曲柄滑块机构的运动规律

黔南民族师范学院

数学实验报告

题目

曲柄滑块机构的运动规律

2013年4月22日

题目

I

数学实验报告题目

一、 实验目的

1. 本实验主要涉及微积分中对函数特性的研究,通过实验复习函数的求导,Taylor 公式和其他有关知识,着重介绍运用建立近似模型并进行数值计算来研究函数的方法。

二、 实验问题

1. 给定一机构如图1.2所示,设连杆QP 长度L=300mm ,曲柄OQ 的

长为r=100mm ,距离e=20mm ,曲柄的角速度w=240转/min 。 对θ在一个周期(即【0.2π】)中

1、计算滑块的位移;

2、计算滑块的行程;

3、计算滑块的速度;

4、计算滑块的加速度;

5、计算滑块的摆角及其最值

.

三、 建立数学模型

1. 取O 点为坐标原点,沿x 轴向右方向为正,P 在x 轴上的坐标为x,用x 表

示滑块的位移,利用三角关系有:

cos (1.1)x r θ= 由于t θω=,故有

(1.2)dx dx d dx dt d dt dt

θωθ==

黔南民族师范学院数学实验报告

I

I sin (1.3)dx r d θθ=-

于是滑块的速度

sin r νωθ=- (1.4)

从而,得到滑块的加速度为

dv dv a dt dt

ω==

222222

2(cos r ωθ=-

由关系式

sin sin (1.6)l e r βθ+=

得摆角的表达式为

sin arcsin()(1.7)r e l θβ-=

四、 问题求解和程序设计流程

利用滑块位移的解析式(1.1),可以应用数学软件MATLAB 进行计算,编制

名为m1_1.m 的m 文件:

function m1_1(t)

r=100;

l=300;

e=20;

x=r*cos(t)+sqrt(l^2-(r*sin(t)-e).^2);

end

然后再命令窗口键入m1_1([0:pi/12:2*pi])

滑块的加速度在[0,π]内变化时的滑块速度

编制MATLAB 的m 文件m1_2.m:

function m1_2(t)

r=100;

l=300;

w=240/60*2*pi;

e=20;

v=-w*r*sin(t)+(w*r*cos(t)*(r*sin(t)-e))/(sqrt(l^2-(r*sin(t)-e).^2))

题目

end

end

然后在命令窗口键入

m1_2([0:pi/12:pi])

滑块的加速度:

编制MATLAB的m文件m1_3.m:

function m1_3(t)

r=100;

l=300;

w=240/60*2*pi;

e=20;

a=w^2*((-r*cos(t)-(((r*r*cos(2*t)+r*e*sin(t))*(l^2-(r*sin(t)-e ).^2)+r*r*cos(t).^2*(r*sin(t)-e).^2)/sprt((l^2-(r*sin(t)-e).^2 ).^3))))

end

然后在命令窗口键入

format long g%数字显示方式为长格式(15位有效数字)

m1_3([0:pi/12:pi])

摆角的加速度及其最值:

编制MATLAB的m文件m1_4.m:

function m1_4(t)

r=100;

l=300;

w=240/60*2*pi;

e=20;

b=arcsin((r*sin(t)-e)./l)

后在命令窗口键入

format long g%数字显示方式为长格式(15位有效数字)

m1_1([0:pi/6:pi])

III

五、上机实验结果的分析与结论

m1_1([0:pi/12:2*pi])

x =

Columns 1 through 10

399.3326 396.5349 385.0988 366.3937 342.5134 315.9398 289.1366 264.1760 242.5134 224.9723

Columns 11 through 20

211.8937 203.3498 199.3326 199.8781 205.1165 215.2466 230.4209 250.5348 274.9545 302.2986

Columns 21 through 25

330.4209 356.6680 378.3216 393.0632 399.3326

I V

速度:

v =

Columns 1 through 6

167.925190836271 -698.08944422326 -1475.38949547774 -2081.9412336388 -2462.68361477916 -2599.40275042012

Columns 7 through 12

-2513.27412287183 -2255.8700172317 -1890.43485938297 -1472.36511688789 -1037.8846273941 -602.876972901868

Columns 13 through 18

-167.925190836272 274.78133763591 734.356633416719 1213.40895844524 1698.84631194499 2153.26248260396

Columns 19 through 24

2513.27412287183 2702.010********

V

2654.27216221713 2340.89739208146 1778.91748945512 1026.185********

Column 25

167.925190836272

加速度:

a =

Columns 1 through 6

-84361.7758140926 -80348.6233660269 -67559.9492334591 -48000.027******* -24805.7860760063 -1797.80226341147

Columns 7 through 12

17476.9871791866 30899.0500454472 38359.6820909656 41329.4345268796 41845.8509156108 41677.6906982094

Columns 13 through 18

41969.1605198511 43188.5486127271 45106.6956437737 46677.2239721538 45933.024******* 40280.6743815471

Columns 19 through 24

27567.6703983307 7583.82207268844 -17232.4437514097 -42652.2377832238 -64299.1045052961 -78837.7654515092

Column 25

-84361.7758140926

V I

摆角的结果:

b=

Columns 1 through 6

-0.0667161484102253 0.0196076047273053 0.10016742116156 0.169851100110178 0.223873861713631 0.258166876496835

Columns 7 through 12

0.269932795833403 0.258166876496835 0.223873861713631 0.169851100110178 0.10016742116156 0.0196076047273054

Columns 13 through 18

-0.0667161484102252 -0.153542269975107 -0.2355042367208 -0.307176937338054 -0.36327970779016 -0.399157208905875

Columns 19 through 24

-0.411516846067488 -0.399157208905875 -0.36327970779016 -0.307176937338054 -0.2355042367208 -0.153542269975107

Column 25

-0.0667161484102253

摆角的最大值为:max(b)=0.269932795833403;

摆角的最小值为:min(b)=-0.399157208905875;

六、实验总结与体会

通过本次实验,了解了关于曲柄滑块的运动规律,并熟悉了matlab的上机操

VII

作,让自己学会了处理模型的方法及步骤。

说明:(1)统一用小四号字,WORD, A4,最小行距排版;

(2)报告的第一面写组员的班级名字.

(3)

(4)成稿后打印后以班为单位交.

V III

题目10

曲柄滑块机构的运动分析及应用

机械原理课程机构设计 实验报告 题目:曲柄滑块机构的运动分析及应用 小组成员与学号:泽陆(11071182) 柯宇 (11071177) 熊宇飞(11071174) 保开 (11071183) 班级: 110717 2013年6月10日

摘要 (3) 曲柄滑块机构简介 (4) 曲柄滑块机构定义 (4) 曲柄滑块机构的特性及应用 (4) 曲柄滑块机构的分类 (8) 偏心轮机构简介 (9) 曲柄滑块的动力学特性 (10) 曲柄滑块的运动学特性 (11) 曲柄滑块机构运行中的振动与平衡 (14) 参考文献 (15) 组员分工 (15)

摘要 本文着重介绍了曲柄滑块机构的结构,分类,用途,并进行了曲柄滑块机构的动力学和运动学分析,曲柄滑块机构的运动学特性分析,得出了机构压力表达式,曲柄滑块机构的运动特性分析,得出了滑块的位移、速度和加速度的运动表达式。最后,对曲柄滑块机构运动中振动、平衡稳定性等进行了总结。 关键字:曲柄滑块动力与运动分析振动与平稳性 ABSTRACT The paper describes the composition of planar linkage, focusing on the structure, classification, use of a slider-crank mechanism and making the dynamic and kinematic analysis, kinematics characteristics of the crank slider mechanism analysis for a slider-crank mechanism, on one hand , we obtain the drive pressure of the slider-crank mechanism ,on the other hand,we obtain the expression of displacement, velocity and acceleration of movement. Finally, the movement of the vibration and balance stability of the crank slider mechanism are summarized.

曲柄滑块机构运动分析

曲柄滑块机构运动分析 一、相关参数 在图1所示的曲柄滑块机构中,已知各构件的尺寸分别为mm l 1001=,mm l 3002=,s rad /101=ω,试确定连杆2和滑块3的位移、速度和加速度,并绘制出运动线图。 图1 曲柄滑块机构 二、数学模型的建立 1、位置分析 为了对机构进行运动分析,将各构件表示为矢量,可写出各杆矢所构成的封闭矢量方程。 将各矢量分别向X 轴和Y 轴进行投影,得 0sin sin cos cos 22112211=+=+θθθθl l S l l C (1) 由式(1)得 2、速度分析 将式(1)对时间t 求导,得速度关系 C v l l l l =--=+222111222111sin sin 0 cos cos θωθωθωθω (2) 将(2)式用矩阵形式来表示,如下所示 ??? ???-=??? ?????? ???-1111122222cos sin . 0 cos 1 sin θθωωθθl l v l l C (3) 3、加速度分析 将(2)对时间t 求导,得加速度关系 三、计算程序 1、主程序 %1.输入已知数据 clear; l1=; l2=; e=0; hd=pi/180; du=180/pi; omega1=10; alpha1=0;

%2.曲柄滑块机构运动计算 for n1=1:721 theta1(n1)=(n1-1)*hd; %调用函数slider_crank计算曲柄滑块机构位移、速度、加速度 [theta2(n1),s3(n1),omega2(n1),v3(n1),alpha2(n1),a3(n1)]=slider_crank(theta1(n1),omega1,alpha1,l1,l2,e); end figure(1); n1=0:720; subplot(2,3,1) plot(n1,theta2*du); title('连杆转角位移线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角位移/\circ'); grid on subplot(2,3,2) plot(n1,omega2); title('连杆角速度运动线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角速度/rad\cdots^{-1}'); grid on subplot(2,3,3) plot(n1,alpha2); title('连杆角加速度运动线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角加速度/rad\cdots^{-2}'); grid on subplot(2,3,4) plot(n1,s3); title('滑块位移线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('滑块位移/\m'); grid on

基于MATLAB的曲柄滑块机构运动的仿真

基于MATLAB的曲柄滑块机构运动的仿真

摘要:本文在曲柄滑块机构运动简图的基础上,对其数学运动模型进行分析,用解析法计算曲柄的转角和角速度,及滑块的位移和速度,并用MATLAB 软件进行仿真。 1 引言 在机械传动系统中,曲柄滑块机构是一种常用的机械机构,它将曲柄的转动转化为滑块在直线上的往复运动,是压气机、冲床、活塞式水泵等机械的主机构。这里用解析法,并用MATLAB 对其进行仿真。 2 曲柄滑块机构的解析法求解 曲柄滑块机构的运动简图如图1所示,在图1中,1L 、2L 和e 分别为曲柄滑块的曲柄、连杆和偏差,1?、2?分别为曲柄和连杆的转角,1?? 、2?? 分别为曲柄和连杆的角速度,S 为滑块的位移。 图1 曲柄滑块机构运动简图 设已知已知1L 、2L 、e 、1?和1?? ,求连杆的角位移2?和角速度2?? ,以及滑块的位移S 和速度S ? 。 2.1 位移分析 按图1 中四边形ABCD 的矢量方向有: AB CD → → = 将上式转化成幅值乘以角度的形式,得到如下等式: 1 2 12i i L e L e S ie ??+=+ (1) 分别取上式的虚部和实部,并在e 前面乘N ,N 取值1或-1,用以表示滑块在x 轴的上方或者下方,得到下面两式:

1122cos cos L L S ??+= (2) 1122sin sin L L Nb ??+= (3) 整理上面两个公式得到S 和2?的计算公式: 1122cos cos S L L ??=+ (4) 11 22 sin arcsin Ne L L ??-= (5) 2.2 速度分析 将(1)式两边对时间求导得(6)式 1 2 1212i i L ie L ie S ????? ? ? += (6) 取(6)式的实部和虚部,整理得S ? 和2?? 的计算公式: 1211 2 sin() cos S L ?????? -=- (7) 111 222 cos cos L L ????? ? =- (8) 根据(7)式和(8)式即可得到滑块的速度及连杆的角速度。 2.3 实例分析及其MATLAB 仿真 2.3.1 实例分析 下面对图2所示的曲柄滑块机构做具体分析。 图2 曲柄滑块机构简图 例中:1236,140r mm r mm ==,160/sec d ω=,求2?,2ω,S 和S ? 。

偏置曲柄滑块机构计算

具有最优传力性能的曲柄滑块机构的设计 宁海霞1董萍 摘要:在曲柄滑块机构的设计中,将x作为设计变量,求出已知滑块行程H,行程速比系数K时机构传力性能最优的x值,使得最小传动角γ 为最大,从 min 而设计出此机构。 关键词:最优传力性能;曲柄滑块机构;行程速比系数;最小传动角机器种类很多,但它们都是由各种机构组成的,曲柄滑块机构就是常用机构之一。它有一个重要特点是具有急回特性。故按行程速比系数K设计具有最优传力性能的曲柄滑块机构是设计中常遇到的问题。本文将x作为设计变量,给出了解决问题的方法。

在曲柄与滑块导路垂直的位置,其值为: )(cos 1min b e a +=-γ (1) 2.X 和最小传动角γmin 的关系 设计一曲柄滑块机构,已知:滑块行程H ,行程速比系数K ,待定设计参数 为a 、b 和e 。 e 也就确定。下 在△AC 1C 2中 θcos ))((2)()(222a b a b a b a b H +--++-= 因为 x a b =- 所以 θcos )2(2)2(222a x x a x x H +-++=

2sin )1(cos 222θ θx H x a -+-= (2) 又因为 x e a x C AC b a H /2)sin(sin 21+= ∠+=θ 所以 H a x e /)2(sin 22+=θ (3) 将 a x b += 代入 (1) )( cos 1min a x a e ++=-γ (4) 将式(2)、(3)代入式(4),γmin 仅为 x 的函数,则可求得γ min 的值。 二、设计最优传力性能的曲柄滑块机构 设计变量 x 的取值范围。 寻优区间起点在C 1处: x min =0 寻优区间终点在M 点: θ tg H x = max 在 x 的取值范围内根据式(2)、(3)和(4)可求得x 一一对应的γmin 值。 利用一维寻优最优化技术黄金分割法,来求γmin 取极大值时的x 值。 将γ min 最大时的x 值代入(2)、(3)求出a 、e ,由b=x+a 求出b 值。 三、设计实例 试设计一曲柄滑块机构,已知滑块行程H=50mm ,行程速比系数K=1.5。求传力性能最优的曲柄滑块机构。 x 的取值范围为0~68.819mm ,x=19.104mm 时,γmin 的最大值为 27.458°。 曲柄a=22.537mm 连杆 b=41.641mm 偏心距 e=14.413 四、结论 本文结合图解法和解析法把x 作为设计变量,给出了根据行程速比系数K

可调行程的曲柄滑块机构的设计与制作

东南大学 机械工程院 “机械设计与制造综合实践”工作报告可调行程的曲柄滑块机构的设计与制作 项目组成员: 02007635 陈逸民 02007620 龚威豪 日期:2011年1月18日

第1章选题分析 (4) 1.1应用背景: (4) 1.2 预期实现功能: (4) 第2章实现的原理与方案 (4) 2.1 驱动部分 (4) 2.2. 曲柄滑块机构 (4) 2.3 后续分工 (5) 第3章执行系统设计 (5) 3.1 功能要求 (6) 3.2 执行机构的形式设计 (6) 3.3机构的尺度设计 (6) 第5章加工工艺设计与数控加工编程 (7) 5.1加工工艺设计 (7) 5.2对加工的零件进行分类 (8) 5.2.1 连杆的加工路线 (8) 5.2.2 导槽的加工路线 (8) 5.2.3 连接件的加工路线 (8) 5.2.4 底座的加工路线 (8) 5.3 数控加工编程 (8) 5.3.1 数控车床部分 (8) 5.3.2 数控铣床部分 (9) 第6章装配与调试 (10) 参考文献 (14) 附录C:数控加工程序 (24)

摘要:曲柄滑块机构是一种应用非常广泛的机械结构。我们所设计可调行程的曲柄滑块机构在原来的基础上给它增加了一个可调导槽,通过改变该导槽的安装角度,间接地改变连杆的实际长度,从而达到改变滑块行程的目的。我们通过对普通的曲柄滑块机构的分析,了解了其滑块行程的算法,但是由于可变行程的该机构的极限位置是变化的,且我们能力有限,因此须在制造出实物后运行方能给出。在设计的过程中,我们体会到了连杆机构的设计方法,并对制造学有了稍微的了解。 关键字:曲柄滑块机构可调行程 Abstract:Slider-crank mechanism is a very extensive mechanical structure. We are design adjustable trip slider-crank mechanism in the original basis to give it adds an adjustable guide groove, changes in this guide groove installation Angle indirectly change the actual length o f the connecting rod, so as to achieve the purpose of changing the slider trip. We through for ordinary slider-crank mechanism analysis, understand the slider trip, but due to the algorithm of the agency's variable travel limit position is changed and our ability is limited, so must create real after operation can give. In the design process, we realized the linkage mechanism design methods, and learn to have a slightly to manufacture of understanding. Keywords:Slider-crank mechanism,adjustable itinerary

曲柄滑块机构的运动分析及应用修订版

曲柄滑块机构的运动分析及应用修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

机械原理课程机构设计 实验报告 题目:曲柄滑块机构的运动分析及应用 小组成员与学号:刘泽陆(11071182) 陈柯宇 (11071177) 熊宇飞(11071174) 张保开 (11071183) 班级: 110717 2013年6月10日 摘要 (3) 曲柄滑块机构简介 (4) 曲柄滑块机构定义 (4) 曲柄滑块机构的特性及应用 (4) 曲柄滑块机构的分类 (8) 偏心轮机构简介 (9)

曲柄滑块的动力学特性 (10) 曲柄滑块的运动学特性 (11) 曲柄滑块机构运行中的振动与平衡 (14) 参考文献 (15) 组员分工 (15) 摘要 本文着重介绍了曲柄滑块机构的结构,分类,用途,并进行了曲柄滑块机构的动力学和运动学分析,曲柄滑块机构的运动学特性分析,得出了机构压力表达式,曲柄滑块机构的运动特性分析,得出了滑块的位移、速度和加速度的运动表达式。最后,对曲柄滑块机构运动中振动、平衡稳定性等进行了总结。 关键字:曲柄滑块动力与运动分析振动与平稳性 ABSTRACT The paper describes the composition of planar linkage, focusing on the structure, classification, use of a slider-crank mechanism and making the dynamic and kinematic analysis, kinematics characteristics of the crank slider mechanism analysis for a slider-crank mechanism, on one hand , we obtain the drive pressure of the slider-crank mechanism ,on the other hand,we obtain the expression of displacement, velocity and acceleration of movement. Finally, the movement of the vibration and balance stability of the crank slider mechanism are summarized.

基于MATLAB的曲柄滑块机构运动的仿真

基于MATLAB 的曲柄滑块机构运动的仿真 姓名:夏小品 学号:2100110114 班级:机械研10 摘要:本文在曲柄滑块机构运动简图的基础上,对其数学运动模型进行分析,用解析法计算曲柄的转角和角速度,及滑块的位移和速度,并用MATLAB 软件进行仿真。 关键字:曲柄滑块机构;运动分析;MATLAB The Simulation of Crank Slider Mechanism Motion Based on MATLAB Abstract:This article analyses the motion mathematical model of crank slider mechanism based on its motion diagram. Use analytical method to calculate crank angle,crank angular velocity,slider position and slider velocity and do the simulation of the resultes witn MATLAB software. Key Words:Crank slider mechanism;Motion analysis;MATLAB 1 引言 在机械传动系统中,曲柄滑块机构是一种常用的机械机构,它将曲柄的转动转化为滑块在直线上的往复运动,是压气机、冲床、活塞式水泵等机械的主机构。这里用解析法,并用MATLAB 对其进行仿真。 2 曲柄滑块机构的解析法求解 曲柄滑块机构的运动简图如图1所示,在图1中,1L 、2L 和e 分别为曲柄滑块的曲柄、连杆和偏差,1?、2?分别为曲柄和连杆的转角,1?? 、2?? 分别为曲柄和连杆的角速度,S 为滑块的位移。 图1 曲柄滑块机构运动简图

曲柄滑块机构的设计页完整版

曲柄滑块机构的设计页 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

本篇再考察一道曲柄滑块机构的设计。同样是给定行程速比系数来确定杆长。 设计一偏置曲柄滑块机构,已知滑块的行程速比系数为,滑块的行程50 ,导路的偏距20 ,求曲柄和连杆长度,并求其最大压力角。 问题分析 首先设计机构,然后再求最大压力角。 机构的设计。先计算出行程速比系数如下 那么根据题意,最后的结果应当如下图。滑块的两个极位之间距离是50mm,而固定铰链A在与CD平行20mm的直线上,而且A点到C,D的夹角是36度。 图解总是从已知条件开始,然后逐步确定未知因素。本问题中知道三个数字:50mm,20mm,36度。而这个36度时与DC的距离相关的,所以图解时先画出滑块的两个极限位置,然后确定铰链A 所在的水平线,接着就是根据36度这个条件最终确定A的位置。 (1)确定滑块的极位及固定铰链A所在的直线 先绘制水平线段C2C1,使得其距离为50mm. 然后在其上方20mm的地方绘制一条水平直线I.那么铰链A就应该在这条直线上。 (2)根据极位夹角确定铰链A所在的圆 下面要根据极位夹角来确定A所在的曲线,这样,该曲线与上述曲线相交就可以唯一确定A点的位置。 A点到C1,C2形成的夹角是36度。那么所有与C1,C2形成夹角为36度的点有什么特征呢?---圆周角具有这种特征。

从几何知道,在一个圆上面,对应于同一个圆弧的圆周角都相等。基于这一点,过C2做直线垂直于C2C1,而作射线C1E与C2C1夹角为90-36=54度,二者交于点E,则C2EC1这个角度就是36度。 现在以C1E为直径做一个圆,则在该圆上任意取一点,该点与C2C1连线的夹角就都是36度,从而A点必然在该圆上面。 根据上述规则做出的上图发现,该圆与水平线I并不相交。这意味着作图有问题。实际上,刚才作的C1E在C2C1之下,所以导致不相交。因此改变策略,在C2C1之上作C1E,使得它与C2C1的夹角为54度。 然后以C1E为直径作出一个圆。该圆与直线I有两个交点:A1和A2。这样,该问题有两组解。但是观察下图可以发现,取A1或者A2,实际上结果是一样的,只是关于C2C1的中垂线对称而已。所以这里只取A1这个点,它就是固定铰支座A。 (3)测量曲柄和连杆的尺寸 量取A1C1,A1C2如下图。 则可以推知曲柄和连杆的长度 到此为止,连杆机构设计完毕。 (4)得到最大的压力角 从图中可以发现,当滑块在最左边时,有最大的压力角(滑块受到的推力与滑块速度方向的夹角),测量得到角度为53度。 至此,该曲柄滑块机构的设计和分析结束。

曲柄滑块机构运动分析

曲柄滑块机构运动分析 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

曲柄滑块机构运动分析 一、相关参数 在图1所示的曲柄滑块机构中,已知各构件的尺寸分别为 mm l 1001=,mm l 3002=,s rad /101=ω,试确定连杆2和滑块3的位移、速度和加速度,并绘制出运动线图。 图1 曲柄滑块机构 二、数学模型的建立 1、位置分析 为了对机构进行运动分析,将各构件表示为矢量,可写出各杆矢所构成的封闭矢量方程。 将各矢量分别向X 轴和Y 轴进行投影,得 0sin sin cos cos 22112211=+=+θθθθl l S l l C (1) 由式(1)得 2、速度分析 将式(1)对时间t 求导,得速度关系 C v l l l l =--=+222111222111sin sin 0 cos cos θωθωθωθω (2) 将(2)式用矩阵形式来表示,如下所示 ??????-=????????????-11 11122222cos sin . 0 cos 1 sin θθωωθθl l v l l C (3) 3、加速度分析 将(2)对时间t 求导,得加速度关系 三、计算程序 1、主程序 %1.输入已知数据 clear;

l1=; l2=; e=0; hd=pi/180; du=180/pi; omega1=10; alpha1=0; %2.曲柄滑块机构运动计算 for n1=1:721 theta1(n1)=(n1-1)*hd; %调用函数slider_crank计算曲柄滑块机构位移、速度、加速度 [theta2(n1),s3(n1),omega2(n1),v3(n1),alpha2(n1),a3(n1)]=slider_crank(theta1(n1),omega1,alpha1 ,l1,l2,e); end figure(1); n1=0:720; subplot(2,3,1) plot(n1,theta2*du); title('连杆转角位移线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角位移/\circ'); grid on subplot(2,3,2) plot(n1,omega2); title('连杆角速度运动线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角速度/rad\cdots^{-1}'); grid on

曲柄滑块机构的运动分析及应用精编WORD版

曲柄滑块机构的运动分析及应用精编W O R D 版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

机械原理课程机构设计 实验报告 题目:曲柄滑块机构的运动分析及应用 小组成员与学号:刘泽陆(11071182) 陈柯宇 (11071177) 熊宇飞(11071174) 张保开 (11071183) 班级: 110717 2013年6月10日 摘要 (3) 曲柄滑块机构简介 (4) 曲柄滑块机构定义 (4) 曲柄滑块机构的特性及应用 (4) 曲柄滑块机构的分类 (8) 偏心轮机构简介 (9) 曲柄滑块的动力学特性 (10)

曲柄滑块的运动学特性 (11) 曲柄滑块机构运行中的振动与平衡 (14) 参考文献 (15) 组员分工 (15) 摘要 本文着重介绍了曲柄滑块机构的结构,分类,用途,并进行了曲柄滑块机构的动力学和运动学分析,曲柄滑块机构的运动学特性分析,得出了机构压力表达式,曲柄滑块机构的运动特性分析,得出了滑块的位移、速度和加速度的运动表达式。最后,对曲柄滑块机构运动中振动、平衡稳定性等进行了总结。 关键字:曲柄滑块动力与运动分析振动与平稳性 ABSTRACT The paper describes the composition of planar linkage, focusing on the structure, classification, use of a slider-crank mechanism and making the dynamic and kinematic analysis, kinematics characteristics of the crank slider mechanism analysis for a slider-crank mechanism, on one hand , we obtain the drive pressure of the slider-crank mechanism ,on the other hand,we obtain the expression of displacement, velocity and acceleration of movement. Finally, the movement of the vibration and balance stability of the crank slider mechanism are summarized.

曲柄滑块机构的定义

曲柄滑块机构的定义 曲柄滑块机构是铰链四杆机构的演化形式,由若干刚性构件用低副(回转副、移动副)联接而成的一种机构。是由曲柄(或曲轴、偏心轮)、连杆滑块通过移动副和转动副组成的机构。 曲柄滑块的特点及应用 常用于将曲柄的回转运动变换为滑块的往复直线运动;或者将滑块的往复直线运动转换为曲柄的回转运动。对曲柄滑块机构进行运动特性分析是当已知各构件尺寸参数、位置参数和原动件运动规律时,研究机构其余构件上各点的轨迹、位移、速度、加速度等,从而评价机构是否满足工作性能要求,机构是否发生运动干涉等。曲柄滑块机构具有运动副为低副,各元件间为面接触,构成低副两元件的几何形状比较简单,加工方便,易于得到较高的制造精度等优点,因而在包括煤矿机械在内的各类机械中得到了广泛的应用,如自动送料机构、冲床、内燃机空气压缩机等。 优点: 1.面接触低副,压强小,便于润滑,磨损轻,寿命长,传递动力大; 2.低副易于加工,可获得较高精度,成本低; 3.杆可较长,可用作实现远距离的操纵控制; 4.可利用连杆实现较复杂的运动规律和运动轨迹。 缺点: 1.低副中存在间隙,精度低; 2.不容易实现精确复杂的运动规律。 凸轮滑块机构的定义 凸轮机构是由凸轮,从动件和机架三个基本构件组成高副结构。凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。 与凸轮轮廓接触,并传递动力和实现预定的运动规律的构件,一般做往复直线运动或摆动,称为从动件。

凸轮滑块的特点及应用 .优点: 1.能够实现精确的运动规律; 2.设计较简单。 缺点:1.承载能力低,行程短; 2.凸轮轮廓加工困难。 丝杠螺母机构的定义 丝杠螺母机构又称螺旋传动机构。它主要用来将旋转运动变换为直线运动或将直线运动变换为旋转运动。有以传递能量为主的(如螺旋压力机、千斤顶等);也有以传递运动为主的如机床工作台的进给丝杠);还有调整零件之问相对位置的螺旋传动机构等。 丝杠螺母的特点及应用 优点: 1.结构简单,支撑稳定。 2.制动装置由于滚珠丝杠副的传动效率高,又无自锁能力。 缺点: 1.传动形式需要限制螺母的转动,故需导向装置 2.但其轴向尺寸不宜太长,否则刚性较差。因此只适用于行程较小的场合。 齿轮 齿轮齿条机构的定义 齿轮齿条传动是将齿轮的回转运动转变为往复直线运动,或将齿条的往复直线运动转变为齿轮的回转运动。

QTD-III型 曲柄滑块、导杆、凸轮组合实验指导书实验一、机构运动参数的测试和分析实验教学提纲

实验一、机构运动参数的测试和分析实验 一、实验目的 1.掌握机构运动的周期性变化规律,并学会机构运动参数如位移、速度和加速度等的测试原理和方法; 2. 学会运用多通道通用实验仪器、传感器等先进实验技术手段开展实验研究的方法; 3. 利用计算机对平面机构动态参数进行采集、处理,作出实测的动态参数曲线,并通过计算机对该平面机构的运动进行数值仿真,作出相应的动态参数曲线,从而实现理论与实际的紧密结合。 二、实验内容 1.测试曲柄导杆机构、曲柄滑块机构、凸轮机构等机构的构件转角、移动位移等运动参数; 2.比较实测参数曲线与理论仿真曲线的差异。 三、实验仪器 QTD-III型曲柄、导杆、凸轮组合实验台 该组合实验装置,只需拆装少量零部件,即可分别构成四种典型的传动系统。他们分别是曲柄滑块机构、曲柄导杆机构、平底直动从动杆凸轮机构和滚子直动从动杆凸轮机构。具体结构示意图如下图所示。 (a)曲柄滑块机构

(b)曲柄导杆机构 (c)平底直动从动件凸轮机构 (d)滚子直动从动件凸轮机构 1、同步脉冲发生器 2、涡轮减速器 3、曲柄 4、连杆 5、电机 6、滑块 7、齿轮8、光电编码器9、导块 10、导杆11、凸轮12、平底直动从动件 13、回复弹簧14、滚子直动从动件15、光栅盘 四、实验原理 本实验仪由单片机最小系统组成。外扩 16 位计数器,接有 3 位 LED 数码显示器可实时显示机构运动时曲柄轴的转速,同时可与 P C 机进行异步串行通讯。在实验机构动态运动过程中,滑块的往复移动通过光电脉冲编码器转换输出具有一定频率(频率与滑块往复速度成正比),0-5伏电平的两路脉冲,接

曲柄滑块机构设计

本篇再考察一道曲柄滑块机构的设计。同样是给定行程速比系数来确定杆长。 设计一偏置曲柄滑块机构,已知滑块的行程速比系数为1.5,滑块的行程50 ,导路的偏距20 ,求曲柄和连杆长度,并求其最大压力角。 问题分析 首先设计机构,然后再求最大压力角。 机构的设计。先计算出行程速比系数如下 那么根据题意,最后的结果应当如下图。滑块的两个极位之间距离是50mm,而固定铰链A 在与CD平行20mm的直线上,而且A点到C,D的夹角是36度。 图解总是从已知条件开始,然后逐步确定未知因素。本问题中知道三个数字:50mm,20mm,36度。而这个36度时与DC的距离相关的,所以图解时先画出滑块的两个极限位置,然后确定铰链A所在的水平线,接着就是根据36度这个条件最终确定A的位置。 (1)确定滑块的极位及固定铰链A所在的直线

先绘制水平线段C2C1,使得其距离为50mm. 然后在其上方20mm的地方绘制一条水平直线I.那么铰链A就应该在这条直线上。(2)根据极位夹角确定铰链A所在的圆 下面要根据极位夹角来确定A所在的曲线,这样,该曲线与上述曲线相交就可以唯一确定A点的位置。 A点到C1,C2形成的夹角是36度。那么所有与C1,C2形成夹角为36度的点有什么特征呢?---圆周角具有这种特征。 从几何知道,在一个圆上面,对应于同一个圆弧的圆周角都相等。基于这一点,过C2做直线垂直于C2C1,而作射线C1E与C2C1夹角为90-36=54度,二者交于点E,则C2EC1这个角度就是36度。 现在以C1E为直径做一个圆,则在该圆上任意取一点,该点与C2C1连线的夹角就都是36度,从而A点必然在该圆上面。 根据上述规则做出的上图发现,该圆与水平线I并不相交。这意味着作图有问题。实际上,刚才作的C1E在C2C1之下,所以导致不相交。因此改变策略,在C2C1之上作C1E,使得它与C2C1的夹角为54度。 然后以C1E为直径作出一个圆。该圆与直线I有两个交点:A1和A2。这样,该问题有两组解。但是观察下图可以发现,取A1或者A2,实际上结果是一样的,只是关于C2C1的中垂线对称而已。所以这里只取A1这个点,它就是固定铰支座A。 (3)测量曲柄和连杆的尺寸 量取A1C1,A1C2如下图。 则可以推知曲柄和连杆的长度 到此为止,连杆机构设计完毕。 (4)得到最大的压力角 从图中可以发现,当滑块在最左边时,有最大的压力角(滑块受到的推力与滑块速度方向的夹角),测量得到角度为53度。 至此,该曲柄滑块机构的设计和分析结束。

matlab曲柄滑块机构的运动学仿真

《系统仿真与matlab》综合试题 题目:曲柄滑块机构的运动学仿真 编号:______________ 21 _____________ 难度系数:___________________________ 姓名______________________ 班级_________________ 学号__________________ 联系方式______________ 成绩________________________________

《系统仿真与matlab 》综合试题 (1) 一、引言........................................................ 3. 二、运动学分析 (3) 1、实例题目 (3) 2、运动分析 (3) 三、M ATLAB程序编写 (5) 四、使用指南和实例仿真 (8) 五、结语 10

亠、引言 曲柄滑块机构是指用曲柄和滑块来实现转动和移动相互转换的平面连杆机构,也称曲柄连杆机构。曲柄滑块机构广泛应用于往复活塞式发动机、压缩机、冲床等的主机构中,把往复移动转换为不整周或整周的回转运动;压缩机、冲床以曲柄为主动件,把整周转动转换为往复移动。这里使用运动学知识,对其运动进行解析,并用MATL AE为其设计仿真模块。 1、运动学分析 1、实例题目 对图示单缸四冲程发动机中常见的曲柄滑块机构进行运动学仿真。已知连杆长度:D 0.1m , r3 0.4m,连杆的转速:2 2 , 3 3 , 设曲柄r2以匀速旋转,2 50r/s。初始条件:2 3 0。仿真以2为 输入,计算3和A,仿真时间0.5 s。 2、运动分析 建立封闭矢量方程: r2+r3=r1 (9)

平面连杆机构及其方案与分析

第二章平面连杆机构及其设计与分析 §2-1 概述 平面连杆机构<全低副机构):若干刚性构件由平面低副联结而成的机构。 优点: (1)低副,面接触,压强小,磨损少。 (2)结构简单,易加工制造。 (3)运动多样性,应用广泛。 曲柄滑块机构:转动-移动 曲柄摇杆机构:转动-摆动 双曲柄机构:转动-转动 双摇杆机构:摆动-摆动 (4)杆状构件可延伸到较远的地方工作<机械手) (5)能起增力作用<压力机) 缺点: <1)主动件匀速,从动件速度变化大,加速度大,惯性力大,运动副动反力增加,机械振动,宜于低速。 <2)在某些条件下,设计困难。 §2-2平面连杆机构的基本结构与分类 一、平面连杆机构的基本运动学结构 铰链四杆机构的基本结构 1.铰链四杆机构 所有运动副全为回转副的四杆机构。 BC-连杆 AB、CD-连架杆 连架杆:整周回转-曲柄 往复摆动-摇杆 2.三种基本型式

(1)曲柄摇杆机构 定义:两连架杆一为曲柄,另一为摇杆的铰链四杆机构。 特点:、 0~360°, 、<360° 应用:鳄式破碎机缝纫机踏板机构揉面机 (2)双曲柄机构 定义:两连架杆均作整周转动的铰链四杆机构。 由来:将曲柄摇杆机构中曲柄固定为机架而得。 应用特例:双平行四边形机构

曲柄滑块机构的运动学分析

****** 曲柄滑块机构的运动学分析 *******' SC=input(' 输入滑块行程的均值(mm) SC = '); P=input(' 输入曲柄轴心至滑销最远距离(mm) P = '); E=input(' 输入机构偏心距的均值(mm) E = '); RL=input(' 输入曲柄与连杆长度比的均值 RL = '); DR=input(' 输入曲柄长度偏差(mm) DR = '); DL=input(' 输入连杆长度偏差(mm) DL = '); DE=input(' 输入机构偏心距偏差(mm) DE = '); N=input(' 输入曲柄转速(r/min) N = '); L=sqrt((P-SC)^2-E^2)/(1-RL); fprintf(1,' 连杆长度的均值(mm) L = %3.6f \n',L) R=RL*L; fprintf(1,' 曲柄长度的均值(mm) R = %3.6f \n',R) CR=DR/3;CL=DL/3;CE=DE/3; EL=E/L; fprintf(1,' 偏心距与连杆长度比的均值(mm) EL = %3.6f \n',EL) fprintf(1,' 曲柄长度的标准离差(mm) CR = %3.6f \n',CR) fprintf(1,' 连杆长度的标准离差(mm) CR = %3.6f \n',CL) fprintf(1,' 偏心距的标准离差(mm) CE = %3.6f \n',CE) W=pi*N/30; fprintf(1,' 曲柄的角速度(mm) W = %3.6f \n',W) CRL=sqrt((R*CL)^2+(L*CR)^2)/L^2; fprintf(1,' 曲柄与连杆长度比的标准离差 CRL = %3.6f \n',CRL) CEL=sqrt((E*CL)^2+(L*CE)^2)/L^2; fprintf(1,' 偏心距与连杆长度比的标准离差 CEL = %3.6f \n',CEL) theta=0:10:360; hd=theta.*pi/180; % 计算滑块位移、速度、加速度的均值 S=R.*(1-cos(hd)-EL.*sin(hd)+0.5.*RL.*sin(hd).^2); V=R.*W.*(sin(hd)-EL.*cos(hd)+0.5.*RL.*sin(2.*hd)); A=R.*W^2.*(cos(hd)+EL.*sin(hd)+RL.*cos(2.*hd)); figure(1); subplot(1,3,1); plot(theta,S,'r') title('\bf \mus 线图')

matlab曲柄连杆机构分析讲课讲稿

m a t l a b曲柄连杆机构 分析

clear;clc; n=750;l=0.975;R=0.0381;h=0.2;omiga=n.*pi/30;tmax=2.*pi/omiga; t=0:0.001:tmax; %计算曲柄转一圈的总t值 alpha1=atan((h+R.*sin(omiga.*t))./sqrt(l.*l-(h+R.*sin(omiga.*t))))+pi; alpha1p=-(R.*omiga.*cos(omiga.*t))./(l.*cos(alpha1)); vb=-R.*omiga.*sin(omiga.*t)+R.*omiga.*cos(omiga.*t).*tan(alpha1); ab=-R.*omiga.^2.*cos(omiga.*t)- (R.*omiga.*cos(omiga.*t)).^2./(l.*(cos(alpha1)).^3) -R.*omiga.^2.*sin(omiga.*t).*tan(alpha1); subplot(1,2,1);plot(t,vb);title('曲柄滑块机构的滑块v-t图'); xlabel('时间t(曲柄旋转一周)');ylabel('滑块速度v');grid on; subplot(1,2,2);plot(t,ab);title('曲柄滑块机构的滑块a-t图'); xlabel('时间t(曲柄旋转一周)');ylabel('滑块加速度a');grid on; %下面黄金分割法求滑块的速度与加速度最大值 epsilon=input('根据曲线初始区间已确定,请输入计算精度epsilon(如输入 0.001):'); a=0;b=0.04; %初始区间 n1=0; %n1用于计算次数 a1=b-0.618*(b-a);y1=-R.*omiga.*sin(omiga.*a1) +R.*omiga.*cos(omiga.*a1).*tan(alpha1); a2=a+0.618*(b-a);y2=-R.*omiga.*sin(omiga.*a2) +R.*omiga.*cos(omiga.*a2).*tan(alpha1); while abs(a-b)>=epsilon if y1<=y2

实验一 曲柄滑块机构的运动规律

上海应用技术学院 数学实验报告 题目:曲柄滑块机构的运动规律 姓名:周玲 院系:理学院数学与应用数学系 学号: 1112211115 指导老师:许建强 2015年3月30日

目录 一、实验目的 (3) 二、实际问题 (3) 三、数学模型 (3) 四、数值积分方法 (2) 五、实验任务 (4) 任务一 (4) 任务二 (5) 任务三 (7) 任务四.............................................................. 错误!未定义书签。

一、 实验目的 本实验主要涉及微积分中对函数特性的研究。通过实验复习函数求导法, Taylor 公式和其他有关知识。着重介绍运用建立近视似模型并进行数值计算来研究讨论函数的方法。 二、 实际问题 曲柄滑块机构是一种常用的机械结构,它将曲柄的转动转化为滑块在直线上的往复运动,是气压机、冲床、活塞式水泵等机械的主机构。右图为其示意图。 记曲柄OQ 的长为r ,连杆QP 的长为l , 当曲柄绕固定点O 以角速度w 旋转时, 由连杆带动滑块P 在水平槽内做往复直线运动。假设初始时刻曲柄的端点Q 位于水平线段OP 上, 曲柄从初始位置起转动的角度为θ,而连杆QP 与OP 的锐夹角为β(称为摆角) 。在机械设计中要研究滑块的运动规律和摆角的变化规律, 确切的说,要研究滑块的位移,速度和加速度关于θ的函数关系,摆角β及其角速度和角加速度关于θ的函数关系, 进而 (1)求出滑块的行程s (即滑块往复运动时左、右极限位置间的距离); (2)求出滑块的最大和最小加速度(绝对值), 以了解滑块在水平方向上的作用力; (3)求出β的最大和最小角加速度(绝对值), 以了解连杆的转动惯量对滑块的影响; 在求解上述问题时,我们假定: 100(),3300(),240(/min)r mm l r mm ω====转 符号说明:r -曲柄OQ 的长; l -连杆PQ 的长度; β-摆角(连杆PQ 与OP 的锐夹角); ω-角速度; P -滑块; x -滑块的位移; a -滑块的加速度。 三、 数学模型 取O 点为坐标原点,OP 方向为x 轴正方向,P 在x 轴上的坐标为x ,那么可用x 表示滑块的位移。利用三角关系,立即得到 θθ222sin cos r l r x -+= (1.1) 由于t ωθ= ,故有 θ ωθθd dx dt d d dx dt dx == (1.2) 而

相关文档
最新文档