D.是增函数,有最大值0 12、若1,a,b 0,a2,a b,则a2005 b2005的值为( ) a (A)0 (C) 1 (B)1 (D)1 或1

集合与函数概念单元测试题_有答案

高一数学集合与函数测试题 一、 选择题(每题5分,共60分) 1、下列各组对象:○12008年北京奥运会上所有的比赛项目;○2《高中数学》必修1中的所有难题;○3所有质数;○4平面上到点(1,1)的距离等于5的点的全体;○5在数轴上与原点O 非常近的点。其中能构成集合的有( ) A .2组 B .3组 C .4组 D .5组 2、下列集合中与集合{21,}x x k k N +=+∈不相等的是( ) A .{23,}x x k k N =+∈ B .{41,}x x k k N +=±∈ C .{21,}x x k k N =+∈ D .{23,3,}x x k k k Z =-≥∈ 3、设221()1x f x x -=+,则(2)1()2 f f 等于( ) A .1 B .1- C .35 D .35- 4、已知集合2{40}A x x =-=,集合{1}B x ax ==,若B A ?,则实数a 的值是( ) A .0 B .12± C .0或12± D .0或12 5、已知集合{(,)2}A x y x y =+=,{(,)4}B x y x y =-=,则A B =I ( ) A .{3,1}x y ==- B .(3,1)- C .{3,1}- D .{(3,1)}- 6、下列各组函数)()(x g x f 与的图象相同的是( ) (A )2)()(,)(x x g x x f == (B )22)1()(,)(+==x x g x x f (C )0)(,1)(x x g x f == (D )???-==x x x g x x f )(|,|)( )0()0(<≥x x 7、是定义在上的增函数,则不等式的解集

高一数学《第一章 集合与函数概念》复习与小结

第一章集合与函数概念复习与小结 一、内容与解析 (一)内容:复习与小结 (二)解析:本节课是对第一章的基本知识和方法的总结与归纳,从整体上来把握本章,使学生的基本知识系统化和网络化,基本方法条理化.本章三部分内容是独立的,但是又相互联系,集合是基础,用集合定义函数,将函数拓展为映射,层层深入,环环相扣,组成了一个完整的整体. 二、教学目标及解析 通过总结和归纳集合与函数的知识,能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力. 教学重点:①集合与函数的基本知识. ②含有字母问题的研究. ③抽象函数的理解. 教学难点:①分类讨论的标准划分. ②抽象函数的理解. 三、教学过程 问题1.①第一节是集合,分为几部分? ②第二节是函数,分为几部分? ③第三节是函数的基本性质,分为几部分? ④画出本章的知识结构图. 活动:让学生自己回顾所学知识或结合课本,重新对知识整合,对没有思路的学生,教师可以提示按课本的章节标题来分类.对于画知识结构图,学生可能比较陌生,教师可以引导学生先画一个本班班委的结构图或学校各个处室的关系结构图,待学生了解了简单的画法后,再画本章的知识结构图. 讨论结果:①分为:集合的含义、集合间的基本关系和集合的运算三部分. ②分为:定义、定义域、解析式、值域四部分;其中又把函数的概念拓展为映射. ③分为:单调性、最值和奇偶性三部分. ④第一章的知识结构图如图1-1所 示,

图1-1 应用示例 [例1] 1.已知集合M ={y |y =x 2+1,x ∈R},N ={y |y =x +1,x ∈R},则M ∩N 等于( ) A .(0,1),(1,2) B .{(0,1),(1,2)} C .{y |y =1或y =2} D .{y |y ≥1} 2.定义集合A 与B 的运算A*B={x|x∈A 或x∈B,且x ?A∩B},则(A*B)*A 等于( ) A.A∩B B.A∪B C.A D.B [例2] 已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,求a ,b 的值. [例3] 1.设集合A ={a |a =3n +2,n ∈Z},集合B ={b |b =3k -1,k ∈Z},试判断集合A 、B 的关系. 2.集合A={x|x 2-3x-4=0},B={x|mx-1=0},若B ?A ,则实数m =________. [例4] 已知函数的定义域为R ,且对任意m 、n ∈R ,恒有f (m +n )=f (m )+f (n )-1且f ? ?? ??-12=0,当x >-12 时,f (x )>0,试判断函数f (x )的单调性. 【例5】求函数()f x = [例6] 已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R),且f (0)≠0,试证f (x )是偶函数. [例7] 如果二次函数f (x )=x 2-(a -1)x +5在区间? ????12,1上是增函数,求f (2)的取值范围.

人教版高中数学必修一《集合与函数概念》章末复习课(含答案)

第一章集合与函数概念章末复习课 知识概览 对点讲练 分类讨论思想在集合中的应用 分类讨论思想是高中的重要数学思想之一,分类讨论思想在与集合概念的结合问题上,主要是以集合作为一个载体,与集合中元素结合加以考查,解决此类问题关键是要深刻理解集合概念,结合集合中元素的特征解决问题. 1.由集合的互异性决定分类 【例1】设A={-4,2a-1,a2},B={9,a-5,1-a},已知A∩B={9},则实数a=________. 分析由A∩B={9}知集合A与B中均含有9这个元素,从而分类讨论得到不同的a 的值,注意集合中元素互异性的检验. 答案-3 解析由A∩B={9},得2a-1=9,或a2=9, 解得a=5,3,-3. 当a=5时,A={-4,9,25},B={9,0,-4},

A ∩ B ={9,-4},与A ∩B ={9}矛盾; 当a =3时,a -5=-2,1-a =-2,B 中元素重复,舍去; 当a =-3时,A ={-4,-7,9},B ={9,-8,4},满足题设. ∴a =-3. 规律方法 (1)本题主要考查了分类讨论的思想在集合中的具体运用,同时应该注意集合中元素的互异性在集合元素的确定中起重要作用. (2)本题在解题过程中易出现的错误:①分类讨论过于复杂;②不进行检验,导致出现增根;③分类讨论之后没有进行总结. 变式迁移1 全集S ={2,3,a 2+2a -3},A ={|2a +11|,2},?S A ={5},求实数a 的值. 解 因为?S A ={5},由补集的定义知,5∈S ,但5?A. 从而a 2+2a -3=5,解得a =2或a =-4. 当a =2时,|2a +11|=15?S ,不符合题意; 当a =-4时,|2a +11|=3∈S.故a =-4. 2.由空集引起的讨论 【例2】 已知集合A ={x|-2≤x ≤5},集合B ={x|p +1≤x ≤2p -1},若A ∩B =B ,求实数p 的取值范围. 解 ∵A ∩B =B ,∴B ?A , (1)当B =?时,即p +1>2p -1, 故p<2,此时满足B ?A ; (2)当B ≠?时,又B ?A ,借助数轴表示知 ????? p +1≤2p -1-2≤p +1 2p -1≤5,故2≤p ≤3. 由(1)(2)得p ≤3. 规律方法 解决这类问题常用到分类讨论的方法.如A ?B 即可分两类:(1)A =?;(2)A ≠?.而对于A ≠?又可分两类:①A B ;②A =B.从而使问题得到解决.需注意A =?这种情况易被遗漏.解决含待定系数的集合问题时,常常会引起讨论,因而要注意检验是否符合全部条件,合理取舍,谨防增解. 变式迁移2 已知集合A ={x|x 2-3x +2=0},集合B ={x|mx -2=0},若B ?A ,求由实数m 构成的集合. 解 A ={x|x 2-3x +2=0}={1,2} 当m =0时,B =?,符合B ?A ; 当m ≠0时,B ={x|x =2m },由B ?A 知,2m =1或2m =2.即m =2或m =1. 故m 所构成的集合为{0,1,2}. 数形结合思想在函数中的应用 数形结合是本章最重要的数学思想方法,通过画出函数的图象,使我们所要研究的问题更加清晰,有助于提高解题的速度和正确率. 【例3】 设函数f(x)=x 2-2|x|-1 (-3≤x ≤3), (1)证明f(x)是偶函数; (2)画出这个函数的图象; (3)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数; (4)求函数的值域. (1)证明 f(-x)=(-x)2-2|-x|-1=x 2-2|x|-1=f(x), 即f(-x)=f(x),∴f(x)是偶函数. (2)解 当x ≥0时, f(x)=x 2-2x -1=(x -1)2-2,

第一章-集合与函数概念教案典型例题

集合与函数概念 知识点1:集合的含义 1》元素定义:我们把研究对象称为元素;集合定义:把一些元素组成的总体叫做集合2》集合表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示, 而元素用小写的拉丁字母a,b,c…表示。 3》集合相等:构成两个集合的元素完全一样。 典例分析 … 题型1:判断是否形成集合 例1:判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数;(2)我国的小河流; (3)非负奇数;(4)方程x2+1=0的解; (5)某校2011级新生;(6)血压很高的人; (7)著名的数学家;(8)平面直角坐标系内所有第三象限的点 … 能组成集合的是___________________。 例2:考察下列对象能形成一个集合的是____________________。 ①身材高大的人②所有的一元二次方程 ③直角坐标平面上纵横坐标相等的点④细长的矩形的全体 ⑤比2大的几个数⑥2的近似值的全体 ⑦所有的小正数⑧所有的数学难题 : 知识点2:集合元素的特征以及集合与元素之间的关系 1》集合的元素特征: ①确定性:给定一个集合,一个元素在不在这个集合中就确定了。 ②互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。. , 如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}

2》元素与集合的关系有“属于∈”及“不属于?两种) ①若a 是集合A 中的元素,则称a 属于集合A a ∈A ; ②若a 不是集合A 的元素,则称a 不属于集合A ,记作a ?A 。 注意:常见数集 ①非负整数集(或自然数集),记作N ; ②正整数集,记作N * 或N +; ③整数集,记作Z ; ④有理数集,记作Q ; ⑤实数集,记作R ; ^ 典例分析 题型1:集合中元素的互异性的考察 例1:由实数-a, a, a , a 2 , - 5 a 5 为元素组成的集合中,最多有_______个元素,分别为__________。 例2:设a,b,c 分别为非零实数,则c c b b a a y ++= 所有的值构成的集合中元素分别为______________。 # 例3:含有三个实数的集合可表示为{1,,a b a },也可表示为{0,,2 b a a +},则=+20142013b a _________。 例4:集合{2,1,12 --x x }中的x 不能取得值有_______个。 例5:由4,2,2 a a -组成1个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A 、1 B 、-2 C 、6 D 、2 ¥ 例6:以实数a 2 ,2-a.,4为元素组成一个集合A ,A 中含有2个元素,则的a 值为 . 题型2:集合与元素之间关系的考察 例1:用“∈”或“ ?”符号填空: (1)8 N ; (2)0 N ; (3)-3 Z ; (4; (5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A 。 … 例2:给出下面四个关系: 3∈R, 0.7?Q, 0∈{0}, 0∈N,其中正确的个数是:( )

新课标高一数学必修1第一章集合与函数概念单元测试题

2014级高一数学国庆假期作业(一) 集合与函数概念测试题 一、选择题 1.集合},{b a 的子集有 A .2个 B .3个 C .4个 D .5个 2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则A B = A .(4,3)- B .(4,2]- C .(,2]-∞ D .(,3)-∞ 3.已知()5412-+=-x x x f ,则()x f 的表达式是 A .x x 62+ B .782++x x C .322-+x x D .1062 -+x x 4.下列对应关系: ①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根 ②,,A R B R ==f :x x →的倒数 ③,,A R B R ==f :2 2x x →- ④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方 其中是A 到B 的映射的是 A .①③ B .②④ C .③④ D .②③ 5.下列四个函数:①3y x =-;②21 1 y x = +; ③2 210y x x =+-;④(0)1(0)x x y x x ?-≤?=?->??. 其中值域为R 的函数有 A .1个 B .2个 C .3个 D .4个 6. 已知函数212x y x ?+=?-? (0) (0)x x ≤>,使函数值为5的x 的值是 A .-2 B .2或52- C . 2或-2 D .2或-2或52 - 7.下列函数中,定义域为[0,∞)的函数是 A .x y = B .22x y -= C .13+=x y D .2)1(-=x y 8.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N φ≠,则k 的取值范围是 A .]2,(-∞ B .),1[+∞- C .),1(+∞- D .[-1,2] 9.若集合1A ,2A 满足A A A =21 ,则称(1A ,2A )为集合A 的一个分拆,并规定:当且仅当1A =2A 时,(1A ,2A )与(2A ,1A )为集合A 的同一种分拆,则集合=A {1,2,3 }的不同分拆种数是 A.27 B.26 C.9 D.8 10.已知全集=I {∈x x |R},集合=A {x x |≤1或x ≥3},集合=B {1|+≤≤k x k x ,∈k R},且 ?=B A C I )(,则实数k 的取值范围是 A .0k B.32<则()()4f f = . 14.某班50名学生参加跳远、铅球两项测试,成绩及格人数分别为40人和31人,两项测试均不及格的人数是4人,两项测试都及格的有 人. 15.已知函数f(x)满足f(xy)=f(x)+f(y),且f(2)=p,f(3)=q ,那么f(36)= . 三、解答题 16.已知集合A={} 71<≤x x ,B={x|2

高考数学一轮复习专题 集合与函数概念(教师)

2011年高考数学一轮复习资料第一章集合与函数概念 第1讲 集合的概念及其运算 【知识精讲】1.元素和集合的关系是从属的关系,集合与集合的关系是包含的关系,二者符号表示不同.求解集合问题的关键是搞清楚集合的元素,即元素是什么,有哪些元素. 2.集合的关系有子集、真子集;集合的运算有交集、并集、补集和相等.常常借助Venn 图、数轴和函数图象进行有关的运算,使问题变得直观,简洁. 3.空集是不含任何元素的集合,因其特殊常常容易忽略.在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ?B ,则有A =?或A ≠?两种可能,此时应分类讨论. 【基础梳理】 1.集合与元素 (1)集合元素的三个特征:____确定性_____、___互异性_____、 ____无序性_____. (2)元素与集合的关系是___属于___或____不属于____关系, 用符号_∈___或___?__表示. (3)集合的表示法:__列举法_____、___描述法____、___图示法____、 __区间法_____. (4)常用数集:自然数集N ;正整数集N*(或N+);整 数集Z ;有理数集Q ;实数集R. (5)集合的分类:按集合中元素个数划分,集合可以分为____有限集____、__无限集___、__空集_. 2.集合间的基本关系 (1)子集、真子集及其性质对任意的x ∈A ,都有x ∈B ,则A B ?(或B A ?). 若A ?B ,且在B 中至少有一个元素x ∈B ,但x ?A , 则__ __(或__ __). ? _?__A ;A_?__A ;A ?B ,B ?C ?A__?__C. 若A 含有n 个元素,则A 的子集有__2n __个,A 的非空子集有__2n -1_个,A 的非空真子集有__2n -2__个. (2)集合相等 若A ?B 且B ?A,则___A=B ____. 3.集合的运算及其性质 (1)集合的并、交、补运算 并集:A ∪B={x|x ∈A 或x ∈B}; 交集:A ∩B=___{x|x ∈A 且x ∈B}____; 补集: =__{|}x x U x A ∈?且___. U 为全集, 表示A 相对于全集U 的补集. (2)集合的运算性质 并集的性质: A ∪?=A ;A ∪A=A ;A ∪B= B ∪A ;A ∪B=A ?B ?A.

集合与函数概念复习教案一对一教案

教师姓名学生姓名填写时间年级高一学科数学上课时间 阶段基础(√)提高()强化()课时计划第()次课共()次课 教学目标1、通过复习熟练掌握集合概念及其运算,以及集合的几种表示方法 2、通过复习熟练掌握函数的概念以及函数的性质,进一步体会运动变化、数形结合、代数转化以及集合与对应的数学思想方法 教学重难点教学重点:集合的概念与表示、集合的运算、函数的概念以及函数的性质教学难点:集合的运算、函数的概念以及性质的具体运用 教 学 过 程 课后作业:教学反思:

知识点一:集合的性质与运算 例1、已知集合{}2 1,1,3A x x =--,求实数x 应满足的条件. 例2、设{} 022=+-=q px x x A ,{} 05)2(62 =++++=q x p x x B ,若? ?????=21B A , 则=B A ( ) (A )??????-4,31 ,21 (B )??????-4,21 (C )??????31,21 (D)? ?????21 例3、如图U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是 ( ) A 、 ()M P S B 、 ()M P S C 、()u M P C S D 、 ()u M P C S 例4、设集合{}21<≤-=x x M ,{} 0≤-=k x x N ,若M N M = ,则k 的取值范围( ) (A )(1,2)- (B )[2,)+∞ (C )(2,)+∞ (D)]2,1[- 例5、设{ }{} I a A a a =-=-+241222 ,,,,,若{}1I C A =-,则a =__________。 知识点二:判断两函数是否为同一个函数 例6、试判断以下各组函数是否表示同一函数? (1)2)(x x f =,33)(x x g =; (2)x x x f =)(,?? ?<-≥=; 01 , 01 )(x x x g (3)1212)(++=n n x x f ,1212)()(--=n n x x g (n ∈N *); (4)x x f =)(1+x ,x x x g += 2)(; (5)12)(2--=x x x f ,12)(2--=t t t g

集合与函数概念单元测试题(含答案)

新课标数学必修1第一章集合与函数概念测试题 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分)。 1.用描述法表示一元二次方程的全体,应是 ( ) A .{x |ax 2+bx +c =0,a ,b ,c ∈R } B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0} C .{ax 2+bx +c =0|a ,b ,c ∈R } D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是 ( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于 ( ) A . B .2 C .{2} D .N 5.设函数x y 111+=的定义域为M ,值域为N ,那么 ( ) A .M={x |x ≠0},N={y |y ≠0} B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1} C .M={x |x ≠0},N={y |y ∈R } D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0} 6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50t C .x =???>-≤≤)5.3(,50150)5.20(,60t t t t D .x =?????≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150) 5.20(,60t t t t t 7.已知g (x )=1-2x,f [g (x )]=)0(122≠-x x x ,则f (21)等于 ( ) A .1 B .3 C .15 D .30 8.函数y=x x ++-1912是( )

集合与函数概念测试题

修文县华驿私立中学2012-2013学年度第一学期单元测试卷(四) (内容:集合与函数概念 满分:150 时间:120 制卷人:朱文艺) 班级: 学号: 姓名: 得分: 一、选择题:(以下每小题均有A,B,C,D 四个选项,其中只有一个选项正确,请把你的正确答案填入相应的括号中,每小题5分,共60分) 1. 下列命题正确的是 ( ) A .很小的实数可以构成集合 B .集合{} 1|2-=x y y 与集合(){} 1|,2-=x y y x 是同一个集合 C .自然数集N 中最小的数是1 D .空集是任何集合的子集 2. 已知{}32|≤≤-=x x M ,{}41|>-<=x x x N 或, 则N M 等于 ( ) A. {}43|>≤=x x x N 或 B. {}31|≤<-=x x M C. {}43|<≤=x x M D.{}12|-<≤-=x x M 3. 函数2() = f x ( ) A. 1 [,1]3- B. 1(,1)3- C. 11(,)33- D. 1(,)3 -∞- 4. 下列给出函数()f x 与()g x 的各组中,是同一个关于x 的函数的是 ( ) A .2 ()1,()1x f x x g x x =-=- B .()21,()21f x x g x x =-=+ C .2(),()f x x g x == D .0()1,()f x g x x == 5. 方程组? ??-=-=+122 y x y x 的解集是 ( ) A .{}1,1==y x B .{}1 C.{})1,1(|),(y x D . {})1,1( 6.设{} 是锐角x x A |=,)1,0(=B ,从A 到B 的映射是“求正切”,与A 中元素0 60相对应的B 中元素是 ( ) A .3 B . 33 C .21 D .2 2

集合与函数概念单元测试题经典含答案

第一章集合与函数概念测试题 一:选择题 1、下列集合中与集合{21,}x x k k N +=+∈不相等的是( ) A .{23,}x x k k N =+∈ B .{41,}x x k k N +=±∈ C .{21,}x x k k N =+∈ D .{23,3,}x x k k k Z =-≥∈ 2、图中阴影部分所表示的集合是( ) A.B ∩[C U (A ∪C)] B.(A ∪B) ∪(B ∪C) C.(A ∪C)∩(C U B) D.[C U (A ∩C)]∪B 3、已知集合2{1}A y y x ==+,集合2{26}B x y x ==-+,则A B =( ) A .{(,)1,2}x y x y == B .{13}x x ≤≤ C .{13}x x -≤≤ D .? 4、已知集合2{40}A x x =-=,集合{1}B x ax ==,若B A ?,则实数a 的值是( ) A .0 B .12± C .0或12± D .0或12 5、已知集合{1,2,3,}A a =,2{3,}B a =,则使得Φ=B A C U )(成立的a 的值的个数为( ) A .2 B .3 C .4 D .5 6、设A 、B 为两个非空集合, 定义{(,),}A B a b a A b B ⊕=∈∈,若{1,2,3}A =,{2,3,4}B =,则A B ⊕中的元素个数为 ( ) A .3 B .7 C .9 D .12 7、已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50 C .x =???>-≤≤)5.3(,50150)5.20(,60t t t t D .x =? ????≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t 8、已知g (x )=1-2x, f [g (x )]=)0(12 2≠-x x x ,则f (21)等于 ( ) A .1 B .3 C .15 D .30

第一章 集合与函数概念测试题

集合与函数概念测试题 一、选择题(每小题5分,满分60分) 1.已知(){},3A x y x y =+=,(){},1B x y x y =-=,则A B = ( ). A .{}2,1 B .(){}2,1 C .{}2,1x y == D .()2,1 2.如图,U 是全集,,,M P S 是U 的三个子集,则阴影部分所表示的集合是 ( ). A .()M P S B .()M P S C .()()U M P C S D .()()U M P C S 3.下列各组函数表示同一函数的是( ). (A) 2 (),()f x g x = = (B) 0 ()1,()f x g x x == (C) 2 1()1,()1 x f x x g x x -=+=- (D )2 (),()f x g x = = 4.函数{}()1,1,1,2f x x x =+∈-的值域是( ). (A) 0,2,3 (B) 30≤≤y (C) }3,2,0{ (D )]3,0[ 5.已知函数2 2 1()12,[()](0)x g x x f g x x x -=-= ≠,则(0)f 等于( ) . (A) 3- (B) 32 - (C) 32 (D ) 3 6.函数2 ()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数a 的取值范围是( ). A .3a ≥- (B) 3a ≤- (C) 5a ≤ (D )3a ≥ 7.函数()f x 是定义在R 上的奇函数,当0>x 时,1)(+-=x x f ,则当0

集合与函数概念复习题

集合与函数概念复习题(一) 一、选择题 1. 方程260x px -+=的解集为M ,方程260x x q +-=的解集为N ,且{2}M N =, 那么p q +=( ) A. 21 B. 8 C. 6 D. 7 2. 下列四组函数中,表示相等函数的一组是( ) A. (),()f x x g x == B. 2()()f x g x == C. 21(),()11 x f x g x x x -==+- D. ()()f x g x ==3. 下列四个函数中,在(0,)+∞上为增函数的是( ) A. ()3f x x =- B. 2()3f x x x =- C. 1()1f x x =-+ D. ()f x x =- 4. ()f x 是定义在[6,6]-上的偶函数,且(3)(1)f f >,则下列各式一定成立的( ) A. (0)(6)f f < B. (3)(2)f f > C. (1)(3)f f -< D. (2)(0)f f > 5. 已知函数()f x 是R 上的增函数,(0,1),(3,1)A B -是其图象上的两点,那么(1)1f x +<的解集的补集是( ) A. (1,2)- B. (1,4) C. (,1)[4,)-∞-+∞ D. (,1)[2,)-∞-+∞ 二、填空题 6. 函数12y x =-的定义域为 . 7. 已知()f x 是偶函数,当0x <时,()(1)f x x x =+,则当0x >时,()f x = . 8. 21, 0,()2, 0, x x f x x x ?+≤=?->?若()10f x =,则x = . 三、解答题 9. 求函数21,[3,5]1 x y x x -=∈+的最小值和最大值.

高中数学《第一章 集合与函数概念 》 章末复习

第一章集合与函数概念 知识系统整合 规律方法收藏 1.相同函数的判定方法 (1)定义域相同; (2)对应法则相同(两点必须同时具备). 2.函数解析式的求法 (1)定义法; (2)换元法; (3)待定系数法. 3.函数的定义域的求法 (1)已给出函数解析式:函数的定义域是使解析式有意义的自变

量的取值集合. (2)实际问题:求函数的定义域既要考虑解析式有意义,还应考虑使实际问题有意义. (3)复合函数问题 ①若f(x)的定义域为[a,b],f(g(x))的定义域应由a≤g(x)≤b解出; ②若f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在[a,b]上的值域. 注意:①f(x)中的x与f(g(x))中的g(x)地位相同;②定义域所指永远是x的范围. 4.函数值域的求法 (1)配方法(二次或四次); (2)判别式法; (3)换元法; (4)函数的单调性法. 5.判断函数单调性的步骤 (1)设x1、x2是所研究区间内任两个自变量的值,且x1

集合与函数概念单元测试题(答案)

第一章 《集合与函数概念》单元测试题 (纯属个人做法,如有不正确的请纠正) 姓名: 饭团 班别: 学号: 一、选择题:每小题4分,共40分 1、在“①高一数学课本中的难题;②所有的正三角形; ③方程220x +=的实数解”中,能够表示成集合的是( A ) (A )② (B )③ (C )②③ (D )①②③ 2、若{ {}|0,|12A x x B x x =<< =≤<,则A B ?= ( D ) (A ){}|0x x ≤ (B ){}|2x x ≥ (C ){ 0x ≤≤ (D ){}|02x x << 3、若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B ?= ( C ) (A ){}1,2 (B ){}0,1 (C ){}0,3 (D ){}3 4、在映射中B A f →:,},|),{(R y x y x B A ∈==,且),(),(:y x y x y x f +-→,则与A 中的元素)2,1(-对应的B 中的元素为( A ) (A ))1,3(- (B ))3,1( (C ))3,1(-- (D ))1,3( 5、下列各组函数)()(x g x f 与的图象相同的是( D ) (A )2)()(,)(x x g x x f == (B )2 2 )1()(,)(+==x x g x x f (C )0 )(,1)(x x g x f == (D )?? ?-==x x x g x x f )(|,|)( ) 0()0(<≥x x 6、 是定义在上的增函数,则不等式 的解集是( D ) (A)(0 ,+∞) (B)(0 , 2) (C) (2 ,+∞) (D) (2 ,7 16) 7、若奇函数()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上( C ) A .是减函数,有最小值0 B .是增函数,有最小值0 C .是减函数,有最大值0 D .是增函数,有最大值0 8、如图所示,阴影部分的面积S 是h 的函数()H h ≤≤0。 H S

高考总复习1集合与函数概念s

第一章集合与函数概念 知识网络 第一讲集合 ★知识梳理 一:集合的含义及其关系 1.集合中的元素具有的三个性质:确定性、无序性和互异性; 2.集合的3种表示方法:列举法、描述法、韦恩图; 3.集合中元素与集合的关系:

中的元中至少有一元素不是 空集是任何集合的子集,是任,() 三:集合的基本运算 ①两个集合的交集:= ; ②两个集合的并集: =; ③设全集是U,集合,则 方法:常用数轴或韦恩图进行集合的交、并、补三种运算. ★重、难点突破 重点:集合元素的特征、集合的三种表示方法、集合的交、并、补三种运算。 难点:正确把握集合元素的特征、进行集合的不同表示方法之间的相互转化,准确进行集合 的交、并、补三种运算。 重难点: 1.集合的概念 掌握集合的概念的关键是把握集合元素的三大特性,要特别注意集合中元素的互异性, 在解题过程中最易被忽视,因此要对结果进行检验; 2.集合的表示法 (1)列举法要注意元素的三个特性; (2)描述法要紧紧抓住代表元素以及它所具有的性质,如、、 A B A ?φφB φ≠B A B {}x x A x B ∈∈且A B { } x x A x B ∈∈或A U ?U C A ={} x x U x A ∈?且{})(x f y x ={} )(x f y y =

等的差别,如果对集合中代表元素认识不清,将导致求解错误: 例如 :已知集合( ) A. ;B.;C. ;D. (3)Venn 图是直观展示集合的很好方法,在解决集合间元素的有关问题和集合的运算时常 用Venn 图。 3.集合间的关系的几个重要结论 (1)空集是任何集合的子集,即 (2)任何集合都是它本身的子集,即 (3)子集、真子集都有传递性,即若,,则 4.集合的运算性质 (1)交集:①;②;③; ④,⑤; (2)并集:①;②;③; ④,⑤; (3)交、并、补集的关系 ①; ②; ★热点考点题型探析 考点一:集合的定义及其关系 题型1:集合元素的基本特征 [例1](2008年江西理)定义集合运算:.设 ,则集合的所有元素之和为() A .0; B .2; C .3; D .6 题型2:集合间的基本关系 [例2].数集与之的关系是() A .;B .; C .;D . {})(),(x f y y x =221,1,9432x y x y M x N y ???? =+==+=????????? 则M N=Φ{})2,0(),0,3([]3,3-{}3,2A ?φA A ?B A ?C B ?C A ?A B B A =A A A = φφ= A A B A ? B B A ? B A A B A ??= A B B A =A A A = A A =φ A B A ? B B A ? A B A B A ??= φ=A C A U U A C A U = )()()(B C A C B A C U U U =)()()(B C A C B A C U U U ={}|,,A B z z xy x A y B *==∈∈{}{}1,2,0,2A B ==A B *{}Z n n X ∈+=,)12(π{}Z k k Y ∈±=,)14(πX Y Y X Y X =Y X ≠

集合概念及其表示经典练习题

第一章集合与函数概念 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 2.集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a a? ∈A ,相反,a不属于集合A 记作A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ∈| x-3>2}或{x| x-3>2} ②数学式子描述法:例:不等式x-3>2的解集是{x R 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 X=-5} 3.空集不含任何元素的集合例:{X|2 二、例题解析 例1、判断下列说法是否正确?说明理由 (1)高一(2)班个子较高的同学组成的集合; (2)1,3,-1,4这些数组成的集合有4个元素; (3)由a,b,c组成的集合与由b,c,a组成的集合; (4)所有与2非常接近的数字; (5)所有与小明走的很近的朋友

(必修一)集合与函数概念练习题

无忧数学 —— 集合与函数概念 (必修一)

第一章 集合 第一节 集合的含义、表示及基本关系 A 组 1.已知A ={1,2},B ={x |x ∈A },则集合A 与B 的关系为________. 解析:由集合B ={x |x ∈A }知,B ={1,2}.答案:A =B 2.若? {x |x 2 ≤a ,a ∈R },则实数a 的取值范围是________. 解析:由题意知,x 2 ≤a 有解,故a ≥0.答案:a ≥0 3.已知集合A ={y |y =x 2 -2x -1,x ∈R },集合B ={x |-2≤x <8},则集合A 与B 的关系是________. 解析:y =x 2 -2x -1=(x -1)2 -2≥-2,∴A ={y |y ≥-2},∴B A . 答案:B A 4.已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2 +x =0}关系的韦恩(Venn)图是________. 解析:由N={x|x 2 +x=0},得N ={-1,0},则N M .答案:② 5.已知集合A ={x |x >5},集合B ={x |x >a },若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,则实数a 的取值范围是________. 解析:命题“x ∈A ”是命题“x ∈B ” 的充分不必要条件,∴A B ,∴a <5. 答案:a <5 6.已知m ∈A ,n ∈B ,且集合A ={x |x =2a ,a ∈Z },B ={x |x =2a +1,a ∈Z },又C ={x |x =4a +1,a ∈Z },判断m +n 属于哪一个集合 解:∵m ∈A ,∴设m =2a 1,a 1∈Z ,又∵n ∈B ,∴设n =2a 2+1,a 2∈Z ,∴m +n =2(a 1 +a 2)+1,而a 1+a 2∈Z ,∴m +n ∈B . B 组 1.设a ,b 都是非零实数,y =a |a |+b |b |+ab |ab | 可能取的值组成的集合是________. 解析:分四种情况:(1)a >0且b >0;(2)a >0且b <0;(3)a <0且b >0;(4)a <0且b <0,讨论得y =3或y =-1.答案:{3,-1} 2.已知集合A ={-1,3,2m -1},集合B ={3,m 2 }.若B ?A ,则实数m =________. 解析:∵B ?A ,显然m 2≠-1且m 2≠3,故m 2=2m -1,即(m -1)2 =0,∴m =1.答案:1 3.设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是________个. 解析:依次分别取a =0,2,5;b =1,2,6,并分别求和,注意到集合元素的互异性,∴P +Q ={1,2,6,3,4,8,7,11}.答案:8 4.已知集合M ={x |x 2 =1},集合N ={x |ax =1},若N M ,那么a 的值是________. 解析:M ={x |x =1或x =-1},N M ,所以N =?时,a =0;当a ≠0时,x =1 a =1或-1, ∴a =1或-1.答案:0,1,-1 5.满足{1}A ?{1,2,3}的集合A 的个数是________个. 解析:A 中一定有元素1,所以A 有{1,2},{1,3},{1,2,3}.答案:3 6.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+1 6 ,c ∈Z },则

相关文档
最新文档